как узнать какая обмотка в трансформаторе медь или алюминий
Прием черного и цветных металлов 8 926 665-55-40 САО Клязьминская улица
Черный и цветной металл.Вывоз лома от 100 кг. 8 926 665-55-40
Таблица/калькулятор Сколько меди и алюминия в высоковольтном силовом масляном трансформаторе ТМ — 400/6-0,4
Высоковольтные силовые масляные трансформаторы марки ТМ
Трансформаторам присваивается обозначение, состоящее из букв и цифр. Буквы в типах масляных и сухих трансформаторов обозначают:
О — однофазный трансформатор
Т — трехфазный трансформатор
Н — регулирование напряжения трансформатора под нагрузкой
Р — с расщепленными обмотками; по видам охлаждения:
С — не включаемая самовентиляция трансформатора естественно-воздушное
М — самовентиляция циркуляция воздуха и масла
См.страницу:Разведка копа заброшенных железных дорогах Москвы.
Д — включаемая принудительная циркуляция воздуха и естественная циркуляция масла
ДЦ — включаемая принудительная циркуляция воздуха и масла
MB — включаемая принудительная циркуляция воды и ‘естественная циркуляция масла
Ц-включаемая принудительная циркуляция воды и масла.
С в обозначении тип показывает, в этом трансформаторе 3 обмотки.
Все данные можно узнать на бирке трансформатора масляного и ни где не искать информацию.
На фото б/у трансформаторы ТМ — 400/6-0,4
Номинальная мощность, кВА 400
Номинальное напряжение на стороне ВН, кВ 6
Номинальное напряжение на стороне НН, кВ 0,4
Схема соединения:
У/Ун-0 (звезда-звезда), Д/Ун-11 (треугольник-звезда), У/Zн-11 (звезда-зигзаг)
Климатическое исполнение и категория размещения: У1, УХЛ1
Материал обмоток:Алюминий (алюминиевый), медь (медный)
Нормативные документы:ГОСТ 11677, ГОСТ 30830, ГОСТ Р 52719-2007, МЭК – 76
Вес-масса 1850 кг. руками не утащить.
Данные на ТМФ 400/10
Алюминий и алюминиевые сплавы 1 сорта 33 кг. алюминий 3-го сорта 133 кг,
Вес-масса 1850 кг. руками не утащить.
Масло не считаем. Остальное легко высчитывается.
Классификация:
Цифры в наименовании указывают на мощность трансформатора (в киловольт-амперах), в знаменателе — класс напряжения обмотки ВН (в киловольтах), например: ТМ-100/6 — трехфазный, с масляным охлаждением и естественной циркуляцией, мощностью 100 кВ-А, напряжением 6 кВ; ТД-10000/110 — трехфазный, с дутьевым охлаждением, мощностью 10 000 кВ-А, напряжением ПО кВ; ТДТ-20 000/110 — трехфазный, трехобмоточный, с дутьевым охлаждением, мощностью 20 000 кВ-А, напряжением ПО кВ; ТС-630/10 — трехфазный, сухого исполнения, мощностью 630 кВ-А, напряжением 10 кВ.
В обозначении автотрансформатора добавляют букву А. Если автотрансформатор понижающий, то буква А стоит в начале обозначения, если повышающий — в конце.
Сколько меди и алюминия в высоковольтном силовом масляном трансформаторе ТМ 630/10
Вывезти или утащить проблематично, разобрать тоже.
Меди и алюминия в нем достаточно, но вот как с разборкой его на части (резка,разделка,слив масла, обжиг от изоляции и т.д.)
алюминий и медные сплавы:
Как узнать какая обмотка в трансформаторе медь или алюминий
Материалы, применяемые в обмоточно-изоляционном производстве — Производство обмоток и изоляции силовых трансформаторов
Материалы, применяемые в обмоточном производстве и требования к ним
В обмоточно-изоляционном производстве трансформаторостроительных заводов применяют большое количество различных материалов. Их можно классифицировать следующим образом: проводниковые, электроизоляционные и вспомогательные материалы. К каждому материалу предъявляют требования, определенные стандартами или техническими условиями. В качестве проводников тока в обмотках трансформаторов в большинстве случаев применяется чистая электролитическая медь (99,95% чистой меди), обладающая высокой электрической проводимостью, большой эластичностью и достаточной механической прочностью. Удельное электрическое сопротивление электролитической меди р=0,01724 мкОм-м, плотность у=8300 кг/м3, температура плавления 1065—1080°С. Медь является дефицитным материалом, поэтому для обмоток трансформаторов малой и средней мощности часто применяют алюминий, удельное сопротивление которого р=0,029 мкОм-м, т. е. в 1,65 раза больше удельного сопротивления меди, плотность алюминия у=2600 кг/м3. Алюминий дешевле меди, но худшая электрическая проводимость по сравнению с медью требует применения больших сечений проводов. Предел прочности при растяжении алюминиевых проводов в 3,5 раза меньше, чем медных [20]. Это ограничивает возможности применения алюминиевых проводов в мощных трансформаторах.
