Что такое целые числа примеры
Какие числа называются целыми
Определение целых чисел
Что важно знать о целых числах:
Целые числа на числовой оси выглядят так:
На координатной прямой начало отсчета всегда начинается с точки 0. Слева находятся все отрицательные целые числа, справа — положительные. Каждой точке соответствует единственное целое число.
В любую точку прямой, координатой которой является целое число, можно попасть, если отложить от начала координат данное количество единичных отрезков.
Натуральные числа — это целые, положительные числа, которые мы используем для подсчета. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 + ∞.
Целые числа — это расширенное множество натуральных чисел, которое можно получить, если добавить к ним нуль и отрицательные числа. Множество целых чисел обозначают Z.
Выглядит эти ребята вот так:
Последовательность целых чисел можно записать так:
Свойства целых чисел
Таблица содержит основные свойства сложения и умножения для любых целых a, b и c:
Целые числа: общее представление
В данной статье определим множество целых чисел, рассмотрим, какие целые называются положительными, а какие отрицательными. Также покажем, как целые числа используются для описания изменения некоторых величин. Начнем с определения и примеров целых чисел.
Целые числа. Определение, примеры
Определение 1. Целые числа
Целые числа и координатная прямая
Пусть координатная прямая проведена горизонтально и направлена вправо. Взглянем на нее, чтобы наглядно представить расположение целых чисел на прямой.
В любую точку прямой, координатой которой является целое число, можно попасть, отложив от начала координат некоторое количество единичных отрезков.
Положительные и отрицательные целые числа
Из всех целых чисел логично выделить положительные и отрицательные целые числа. Дадим их определения.
Определение 2. Положительные целые числа
Определение 3. Отрицательные целые числа
Число 0 разделяет положительные и отрицательные целые числа и само не является ни положительным, ни отрицательным.
Любое число, противоположное положительному целому числу, в силу определения, является отрицательным целым числом. Справедливо и обратное. Число, обратное любому отрицательному целому числу, есть положительное целое число.
Можно дать другие формулировки определений отрицательных и положительных целых чисел, используя их сравнение с нулем.
Определение 4. Положительные целые числа
Соответственно, положительные числа лежат правее начала отсчета на координатной прямой, а отрицательные целые числа находятся левее от нуля.
Неположительные и неотрицательные целые числа
Определение 6. Неотрицательные целые числа
Как видим, число нуль не является ни положительным, ни отрицательным.
Использование целых чисел при описании изменения величин
Для чего используются целые числа? В первую очередь, с их помощью удобно описывать и определять изменение количества каких-либо предметов. Приведем пример.
Пусть на складе хранится какое-то количество коленвалов. Если на склад привезут еще 500 коленвалов, то их количество увеличится. Число 500 как раз и выражает изменение (увеличение) количества деталей. Если потом со склада увезут 200 деталей, то это число также будет характеризовать изменение количества коленвалов. На этот раз, в сторону уменьшения.
Если же со склада ничего не будут забирать, и ничего не будут привозить, то число 0 укажет на неизменность количества деталей.
Очевидное удобство использования целых чисел в отличие от натуральных в том, что их знак явно указывает на направление изменения величины (увеличение или убывание).
Целые числа. Определение.
Существуют множество разновидностей чисел, одни из них – это целые числа. Целые числа появились для того, чтобы облегчить счет не только в положительную сторону, но и в отрицательную.
Ряд целых чисел.
Этот ряд чисел называется рядом целых чисел.
Целые положительные числа. Целые отрицательные числа.
Ряд целых чисел состоит из положительных и отрицательных чисел. Справа от нуля идут натуральные числа или их еще называют целыми положительными числами. А слева от нуля идут целые отрицательные числа.
Нуль не является ни положительным ни отрицательным числом. Он является границей между положительными и отрицательными числами.
Целые числа – это множество чисел, состоящие из натуральных чисел, целых отрицательных чисел и нуля.
Ряд целых чисел в положительную и в отрицательную сторону является бесконечным множеством.
Если мы возьмём два любых целых числа, то числа, стоящие между этими целыми числами, будут называться конечным множеством.
Натуральные числа обозначаются латинской буквой N.
Целые числа обозначаются латинской буквой Z. Все множество натуральных чисел и целых чисел можно изобразить на рисунке.
Неположительные целые числа другими словами – это отрицательные целые числа.
Неотрицательные целые числа – это положительные целые числа.
Вопросы по теме:
Как называются числа, находящиеся в ряду целых чисел: а) справа от нуля; б) слева от нуля?
Ответ: а) натуральные числа или целые положительные числа. Оба термина несут один и тот же смысл.
б) целые отрицательные числа.
Назовите наибольшее целое число?
Ответ: ряд положительных целых чисел бесконечен, поэтому наибольшего целого числа не существует.
Какое наименьшее целое число?
Ответ: ряд отрицательных чисел бесконечен, поэтому наименьшего целого числа не существует.
