что такое усилитель в электронике
Усилитель
Электронный усилитель — это усилитель, задача которого состоит в том, чтобы увеличить сигнал по мощности, при этом сохраняя форму усиливаемого сигнала. Более подробно это определение можно прочесть в Википедии. В этой статье мы поверхностно пробежимся по основам теории усилителей.
Что такое усилитель?
В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона
слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник
Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:
Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.
Что такое черный ящик в электронике
В общем виде усилитель можно рассматривать как черный ящик. Что представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса, можно предположить, что находится у него внутри.
То есть по сути черный ящик должен иметь какие-либо «сенсоры» для восприятия информации извне, некий «вход», а также некий «выход» для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.
Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала — значит кошка. Если побежал — значит кот).
Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.
Что такое четырехполюсник
В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник — это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего «электрического черного ящика».
Пассивный четырехполюсник
Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).
В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.
Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.
Активный четырехполюсник
Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.
Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.
В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке — это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.
Обобщенная схема усилителя
Она выглядит примерно вот так:
Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).
Типы усилителей
Усилители можно разделить на три группы:
Усилитель напряжения
Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:
KU — это коэффициент усиления по напряжению
Uвых — напряжение на выходе усилителя, В
Uвх — напряжение на входе усилителя, В
Усилитель тока
Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:
где KI — коэффициент усиления по току
Iвых — сила тока в цепи нагрузки, А
Смысл работы усилителя тока такой: при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.
Если сила тока должна быть постоянной, а значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.
Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим, у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.
Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.
Усилитель мощности
Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.
Чем же УМ отличается от УН и УТ?
Если в УТ мы увеличивали только силу тока, в УН — напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.
Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:
Следовательно, коэффициент усиления по мощности запишется как:
KP — коэффициент усиления по мощности
Pвых — мощность на выходе усилителя, Вт
Pвх — мощность на входе усилителя, Вт
Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).
Выходная мощность усилителя
Выходная мощность усилителя, отдаваемая в активную нагрузку, будет выражаться формулой:
Pвых — выходная мощность усилителя, Вт
Iвых — сила тока в цепи нагрузки, А
UВых — напряжение на нагрузке, В
Мощность на нагрузку с реактивной составляющей будет уже выражаться через формулу:
Pвых — выходная мощность усилителя, Вт
Iвых — сила тока в цепи нагрузки, А
cos φ — где φ — это разность фаз между осциллограммой тока и напряжения
Например, разность фаз между током и напряжением в активной нагрузке равна нулю, следовательно, cos0=1. Поэтому формула для активной нагрузки принимает вид
Более подробно про это можно прочитать в статье про активное и реактивное сопротивление.
Максимальная выходная мощность, при которой искажение сигнала на выходе не превышает качественных значений усилителя, называют номинальной мощностью усилителя.
Ну и обобщенное правило, для того, чтобы было проще запомнить все эти три вида усилителя:
Виды усилителей по полосе пропускания
По ширине полосы пропускания усилители делятся на:
Усилители низкой частоты
Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц — это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.
Усилители высокой частоты
Они предназначены для усиления сигналов во всем диапазоне частот, используемых электроникой.
Широкополосные усилители
Они позволяют усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.
Узкополосные усилители
Они усиливают узкую полосу частот. Это могут быть резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.
Усилители постоянного тока
Усиливают сколь угодно медленные электрические колебания, начиная с частоты, равной нулю герц (постоянный ток).
Если вы желаете больше знать об усилителях, то читайте статью основные параметры усилителя.
Характеристики усилителей: классификация, диаграммы, основные параметры
Усилитель — это электронное устройство, управляющее потоком энергии, идущей от источника питания к нагрузке. Причем мощность, требующаяся для управления, как правило, намного меньше мощности, отдаваемой в нагрузку, а формы входного (усиливаемого) и выходного (на нагрузке) сигналов совпадают (рис. 2.1).
Классификация усилителей
Все усилители можно классифицировать по следующим признакам:
По частоте усиливаемого сигнала:
По роду усиливаемого сигнала
По функциональному назначению
В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению КU, току Кi или мощности КР:
где Uвх, Iвх — амплитудные значения переменных составляющих соответственно напряжения и тока на входе;
Рвх, Рвых — мощности сигналов соответственно на входе и выходе. Коэффициенты усиления часто выражают в логарифмических единицах — децибелах:
Усилитель может состоять из одного или нескольких каскадов. Для многокаскадных усилителей его коэффициент усиления равен произведению коэффициентов усиления отдельных его каскадов: К = К1 · К2 · … · Кn
Если коэффициенты усиления каскадов выражены в децибелах, то общий коэффициент усиления равен сумме коэффициентов усиления отдельных каскадов:
Обычно в усилителе содержатся реактивные элементы, в том числе и «паразитные», а используемые усилительные элементы обладают инерционностью. В силу этого коэффициент усиления является комплексной величиной:
где КU— модуль коэффициента усиления; φ — сдвиг фаз между входным и выходным напряжениями с амплитудами Uвх и Uвых.