К обмоточным проводам предъявляют следующие технические требования:
Наложение изоляции должно быть плотным и равномерным. Наружная лента (из кабельной бумаги) и внутренняя (из телефонной или кабельной бумаги) должны быть наложены с перекрытием не более 50%, а остальные в каждом слое — встык или с зазором до 2 мм между витками с обязательным смещением на половину шага относительно соседних слоев. Шаг обмотки бумажных лент для прямоугольных проводов должен быть не более 30 мм для сечения до 75 мм2 и 35 мм — для 75 мм2 и выше. В проводах не должно появляться трещин бумаги и оголенных мест при изгибе на 180° провода широкой стороной, а также узкой стороной для проводов с отношением сторон не более 1 :2 на стержень диаметром 160 мм. Намотка провода на барабаны должна быть ровной, без перехлестывания. Расстояние от верхнего слоя намотки до края щеки барабана должно быть не менее 25 мм. Электрическое сопротивление провода постоянному току, отнесенное к 1 мм2 поперечного сечения и 1 м длины при 20°С, должно быть для медных проводов не более 0,01784 Ом, алюминиевых — не более 0,029 Ом. Материалы, применяемые для изготовления проводов, должны соответствовать стандартам.
Провода прямоугольного сечения не должны иметь острых углов (заусенцев), повреждающих (надрезающих изнутри) бумажную изоляцию. Хранение и транспортирование провода должны производиться только в горизонтальном положении оси барабана. Стремление к повышению надежности и экономичности трансформаторов заставляет обратить особое внимание на характеристики и качество обмоточных проводов, поскольку обмотки в трансформаторе являются наиболее ответственным элементом. Их качество в значительной мере определяет надежность всего трансформатора.
Для обмоток нормальных силовых трансформаторов применяют медный и алюминиевый изолированный провод круглого и прямоугольного сечений по ГОСТ 16512-70, 16513-70, 7019-71 и специальным ТУ кабельной промышленности.
Номинальная диаметральная (удвоенная) толщина изоляции круглых проводов может быть следующей: 0,3; 0,72; 0,96; 1,20 мм.
Номинальная удвоенная толщина изоляции для проводов марок ПБ и АПБ: 0,45; 0,55; 0,72; 0,96; 1,20; 1,36; 1,68; 1,92, а для марок ПБУ и АПБУ: 2,0; 2,48; 2,96; 3,6; 4,08; 4,4 мм.
Изготовление обмоток ВН мощных силовых трансформаторов вызвало потребность в обмоточных проводах с изоляцией повышенной электрической прочности. Для их изоляции применяют уплотненную кабельную бумагу марки КВУ толщиной не более 0,08 мм. Таким проводам присвоена марка ПБУ (ГОСТ 16512-70).
Увеличение витковой изоляции провода приводит к уменьшению коэффициента заполнения окна магнитной системы медью и вследствие этого к снижению технико-экономических показателей трансформаторов. Кроме того, провод с большой толщиной витковой изоляции нетехнологичен и не обеспечивает плотной намотки обмотки.
За рубежом в качестве витковой изоляции проводов наряду с применением лучших сортов кабельной бумаги стали применять синтетические изоляционные материалы: лавсановую (териленовую) пленку, поливинилхлоридную изоляцию и др.
При применении в обмотке проводов большой толщины (3— 5 мм) и большого числа элементарных проводников в витке (более 100) очень важно ограничить добавочные потери, вызываемые магнитным полем рассеяния и циркулирующими токами.
Кабельная промышленность освоила производство транспонированных проводов, и они успешно применяются для намотки обмоток мощных трансформаторов.
Транспонированный провод (рис. 1) состоит из нечетного числа прямоугольных эмалированных проводников, расположенных в два ряда и транспонированных. Между рядами проводов проложена изоляция из кабельной бумаги толщиной 0,12 мм. Для изготовления транспонированных проводов применяются провода марки ПЭМП — провода медные прямоугольные эмалированные высокопрочные.