Что такое целые числа
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Сегодня мы поговорим о ЦЕЛЫХ ЧИСЛАХ.
Это весьма обширное понятие из математики, с которым школьники сталкиваются уже в 5 классе.
Целые числа — это.
Целые числа – это все положительные, все отрицательные числа и ноль. Главное, чтобы они не содержали дробной части.
Согласно этому определению, к целым числам можно отнести:
и так далее. Ведь у них нет дробной части. А вот числа:
и так далее не могут считаться целыми, так как у них есть какие-то цифры после запятой или они являются дробью.
Все многообразие целых чисел называется множеством целых чисел. Это официальный математический термин. И обозначается он буквой Z.
В это множество входят и так называемые натуральные числа (это что?). Это все те, которые имеют положительное значение, но опять же без дробной части. Проще говоря, все числа, которые мы используем при счете. Например, 1, 2, 5, 10, 100 и так далее.
Множество натуральных чисел обознается буквой N. И зависимость его и множества целых чисел наглядно показана на следующем рисунке.
Отсюда можно сделать важный вывод:
Любое натуральное число автоматически является еще и целым. Но при этом далеко не каждое целое число является еще и натуральным.
А можно представить это и в таком варианте. Целые числа — это:
Каким бы определением вы не пользовались, главное, чтобы было все понятно.
История изучения целых чисел
Опять же эту историю нужно разделить на три части. Ведь изучение натуральных чисел, а также открытие нуля и отрицательных чисел происходило независимо друг от друга. Да еще и в разных странах.
Изучение натуральных чисел
Тут все максимально просто. Эти числа возникли, как только человеку понадобилось считать – будь то куски мяса или количество бревен для дома.
Более точное изучение натуральных чисел начинается в Древнем Египте и Древней Месопотамии, а это более 6 тысяч лет назад.
А современные математики опираются на то, что после себя оставил древнегреческий ученый Пифагор. Он как раз активно собирал египетские и вавилонские данные, а после отразил их в своих трудах.
Открытие нуля
Конечно, египтяне, вавилоняне и даже греки знали о существовании нуля. Но не считали его числом, а потому не пользовались им. Это, кстати, приносило им немало сложностей. Они порой часами решали задачки, которые нынешний школьник посчитает за минуту.
Но официально число ноль появилось в 5-м веке. И «изобрели» его в Индии. Дело в том, что у местных жителей всегда существовало убеждение, что «ничто – это тоже что-то». Даже понятие Нирвана, которое обозначает состояние небытие, зародилось именно в Индии.
Потому-то там и придумали символ, который обозначал бы «ничто». Авторами его стали математики Брахмагупта и Ариабхата.
Как видите, индийский символ нуля очень похож на современный. Ну, разве что приплюснут и больше напоминает правильную окружность. Форма выбрана не случайно. По индийским поверьям, ноль символизирует круговорот жизни и мироздания. Его еще называют «змея вечности».
Когда арабы завоевали часть Индии, они переняли все математические знания. А во время крестовых походов многое, в том числе и цифры, перекочевали в Европу. Хотя потребовалось еще несколько сотен лет, чтобы «ноль» стал неотъемлемой частью европейской науки.
Открытие отрицательных чисел
Отрицательные числа первыми начали изучать китайцы во 2 веке до нашей эры. Их использовали в торговле и называли «долгами». А обычные числа – «имуществом». А для записи отрицательных чисел использовали перевернутый вид.
А вот в Европе к ним очень долго относились пренебрежительно, считая «несуществующими» и «абсурдными». Лишь в 12 веке математик Леонардо Фибоначчи (автор знаменитого числового ряда) описал их в своей книге «Книга Абака».
В середине 16 века математик Михаил Штифель посвятил им целый раздел в своей книге «Полная арифметика».
Но признание они получили лишь в 17 веке, после того как известный Рене Декарт создал свою систему координат.
В ней он также использовал нуль, привязав к нему положительные и отрицательные числа. Одни находились справа от него, а другие – слева.
Свойства целых чисел
Всем целым числам свойственны следующие характеристики:
Если А и В – целые, то А+В=целое, А-В=целое и А*В=целое
А + В = В + А, А * В = В * А
Добавим: точно такое же правило действует и при делении. Минус на минус дают плюс. А минус на плюс или плюс на минус всегда дают минус.
Вместо заключения
Мы уже рассказали, с каким трудом в нашу жизнь попали отрицательные числа. Но сегодня они широко используются не только в математике.
Ну и, наконец, слова положительный и отрицательный используются и в более разговорном смысле, как синонимы хорошего и плохого.
Например, в книгах и фильмах обязательно есть положительные и отрицательные герои. Также и наши черты характера, эмоции и поступки можно разделить на эти две категории.
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (1)
Сами по себе числа ничего не значат, будь они даже целыми и натуральными, чтобы в них был смысл, они должны иметь привязку к чему-либо. Например, единица меньше пятидесяти, но всегда ли единица меньше? Если я скажу, что один рубль меньше пятидесяти копеек, то это будет ложью.