Помимо коэффициента усиления важным количественным показателем является коэффициент полезного действия:
где Рист — мощность, потребляемая усилителем от источника питания.
Роль этого показателя особенно возрастает для мощных, как правило, выходных каскадов усилителя.
К количественным показателям усилителя относятся также входное Rвх и выходное Rвых сопротивления усилителя:
где Uвх и Iвх — амплитудные значения напряжения и тока на входе усилителя;
∆Uвых и ∆Iвых — приращения аплитудных значений напряжения и тока на выходе усилителя, вызванные изменением сопротивления нагрузки. Рассмотрим теперь основные характеристики усилителей.
Интересное видео о параметрах усилителя смотрите ниже:
Амплитудная характеристика усилителя
Амплитудная характеристика — это зависимость амплитуды выходного напряжения (тока) от амплитуды входного напряжения (тока) (рис. 2.2).
Точка 1 соответствует напряжению шумов, измеряемому при Uвx = 0, точка 2 — минимальному входному напряжению, при котором на выходе усилителя можно различать сигнал на фоне шумов.
Участок 2 − 3 — это рабочий участок, на котором сохраняется пропорциональность между входным и выходным напряжениями усилителя.
После точки 3 наблюдаются нелинейные искажения входного сигнала. Степень нелинейных искажений оценивается коэффициентом нелинейных искажений (или коэффициентом гармоник):
где Ulm, U2m, U3m, Unm — амплитуды 1-й (основной), 2, 3 и n-й гармоник выходного напряжения соответственно. Величина D = Uвх max / Uвх minхарактеризует динамический диапазон усилителя. Рассмотрим пример возникновения нелинейных искажений (рис. 2.3). При подаче на базу транзистора относительно эмиттера напряжения синусоидальной формы uбэ в силу нелинейности входной характеристики транзистора iб = f(uбэ) входной ток транзистора iб (а следовательно, и выходной — ток коллектора) отличен от синусоиды, т. е. в нем появляется ряд высших гармоник.
Из приведенного примера видно, что нелинейные искажения зависят от амплитуды входного сигнала и положения рабочей точки транзистора и не связаны с частотой входного сигнала, т. е. для уменьшения искажения формы выходного сигнала входной должен быть низкоуровневым.
Поэтому в многокаскадных усилителях нелинейные искажения в основном появляются в оконечных каскадах, на вход которых поступают сигналы с большой амплитудой.
Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.
АЧХ — это зависимость модуля коэффициента усиления от частоты, а ФЧХ — это зависимость угла сдвига фаз между входным и выходным напряжениями от частоты. Типовая АЧХ приведена на рис. 2.4.
Частоты fн и fв называются нижней и верхней граничными частотами, а их разность (fн − fв) — полосой пропускания усилителя.
При усилении гармонического сигнала достаточно малой амплитуды искажения формы усиленного сигнала не возникает.
При усилении сложного входного сигнала, содержащего ряд гармоник, эти гармоники усиливаются усилителем неодинаково, так как реактивные сопротивления схемы по-разному зависят от частоты, и в результате это приводит к искажению формы усиленного сигнала.
Такие искажения называются частотными и характеризуются коэффициентом частотных искажений: М = K0 / Kf где Kf — модуль коэффициента усиления усилителя на заданной частоте.
Коэффициенты частотных искажений МН = K0 / KН и МВ = K0 / KВ называются соответственно коэффициентами искажений на нижней и верхней граничных частотах. АЧХ может быть построена и в логарифмическом масштабе. В этом случае она называется ЛАЧХ (рис. 2.5), коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот между 10f и f). Обычно в качестве точек отсчета выбирают частоты, соответствующие f = 10n. Кривые ЛАЧХ имеют в каждой частотной области определенный наклон. Его измеряют в децибелах на декаду. Типовая ФЧХ приведена на рис. 2.6.
Она также может быть построена в логарифмическом масштабе. В области средних частот дополнительные фазовые искажения минимальны.
ФЧХ позволяет оценить фазовые искажения, возникающие в усилителях по тем же причинам, что и частотные.
Пример возникновения фазовых искажений приведен на рис. 2.7, где показано усиление входного сигнала, состоящего из двух гармоник (пунктир), которые при усилении претерпевают фазовые сдвиги.
Переходная характеристика усилителя
Переходная характеристика усилителя— это зависимость выходного сигнала (тока, напряжения) от времени при скачкообразном входном воздействии (рис. 2.8).