Транспозиция провода выполняется по принципу круговой перестановки по прямоугольному контуру. Поверх транспонированных эмалевых проводников накладывается общая бумажная изоляция из кабельной бумаги марки КМ-120 толщиной 0,12 мм — для проводов марки ПТБ или из кабельной бумаги марки КВУ толщиной 0,08 мм — для проводов марки ПТБУ-С (провод транспонированный из элементарных эмалированных проводников в общей бумажной изоляции специальный).
Номинальная удвоенная толщина бумажной изоляции для транспонированных проводов 0,95—1,35 мм.
Рис. 1. Транспонированный провод марки ПТБ.
По сравнению с обычными обмоточными проводами марки ПБ транспонированные провода марки ПТБ имеют ряд преимуществ: снижается трудоемкость изготовления обмоток, так как в процессе намотки обмоток отпадает необходимость транспонирования отдельных проводников;
значительно повышается коэффициент заполнения сечения обмотки медью благодаря замене бумажной изоляции каждого проводника эмалевой изоляцией толщиной 0,06—0,14 мм на обе стороны;
уменьшаются размеры обмоток, что ведет к уменьшению вложения материалов, снижает габариты и массу трансформатора;
снижаются добавочные потери от полей рассеяния благодаря более совершенной транспозиции и применению меньших сечений элементарных проводников;
уменьшаются производственные площади, необходимые для размещения стоек с барабанами обмоточного провода;
повышается электродинамическая стойкость трансформаторов при коротком замыкании благодаря большей механической прочности обмоток из транспонированного провода.
Постоянно растущая потребность в трансформаторах больших мощностей и сверхвысоких напряжений вызывает необходимость применения проводов максимальных размеров как по высоте, так и по ширине, что приводит к большому увеличению добавочных потерь в обмотках и к чрезмерному нагреву у крайних катушек потоками рассеяния. Для снижения потерь успешно применяют специальные медные обмоточные провода марок ПБП и ПБПУ. Эти так называемые подразделенные провода (рис. 2) состоят из двух или трех элементарных проводников (жил) с бумажной изоляцией отдельного проводника толщиной 0,4 мм и удвоенной суммарно номинальной толщиной дополнительной поясной изоляции, равной 1,35; 1,68; 1,92; 2,48; 2,96 мм. Разделение проводника приводит к значительному (на 20—30%) снижению добавочных потерь от поперечных полей рассеяния, благодаря чему уменьшаются перегревы в крайних катушках обмотки. В настоящее время в обмотках НН трансформаторов большой мощности широко применяется транспонированный подразделенный провод марки ППТБ.
Рис. 2. Подразделенный провод.
а, б — марки ПБП двухжильный (тип А) и трехжильный (тип Д); в — марки ППТБ (транспортированный подразделенный).
Одной из причин повреждения мощных трансформаторов в эксплуатации является потеря устойчивости обмоток, сжимаемых радиальным усилием, вследствие недостаточной прочности обмоточных проводов. Разработка и исследование материалов с повышенной прочностью проводятся в СССР и за рубежом. Имеется перспектива получения в обозримом будущем медного сплава, обладающего при относительно небольшом (около 5%) увеличении удельного сопротивления существенно более высокими, чем у меди (в 1,5— 2 раза), механическими характеристиками [21].
Увеличения электродинамической стойкости обмоток можно достичь склейкой витков проводов между собой. Поэтому необходимы обмоточные провода (в том числе и транспонированные) с термореактивным изоляционным покрытием, которое, полимеризуясь при сушке обмотки, склеивает ее витки (провода). Выпуск в достаточном количестве прямоугольных эмалированных проводов позволит заменить обмоточные провода с бумажной изоляцией в обмотках трансформаторов напряжением до 330 кВ включительно.
Фольга и лента. В последние годы за рубежом и в нашей стране в качестве проводникового материала для обмоток трансформаторов малой мощности (до 630 кВ-А) широко применяются медная и алюминиевая фольга и лента. Переход от алюминиевых проводов на фольгу и ленту позволяет резко повысить коэффициент заполнения объема обмотки активным проводником, в результате чего уменьшаются потери короткого замыкания на 14%, массы конструкционной стали, трансформаторного масла и трансформатора в целом на 5—10%. Медную фольгу для электротехнической промышленности по ТУ КП-033-66 изготавливают из меди марки не ниже Ml по ГОСТ 859-66 с удельным электрическим сопротивлением р0,180 мкОм-м и с допуском по толщине ±3%. Толщина фольги 0,035—0,065 мм, ширина рулона — 700, 850 и 1000 мм. Ленту изготавливают толщиной 0,100; 0,080; 0,075; 0,050; 0,035 мм.