Общее представление о целых числах.
Информация этой статьи формирует общее представление о целых числах. Сначала дано определение целых чисел и приведены примеры. Далее рассмотрены целые числа на числовой прямой, откуда становится видно, какие числа называются целыми положительными числами, а какие – целыми отрицательными. После этого показано, как при помощи целых чисел описываются изменения величин, и рассмотрены целые отрицательные числа в смысле задолженности.
Навигация по странице.
Целые числа – определение и примеры
Дадим определение целых чисел. Чтобы его понять, нужно знать про натуральные числа, а также иметь представление о противоположных числах.
Целые числа – это натуральные числа, число нуль, а также числа, противоположные натуральным.
Все целые числа удобно представлять как последовательность целых чисел, которая имеет следующий вид: 0, ±1, ±2, ±3, … Последовательность целых чисел можно записать и так: …, −3, −2, −1, 0, 1, 2, 3, …
Из определения целых чисел следует, что множество натуральных чисел является подмножеством множества целых чисел. Поэтому, любое натуральное число является целым, но не любое целое число является натуральным.
Целые числа на координатной прямой
Давайте взглянем на координатную прямую, чтобы увидеть точки, соответствующие целым числам. Будем считать, что координатная прямая проведена горизонтально и направлена вправо.
Из построения координатной прямой следует, что началу отсчета и точкам, отмеченным штрихами, взаимно однозначно соответствуют целые числа. То есть, каждой из указанных точек соответствует единственное целое число, следовательно, несовпадающим точкам отвечают разные целые числа. Началу отсчета (точке O ) соответствует целое число нуль, а точкам, которые отмечены штрихами, соответствуют другие целые числа. Никаким другим точкам координатной прямой целые числа не соответствуют, и никакому целому числу не отвечает точка координатной прямой, отличная от указанных выше.
В любую точку, отмеченную штрихом (координатами этих точек являются целые числа), мы можем попасть, если от начала отсчета последовательно отложим некоторое количество единичных отрезков.
Целые положительные и целые отрицательные числа
Изучив материал статьи положительные и отрицательные числа, мы из всех целых чисел можем выделить целые положительные и целые отрицательные числа.
Целые отрицательные числа – это целые числа со знаком минус.
Число нуль (число 0 ) не является ни целым положительным, ни целым отрицательным числом. Нуль как бы отделяет целые отрицательные числа от целых положительных.
Вообще, в силу определения противоположных чисел, любое число, противоположное целому положительному числу, есть целое отрицательное число. И наоборот, любое число, противоположное целому отрицательному числу, есть целое положительное. Это утверждение позволяет дать определения целых положительных и целых отрицательных чисел на основе их сравнения с нулем (здесь нужно владеть материалом статьи сравнение целых чисел).
Целые положительные числа – это целые числа, которые больше нуля.
Целые отрицательные числа – это целые числа, которые меньше нуля.
Понятно, что множество всех целых положительных чисел представляет собой множество натуральных чисел. В свою очередь множество всех целых отрицательных чисел – это множество всех чисел, противоположных натуральным числам.
Отдельно обратим Ваше внимание на то, что любое натуральное число мы можем смело назвать целым, а любое целое число мы НЕ можем назвать натуральным. Натуральным мы можем назвать лишь любое целое положительное число, так как целые отрицательные числа и нуль не являются натуральными.
Целые неположительные и целые неотрицательные числа
Дадим определения целых неположительных чисел и целых неотрицательных чисел.
Все целые положительные числа вместе с числом нуль называют целыми неотрицательными числами.
Другими словами, целое неотрицательное число – это целое число, которое больше нуля, либо равно нулю, а целое неположительное число – это целое число, которое меньше нуля, либо равно нулю.
Наиболее часто термины «целые неположительные числа» и «целые неотрицательные числа» используют для краткости изложения. Например, вместо фразы «число a целое, причем a больше нуля или равно нулю» можно сказать « a – целое неотрицательное число».
Описание изменения величин при помощи целых чисел
Пришло время поговорить о том, для чего вообще нужны целые числа.
Основное предназначение целых чисел заключается в том, что с их помощью удобно описывать изменение количества каких-либо предметов. Разберемся с этим на примерах.
Пусть на складе находится некоторое количество деталей. Если на склад привезут еще, к примеру, 400 деталей, то количество деталей на складе увеличится, а число 400 выражает это изменение количества в положительную сторону (в сторону увеличения). Если же со склада заберут, например, 100 деталей, то количество деталей на складе уменьшится, а число 100 будет выражать изменение количества в отрицательную сторону (в сторону уменьшения). На склад не будут привозить детали, и не будут увозить детали со склада, то можно говорить о неизменности количестве деталей (то есть можно будет говорить о нулевом изменении количества).
Целые числа также могут выражать не только изменение количества, но и изменение какой-либо величины. Разберемся с этим на примере изменения температуры.