Частотная, фазовая и переходная характеристики усилителя однозначно связаны друг с другом. Области верхних частот соответствует переходная характеристика в области малых времен, области нижних частот — переходная характеристика в области больших времен.
Ещё одно интересное видео по теме смотрите ниже:
Электронные усилители в промышленной электронике
Это устройства, предназначенные для усиления напряжения, тока и мощности электрического сигнала.
Простейший усилитель представляет собой схему на основе транзистора. Использование усилителей вызвано тем, что обычно электрические сигналы (напряжения и токи), поступающие в электронные устройства малы по амплитуде и возникает необходимость увеличивать их до требуемой величины, достаточной для дальнейшего использования (преобразования, передачи, подачи на нагрузку).
На рисунке 1 представлены устройства, необходимые для работы усилителя.
Мощность, выделяющаяся на нагрузке усилителя, является преобразованной мощностью его источника питания, а входной сигнал только управляет ею. Усилители питаются от источников постоянного тока.
Обычно усилитель состоит из нескольких каскадов усиления (рис. 2). Первые каскады усиления, предназначенные, главным образом для усиления напряжения сигнала, называют предварительными. Их схемное построение определяется типом источника входного сигнала.
Каскад, служащий для усиления мощности сигнала, называют оконечным или выходным. Их схемотехника определяется видом нагрузки. Так же, в состав усилителя могут входить промежуточные каскады, предназначенные для получения необходимого коэффициента усиления и (или) формирования необходимых характеристик усиливаемого сигнала.
1) в зависимости от усиливаемого параметра усилители напряжения, тока, мощности
2) по роду усиливаемых сигналов:
усилители гармонических (непрерывных) сигналов;
усилители импульсных сигналов (цифровые усилители).
3) по полосе усиливаемых частот:
усилители постоянного тока;
усилители переменного тока
низкой частоты, высокой, сверхвысокой и т.д.
4) по характеру частотной характеристики:
резонансные (усиливают сигналы в узкой полосе частот);
полосовые (усиливают определенную полосу частот);
широкополосные (усиливают весь диапазон частот).
5) по типу усилительных элементов:
на электровакуумных лампах;
на полупроводниковых приборах;
на интегральных микросхемах.
При выборе усилителя исходят из параметров усилителя:
На рисунке 3 представлена типовая схема предварительного каскада усиления на биполярном транзисторе. Входной сигнал поступает от источника напряжения Uвх. Разделительные конденсаторы Ср1 и Ср2 пропускают переменный, т.е. усиливаемый сигнал и не пропускают постоянный ток, что позволяет создавать независимые режимы работы по постоянному току в последовательно включенных каскадах усилителя.
Резисторы Rб1 и Rб2 являются базовым делителем, обеспечивая начальный ток базы транзистора Iб0, резистор Rк обеспечивает начальный ток коллектора Iк0. Эти токи называют токами покоя. При отсутствии входного сигнала они постоянные. На рисунке 4 изображены временные диаграммы работы усилителя. Временная диаграмма – это изменение какого-либо параметра во времени.
Резистор Rф и конденсатор Сф являются элементами фильтра. Конденсатор Сф образует цепь низкого сопротивления для переменной составляющей тока, потребляемого усилителем от источника Uп. Элементы фильтра необходимы если от источника запитываются несколько усилительных каскадов.
При подаче входного сигнала Uвх во входной цепи появляется ток Iб
. Падение напряжения, создаваемое током Iк
на нагрузке Rн, и будет усиленным выходным сигналом.
Из временных диаграмм напряжений и токов (рис. 3) видно, что переменные составляющие напряжений на входе Uб
= Uвых каскада противофазны, т.е. каскад усиления на транзисторе с ОЭ изменяет (инвертирует) фазу входного сигнала на противоположную.
Операционный усилитель (ОУ) представляет собой усилитель постоянного и переменного тока с большим коэффициентом усиления и глубокой отрицательной обратной связью.
Позволяет реализовывать большое количество электронных устройств, но традиционно называется усилителем.
Можно сказать, что операционные усилитель являются основой всей аналоговой электроники. Широкое распространение ОУ связано с их универсальностью (возможность построения на их основе различных электронных устройств, причём, как аналоговых, так и импульсных), широким диапазоном частот (усиление сигналов постоянного и переменного токов), независимость основных параметров от внешних дестабилизирующих факторов (изменение температуры, напряжения питания и др.). В основном используются интегральные усилители (ИОУ).
На рисунке 5 изображены УГО ИОУ. Усилитель имеет два входа – прямой и инверсный, и один выход. При подаче входного сигнала на неинвертирующий (прямой) вход, выход-ной сигнал имеет ту же полярность (фазу) – рисунок 5, а.