Алюминиевая фольга и лента, предназначенные для обмоток трансформаторов, изготовляются из алюминия марки АЕ ГОСТ 11069-74 и имеют удельное электрическое сопротивление 0,028 мкОм-м для марки А7Е. Толщина фольги 0,020—0,2 мм, толщина ленты 0,22—2,0 мм. Допуск на толщину ±3%. Такие фольга и лента пока еще не освоены нашей промышленностью, поэтому для изготовления обмоток временно применяется алюминиевая фольга для технических целей, выпускаемая по ГОСТ 618-73, а лента по ГОСТ 13726-68.
Алюминий против меди в трансформаторах
3 декабря 2011 в 10:00
Введение
Алюминий является основным материалом выбора для обмотки низкого напряжения, сухих трансформаторов мощностью более 15 киловольт-ампер (кВА). В некоторых других странах мира, медь является преобладающим намоточным материалом. Основной причиной выбора алюминиевых обмоток является их низкая начальная стоимость. Стоимость меди исторически оказалась гораздо более изменчивой, чем стоимость алюминия, так что цена покупки медного проводника в целом является более дорогим выбором. Кроме того, поскольку алюминий имеет большую пластичность и легче поддается сварке, то является более дешевым материалом при производстве. Тем не менее, надежные соединения алюминия требуют больше знаний и опыта со стороны сборщиков силовых трансформаторов, чем это требуется для медных соединений.
Таблица 1: Распространенные причины выбора материала обмоток для низковольтных сухих силовых трансформаторов
Различия между медью и алюминием
Основные беспокойства по поводу выбора материала обмотки отражают пять характерных различий между медью и алюминием:
Таблица 2: Пять характерных различий между медью и алюминием
Возможность соединения
Оксиды, хлориды, сульфиды или недрагоценные металлы, более проводящие на меди, чем алюминии. Этот факт делает очистку и защиту соединителей для алюминия более важной. Некоторые считают соединения меди с алюминием несовместимыми. Также под вопросом сопряжение соединений между алюминием трансформаторов и медным проводом присоединения.
Коэффициент расширения
При изменении температуры алюминий расширяется почти на треть больше, чем медь. Это расширение, наряду с пластичным характером алюминия, вызывает некоторые проблемы для ненадлежаще установленных болтовых соединений. Чтобы избежать ослабления соединения, необходимо его подпружинивание. Используя либо чашевидные или прижимные шайбы можно обеспечить необходимую эластичность при сочленении, без сжатия алюминия. При использовании надлежащей арматуры алюминиевые соединения, могут быть равными по качеству медным.
Теплопроводность
Некоторые утверждают, что поскольку, теплопроводность меди выше, чем алюминия то это оказывает влияние на снижение хот-спот температуры обмотки трансформатора. Это верно только тогда, когда проводники обмоток из меди и алюминия одинакового размера, геометрии и дизайна. Следовательно, для любого силового трансформатора заданного размера, тепловые характеристики теплопроводности алюминия могут быть очень близки меди. Для алюминиевых обмоток для достижения той же самой электропроводности как у меди, она должна быть примерно на 66% больше по площади поперечного сечения.. Производители трансформаторов проектируют и проверяют их с учетом хот-спот особенностей их конструкции и использую площадь поверхности охлаждения, геометрию обмоток, воздуховоды, и форму проводников для получения приемлемых хот-спот градиентов, независимо от материала намотки.
Электрическая проводимость
Часто аргументы указывают на неполноценность проводимости алюминия, мотивируя это тем, что алюминий имеет только 61% от проводимости меди, что приводит к более высоким потерям в алюминиевых обмотках трансформаторов. Проектировщики всегда обеспокоены температурой обмоток. Чтобы удержать температуру в данном классе изоляции, трансформаторы с алюминиевыми обмотками разрабатывают с проводниками большей площади поперечного сечения чем медь. В среднем, это приводит к потерям энергии для алюминия одинаковым с медью. Таким образом, силовые трансформаторы аналогичной конструкции с тем же самым нагревом имеют примерно эквивалентные потери независимо от материала проводника.
Производители трансформаторов ограничивают выбор доступных размеров проводников. Из-за этого некоторые проекты в алюминии могут получить более низкие потери чем в меди просто, потому что ограничен выбор размера провода. В других проектах медь более эффективна. Немногие, если таковые вообще имеются, производители трансформаторов сухого типа для низкого напряжения изменяют основные размеры сердечника при переходе от алюминия к меди, так что потери в сердечнике остаются примерно одинаковыми, независимо от обмоточного материала. Если одинаковой эффективности можно добиться путем изменения размеров намоточного провода и основные потери остаются теми же, нет никаких практических оснований ожидать, что один дизайн трансформатора, более эффективен, чем другие. Разница в стоимости между медью и алюминием часто позволяет обеспечить алюминиевые проводники большего сечения, что приводит к снижению потерь холостого хода при меньших затратах, чем если бы были использованы медные проводники.
Предел прочности на разрыв
Более низкая прочность на растяжение и предел текучести алюминия вызывала некоторое беспокойство по поводу его использования при циклических нагрузках. Нагрузки с большими токовыми бросками, которые создают приводы постоянного тока и некоторые другие потребители, приводят к появлению электромагнитных сил, которые могут вызвать движение проводников и смещение обмотки. Как показано в таблице 2, алюминий имеет только 38% от предела прочности меди. Тем не менее, в таблице сравнение основано на равных площадях поперечного сечения. Как отмечалось ранее, чтобы обеспечить равный рейтинг трансформаторам с алюминиевыми обмотками необходимо иметь обмотки площадью поперечного сечения на 66% больше, чем трансформаторам с медными обмотками. Использование больших размеров проводников приводит к показателям алюминиевой обмотки почти равным медной. Способность трансформатора противостоять долговременным механическим воздействиям бросков нагрузки больше зависит от соответствующего баланса обмотки и крепления соединительных проводов чем от выбора проводника. Не обнаружено существенной разницы между медными или алюминиевыми обмотками трансформаторов низкого напряжения в механических повреждениях при испытаниях.
Подключение
Подключение на сегодняшний день является самой распространенной причиной «ущербности» в отношении использования алюминиевых обмоток трансформаторов. И медь и алюминий склонны к окислению или другим химическим изменениям под воздействием атмосферы. Проблема в том, окись алюминия является очень хорошим изолятором, в то время как оксид меди, хотя и не считается хорошим проводником, но не так проблематичен в болтовых соединениях. Зачистка контактов вместе с качественным соединением позволяют предотвратить окисление. Эти рекомендации относятся к любому проводящему материалу, просто более существенны для алюминия. Большинство электриков хорошо обучены этим процедурам, и техника выполнения болтовых соединений проводников из алюминия четко установлена и ее надежность доказана практикой.
В общем, болтовые соединения из алюминия без покрытия с медью не рекомендуются. Хотя есть несколько надежных сварочных и взрывных технологий для соединения этих двух металлов, но они, в настоящее время, почти не используются в производстве силовых трансформаторов. Большинство болтовых соединений алюминия с медью выполнены с применением серебра или лужения. В большинстве кабельных соединений к трансформаторам с алюминиевыми обмотками используются алюминиевые наконечники с покрытием олова. Эти наконечники специально предназначены (Al / Cu) для соединения медного провода с любым металлом. Эта практика является общепринятой и показала свою надежность на протяжении более 30 лет эксплуатации трансформаторов с алюминиевыми обмотками.
ТЕОРИЯ ПРОТИВ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ
Большинство аргументов в пользу меди было основано на теориях, которые, практически, не представляют из себя что-либо существенное. Несколько теорий, также существуют, которые способствуют использованию алюминия.
Один из аргументов фокусируется на различных методах выполнения медных и алюминиевых соединений. Внутренние соединения обмоток трансформатора, выполненные медью, как правило, паяные, тогда как же соединения алюминия свариваются с использованием инертного газа. Технически, метод пайки тугоплавким припоем делает медное соединение менее проводимым чем медь. Сварка алюминия в инертном газе дает сплошной алюминий, соединенный без потери проводимости. Кроме того, некоторые утверждают, что в течение долгого времени медная окись продолжает формироваться, отслаивая наружную медь и в конечном счете повреждая весь проводник. С другой стороны, алюминиевая окись формирует стойкое, защитное покрытие на открытых металлических поверхностях, препятствуя окислению уже через несколько миллионных долей сантиметра. Да, возможны определенные проблемы при эксплуатации трансформатора в коррозионных атмосферных или экстремальных нагрузочных условиях. Однако, среднестатистический потребитель не должен быть слишком обеспокоен этими теоретическими соображениями, потому что и у медных и у алюминиевых трансформаторов есть отличный послужной список долгих лет практического применения.
ЗАКЛЮЧЕНИЕ
Выбор между обмотками трансформатора из алюминия или меди сводится к личным предпочтениям. Высокая цена на медь часто требует оправданности покупки, но эти аргументы были опровергнуты в этой статье. По правде говоря, опыт работы в отрасли просто не поддерживает ни одну из наиболее часто заявляемых причин выбора меди в сравнении с алюминием. Спрос на сухие трансформаторы с алюминиевыми низковольтными обмотками, вероятно, будет расти из-за их существенного преимущества по стоимости перед медью. Как некоторые из старых мифов исчезают из-за ошеломляющего успеха алюминия, так все больше пользователей предпочитают заплатить меньшие деньги, при относительно небольшом дополнительном внимании к деталям, необходимым для выполнения надежных соединений. Хорошая практика при создании электрических соединений преимущество для всех в отрасли, независимо от того, используется алюминий или медь. Прежде, чем вложить капитал в дополнительную стоимость медных трансформаторов, исследуйте причины предпочтения меди в технических характеристиках.
4 мая 2014 Сухие трансформаторы,Технологии
В трансформаторах обмотки служат для преобразования электрической энергии. Изменяя напряжение и силу тока, они сохраняют передаваемую мощность. Вместе с обмотками в преобразовании энергии участвует набор из металлических пластин, который играет роль магнитопровода.
Трансформаторные обмотки изготавливаются из проводников, покрытых слоем изоляции, который также удерживает провода в определенном положении и создает канал охлаждения. Различные конструкции обмоток предусматривают нейтральные и линейные ответвления, а также отводы для регулировки. Во время работ, связанных с конструированием обмоток, рассчитываются такие параметры:
Для изготовления обмоток преобразователей чаще всего используется медный провод. Это делается из-за того, что медь имеет малое электрическое сопротивление и высокую электропроводность. Благодаря своей гибкости и механической прочности, она хорошо обрабатывается и плохо поддается коррозии.
Однако медь – это достаточно ценный и дефицитный металл. Высокая стоимость меди связана с небольшими мировыми запасами ее руды. Из-за этого стоимость металла постоянно увеличивается, так что производители трансформаторов вынуждены искать ему замену. На сегодняшний день лучшей альтернативой меди является алюминий. Его запасы значительно превосходят медные, и в природе он встречается намного чаще.
Однако алюминий имеет меньшую электропроводность. Также он менее гибок и уступает меди в пределе прочности. Его редко применяют в обмотках мощных трансформаторов. Кроме того, достаточно сложно в техническом плане делать внутренние соединения обмоток при помощи сварки. Выполнение этой операции требует от работников, соединяющих обмотки, соответствующих знаний и умений, большого опыта и определенных навыков. В случае когда соединяются медные проводники, все обстоит гораздо проще.
Сравнительные характеристики металлов
УТВЕРЖДЕНИЕ | ПРАВДА | МИФ |
Оконечные заделки намотанных алюминием трансформаторов несовместимы с медной линией и силовыми кабелями. | Х | |
Оконцевание выводов должным образом – более сложная задача для намотанных алюминием трансформаторов. | Х | |
Соединения с линией и нагрузкой трансформаторов с медными обмотками более надежны, чем у трансформаторов с алюминиевыми обмотками. | Х | |
Трансформаторы с алюминиевыми обмотками весят легче, чем аналогичные с медными обмотками. | Х | |
Намотанные медью обмотки низкого напряжения трансформаторов лучше подходят для «ударных» нагрузок, потому что у меди более высокая прочность на растяжение чем у алюминия. | Х | |
Трансформаторы с алюминиевыми обмотками имеют более высокие потери, чем аналогичные с медными обмотками. | Х |
Споры о том, какой металл лучше использовать для трансформаторных обмоток, не прекращаются на протяжении многих лет. Оппоненты, приводящие различные технические аргументы в пользу разных металлов, постоянно меняют свои взгляды. Большая часть из всех аргументов не столь существенна, а некоторые из, так называемых фактов, являются откровенной дезинформацией.
Чтобы правильно выбрать материал для обмотки преобразователя, следует произвести сравнительный анализ рабочих параметров алюминия и меди, и определить степень их различия. Внимание обращают на те параметры, которые вызывают наибольшее беспокойство, поскольку являются наиболее важными в работе преобразующего устройства.
Характерные различия между медью и алюминием
Коэффициент расширения
Когда нагревается алюминий, он имеет расширение на 30% больше, чем медь. Если алюминиевые наконечники соединяются при помощи болта и гайки, под прижимную гайку нужно обязательно подкладывать пружинистую шайбу. В этом случае контактное соединение не будет ослабляться в то время, когда напряжение отключено, и наконечники остывают, уменьшая при этом свои размеры.
Вывод: Чтобы качество соединения алюминиевых кабелей не уступало качеству медных контактов, необходимо использовать должную арматуру.
Теплопроводность
Медь намного лучше проводит тепло, чем алюминий. Поэтому если разные металлы обмоток в трансформаторах имеют одинаковое сечение, то изделие из меди охлаждается гораздо лучше, чем из алюминия. Чтобы добиться одинаковой электропроводности, а значит одной и той же отдачи тепла, алюминиевый провод в преобразователе должен иметь сечение на 60% больше медного.
Проектировщики, разрабатывая пакет документов для производства трансформаторов, учитывают особенности материала, конструкцию, а также суммарную площадь охлаждающейся поверхности обмотки.
Вывод: Все трансформаторы, невзирая на то, из какого металла выполнены их обмотки, имеют очень сходные тепловые характеристики.
Электропроводность
Вследствие того, что алюминий имеет электрическую проводимость на 60% меньше чем медь, в обмотках из алюминия более высокие потери. Разработчики преобразователей с алюминиевыми обмотками в проектной документации закладывают сечения проводников, которые превышают значения для аналогичных изделий из меди. Это уравнивает потерю энергии в изделиях, имеющих в обмотках различные материалы.
Вместе с тем производители имеют определенные рамки, ограничивающие выбор сечения провода. Поэтому иногда получается, что медная обмотка в трансформаторе имеет более значительные потери, чем аналогичное изделие из алюминия. Это происходит из-за того, что производители по тем или иным причинам в качестве обмотки использовали медный провод, сечение которого не соответствует расчетной норме.
Что же касается сухих трансформаторов, то вне зависимости от металла обмотки у них потери в сердечнике, набранном из металлических пластин, остаются неизменны. Добиться более высокой эффективности работы преобразователя можно только путем изменения сечения обмоточного провода. Это и является основным критерием, который указывает на более высокую степень результативности того или иного устройства.
Вывод: Благодаря тому, что алюминиевый провод стоит намного дешевле, за те же деньги им можно намотать обмотку, имеющую большее сечение. Это приведет к значительному снижению энергетических потерь во время работы преобразователя. В некоторых случаях такие обмотки намного эффективней медных.
Предел прочности металлов
Алюминий для своего разрыва требует на 40% меньше усилий, чем медь. У производителей электротехнических изделий этот факт вызывает определенное беспокойство, поскольку большинство выпускаемых ими товаров часто подвергается циклическим нагрузкам. Это связано с большими пусковыми токами, которые возникают при запуске некоторых электрических силовых аппаратов. Мощные электромагнитные силы, возникающие при таких токах, вызывают усиленное движение молекул в проводниках, что приводит к смещению обмоток в изделиях.
Сравнительный анализ технических показателей различных проводников делается исходя из площади их поперечного сечения. На основании данных анализа одинаковая электропроводность в трансформаторах с разными обмотками обеспечивается следующим образом. В изделиях с алюминиевой обмоткой площадь сечения провода должна быть больше на 60%, чем в аналогичном устройстве, имеющем обмотку из меди. В этом случае технические показатели изделий, сделанных из различных материалов, будут примерно одинаковы.
Вывод: Трансформатор не может получить механическое повреждение из-за резкого изменения нагрузки, поскольку сечение обмотки подобрано таким образом, чтобы имелся необходимый запас прочности. Повреждения могут случиться только вследствие ненадежного крепления в местах соединения проводов.
Внешние подключения трансформаторов
В настоящее время использование меди в трансформаторных обмотках вызвано стремлением производить более качественные и надежные преобразующие устройства. Известно, что как алюминий, так и медь легко поддаются разрушающему воздействию окружающей среды. Из-за этого в металлах происходит коррозия, окисление и другие химические изменения.
Поверхность алюминиевого провода, покрытая окисью, становится изолятором и не пропускает электрический ток. Из-за этого своевременная очистка алюминиевых контактов имеет большое значение и должна производиться регулярно, в строгом соответствии с графиком проведения профилактических работ.
Окисленная же медь утрачивает свою электропроводность значительно меньше, поскольку появляющиеся на ней сульфиды и оксиды, конечно, не в той мере в какой бы хотелось, но все же имеют некоторую электропроводность. Все это хорошо знает персонал, который обслуживает трансформаторные подстанции. Поэтому специально обученная бригада электриков регулярно производит плановую проверку болтовых соединений рабочего оборудования.
Кроме того, существует проблема подключения алюминиевых обмоток преобразователя к медным проводам внешней электрической сети. Напрямую соединять алюминиевые и медные наконечники болтами нельзя. Дело в том, что металлы имеют различную электропроводность, из-за чего места соединений постоянно перегреваются, и соединенные поверхности разрушаются. Разработанные специально для этого сварочные технологии оказались малоэффективными, поэтому для сваривания кабелей из разного металла их не применяют.
Для соединения медных и алюминиевых кабелей сейчас используют луженые наконечники, покрытые тонким слоем олова либо серебра. При соединении алюминиевых обмоток трансформаторов с медными сетевыми кабелями наконечники покрывают оловом. Серебро используется в электронике, где требуется более высокое качество соединения деталей. Практика таких соединений общепринята. Надежность соединений подтверждается большими сроками бесперебойной работы оборудования.
Различные провода также часто соединяют при помощи специальных металлических клемм. Такая клемма сделана в виде прямоугольной рамки, в которую вставляются два соединяемых проводника. На одной плоскости клеммы имеются отверстия с резьбой. После того как проводники вставлены в рамку, они фиксируются винтами, которые закручиваются в резьбу.
Внутреннее соединение трансформаторных обмоток
Соединение медных обмоток преобразователей осуществляется методом спаивания. Тугоплавкий припой, используемый при этом, несколько снижает электропроводность спаянного участка. На этом участке все время выделяется окись меди, из-за которой отслаивается наружный слой, что ведет к повреждению всего проводника. Это является существенным недостатком такого метода соединения.
В алюминиевых же соединениях используется метод сваривания проводов при помощи инертного газа. В них окись алюминия образует стойкое защитное покрытие, которое предохраняет контакт от негативного воздействия окружающей среды. Кроме того, в этом методе соединения проводников большим преимуществом является то, что во время работы устройства на сваренных участках отсутствует потеря электропроводности.
Время эксплуатации трансформаторов в определенной мере связано с теми условиями, в которых они работают. Сюда относятся негативные воздействия окружающей среды, экстремальные нагрузки и другие неблагоприятные условия. Однако люди, пользующиеся электроэнергией не должны беспокоиться по этому поводу. Как показала практика преобразователи, имеющие различные обмотки, способны работать многие годы без особых проблем.
ЗАКЛЮЧЕНИЕ
Трансформатор с той или иной обмоткой в основном выбирается исходя из личных предпочтений. Более высокая стоимость изделия, имеющего медную обмотку, требует технического обоснования тех дополнительных материальных затрат, которые возникнут во время его приобретения. Сегодня все отзывы, основанные на опыте практического использования оборудования, не указывают на какие-либо явные преимущества в работе тех или иных устройств.
Единственным превосходством медной обмотки можно считать то, что катушка, намотанная медным проводом, имеет значительно меньшие габариты. Это позволяет делать трансформаторы с такой обмоткой более компактными, что позволяет несколько сэкономить то пространство, в котором они находятся.
Однако подавляющее большинство закрытых преобразователей выпускается в стандартных корпусах, имеющих одни размеры, которые подходят и для медных и для алюминиевых катушек. Так что здесь преимущество меди не имеет никакого значения. Поэтому спрос на трансформаторы с алюминиевой обмоткой сейчас намного выше.
Стоимость металлов постоянно увеличивается, а поскольку цена меди в несколько раз превышает цену алюминия, то и стоимость изделия с медной обмоткой намного дороже. Из-за этого многие покупатели предпочитают не переплачивать за медь, а покупать изделия с алюминиевыми обмотками. В дальнейшем они стараются следить за надежностью электрических соединений, и уделять должное внимание профилактическому обслуживанию оборудования.