Рисунок 5 – Условно-графические обозначения операционных усилителей
При использовании инвертирующего входа фаза выходного сигнала будет сдвинута на 180˚ по отношению к фазе входного сигнала (полярность изменяется на противоположную)- рисунок 6, б. Инверсные входы и выходы обозначают кружком.
При подаче напряжения на обои входы выходное напряжение пропорционально разности входных напряжений. Т.е. сигнал на инвертирующем входе берётся со знаком «-». Uвых=К(Uнеинв – Uинв), где К – коэффициент усиления.
Рисунок 7 – Амплитудная характеристика ОУ
Работу ОУ поясняет амплитудная характеристика – рисунок 8. На характеристике можно выделить линейный участок, на котором с увеличением входного напряжения пропорционально увеличивается выходное, и два участка насыщения U+нас и U-нас. При определённом значении входного напряжения Uвх.max усилитель переходит в режим насыщения, при котором выходное напряжение принимает максимальное значение (при значении Uп=15 В примерно Uнас=13 В) и остаётся неизменным при дальнейшем увеличении входного сигнала. Режим насыщения используется в импульсных устройствах на ОУ.
Усилители мощности применяются в оконечных каскадах усиления и предназначены для создания необходимой мощности в нагрузке.
Усилители могут работать в режимах А, АВ, В, С и D.
В режиме А выходной ток усилительный прибор (транзистора или радиоэлектронная лампа) открыт в течении всего периода усиливаемого сигнала (т.е. постоянно) и через него протекает выходной ток. Усилители мощности класса А вносят минимальные искажения в усиливаемый сигнал, но имеют очень низкий КПД.
В режиме В выходной ток делится на две части, один усилительный прибор усиливает положительную полуволну сигнала, второй отрицательную. Как следствие более высокий КПД, чем в режиме А, но и большие нелинейные искажения, возникающие в момент переключения транзисторов.
Режим АВ повторяет режим В, но в момент перехода с одной полуволны на другую открыты оба транзистора, что позволяет снизить искажения при сохрани высокого КПД. Режим АВ является наиболее распространенным для аналоговых усилителей.
Режим С применяют в тех случаях, когда искажение формы сигнала при усилении не имеет, т.к. выходной ток усилительного прибора протекает меньше чем половина периода, что конечно же ведет к большим искажениям.
В режиме D используется преобразование входных сигналов в импульсы, усиление этих импульсов, а затем обратное преобразование. При этом выходные транзисторы работают в ключевом режиме (транзистор полностью закрыт или полностью открыт), что приближает КПД усилителя к 100% (в режиме АВ КПД не превышает 50%). Усилители, работающие в режиме D, называют цифровыми усилителями.
В двухтактной схеме усиление (режим В и АВ) происходит за два такта. В течение первого полупериода входной сигнал усиливается одним транзистором, а другой в течение этого полупериода или его части закрыт. При втором полупериоде сигнал усиливается вторым транзистором, а первый при этом закрыт.
Двухтактная схема усилителя на транзисторах показана на рисунке 8. Каскад на транзисторе VT3 обеспечивает двухтактный режим работы выходных транзисторов VT1 и VT2. Резисторы R1 и R2 задают режим работы транзисторов по постоянному току.
При приходе отрицательной полуволны Uвх ток коллектора VT3 увеличивается, что приводит к увеличению напряжения на базах транзисторов VT1 и VT2. При этом VT2 закрывается, а через VT1 протекает ток коллектора по цепи: +Uп, переход К-Э VT1, С2 (при этом заряжается), Rн, корпус.
аким образом, обеспечивается протекание тока обоих полуволн входного напряжения через нагрузку.
Рисунок 8 – Схема двухтактного усилителя мощности
В режиме D работают усилители с широтно-импульсной модуляцией (ШИМ). Входной сигнал модулирует прямоугольные импульсы, изменяя их длительность. При этом сигнал преобразуется в импульсы прямоугольной формы одинаковой амплитуды, длительность которых пропорциональна значению сигнала в каждый момент времени.
Последовательность импульсов поступает на транзистор (транзисторы) для усиления. Т.к. усиливаемый сигнал импульсный, транзистор работает в ключевом режиме. Работа в ключевом режиме связана с минимальными потерями, т.к. транзистор либо закрыт, либо полностью открыт (обладает минимальным сопротивлением). После усиления из сигнала извлекается низкочастотная составляющая (усиленный исходный сигнал) с помощью фильтра нижних частот (ФНЧ) и подается на нагрузку.
Рисунок 9 – Структурная схема усилителя класса D
Усилители класса D применяются в аудиосистемах портативных компьютеров, мобильные средства связи, устройствах управления двигателями и д.р.
Для современных усилителей характерно широкое использование интегральных схем.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: