что такое титан как маркируются титановые сплавы
Титановые сплавы, их характеристика, применение и маркировка
Титановые сплавы — имеют в основе титан, один из самых распространённых элементов на земле. Имея высокую прочность, коррозионную стойкость и массу других особенных и полезных свойств, сплав применяется даже в ракетном строительстве.
Классификация титановых сплавов, виды и характеристика
Характерной особенностью титана является наличие двух аллотропических модификаций, то есть состояний, имеющих одинаковый химический состав. Таким образом, строение и свойства у титана, самого важного элемента, входящего в титановые сплавы, может отличаться.
Согласно общепринятой классификации, титановые сплавы делятся на группы:
Некоторые виды технического титана, необходимого для металлургической промышленности, отличаются разным уровнем прочности. Этот показатель напрямую зависит от содержания таких примесей, как азот, кремний, железо, углерод. При этом увеличивающаяся прочность сплава, достигающаяся добавлением большего количества алюминия, обычно обозначает пропорционально уменьшающуюся пластичность. Вместе с этим титан, содержащий алюминиевые добавки, становится более дешёвым, то есть более экономически выгодным материалом.
Группа конструкционного титана объединяет в себе титановые сплавы, которые обладают свойствами высокой коррозийной стойкости к внешним воздействиям, могут с лёгкостью свариваться между собой, а также с некоторыми другими металлическими изделиями и деталями. Сейчас уже создан специальный титан-сплав, который называется морским и применяется в солёной морской воде для производства прочных глубоководных агрегатов. Он обладает не только высокой физической и усталостной прочностью, но также и хладостойкостью. Благодаря особенностям состава и производства, данный тип сплавов является металлопродуктом с неограниченным сроком применения.
Маркировка
Кроме упомянутого общего разделения, сплавам из титана присваивается специальная маркировка, которая соответствует составу и параметрам конкретного титан-материала. Технические марки ВТ1-1, ВТ1-0, ВТ1-00 содержат титан от 99,3 до 99,9%:
Разновидность титанового сплава, называемая титановой губкой (ТГ), может производиться одной из следующих маркировок: ТГ-90, ТГ-110, ТГ-150, ТГ-120, ТГ-Тв, ТГ-130, ТГ-100.
Особенности титановых сплавов и их получения
Общие особенности, которые имеют марки титана:
Сплав проявляет свои механические свойства в зависимости от содержания внутри него таких веществ, как водород, азот, кислород и углерод. Именно они образуют с титаном, основным элементов сплава, твёрдые соединения, называемые в химии нитритами, оксидами, гидридами, карбидами. Так, повышение содержания перечисленных элементов влияет на сплав в сторону увеличения плотности, твёрдости и уменьшения пластичности, способности подвергаться сварке (штамповке и пайке) либо противостоять коррозии. Сплав при большом содержании водорода значительно увеличивает свою хрупкость.
Метод изготовления сплава из титана зависит от той разновидности материала, которую необходимо получить на выходе. Например, чистейший йодный титан-сплав можно произвести путём диссоциации термического типа, в которой участвует четырёхйодистый сплав, либо применяется способ зонной плавки. Однако, благодаря невысокому модулю упругости титана, изготовление жёстких конструкций из данного составного вещества становится затруднительным, поэтому не производится.
Применение
Сферы человеческой жизнедеятельности, в которых с успехом применяется титановый сплав, трудно перечислить. Титановые сплавы прежде всего известны тем, что нашли реализацию в ракетостроении и других сферах, связанных с покорением космоса, самолётостроением и проведением научно-исследовательских работ в этом направлении. Для упомянутых сфер изготавливают титановые детали для каркаса воздушных и космических судов, элементы обшивки, топливные бачки, внутренности для мощных реактивных двигателей, компрессоры, диски, части воздухозаборников.
Кроме безвоздушного пространства в космосе и разряженной атмосферы в пределах планеты, титан применяется для водных работ, то есть для установки на морских и океанических судах. Титановым делают корпус грузоподъёмного судна, его насосные детали, гребные винты и т.д.
Медицинская промышленность не смогла бы быть такой прогрессивной без титановых сплавов, применяемых для изготовления высокопрочных и точных мединструментов, внутрикостных фиксационных приспособлений, внутренних протезов, хирургических зажимов. Для химических производств сплав титан уже давно стал незаменим при изготовлении различных реакторов, выдерживающих агрессивные химические среды, а также центрифуг, лабораторных насосов и специальных змеевиков.
Промышленность, связанная с общественным питанием, обязана титану возможностью производства сепараторов, частей для рефриджераторов, цистерн и разнообразных холодильных ёмкостей. В такой сложной области, как гальванотехника, работающей с электрическим током, титан входит в состав анодных корзин, гальванических ванн, трубопроводов, подвесок, теплообменников. В нефтегазовой промышленности описываемым сплавом пользуются для изготовления частей клапанов, фильтров, отстойников и других специальных резервуаров.
Титановые сплавы помогают человечеству в производственной деятельности, а также при изготовлении пищи, техники, ракет, кораблей, инструментов для медицины, уже долгое время. До сих пор изобретаются всё новые сплавы с уникальным сочетанием элементов и добавлением новых, которые обладают ещё неизвестными до этого свойствами, передающимися конечному титан-сплаву. В зависимости от содержания изначальных веществ, способа и условий изготовления титан приобретает различные свойства и соответствующим образом маркируется.
Что такое титан как маркируются титановые сплавы
ТИТАН И СПЛАВЫ ТИТАНОВЫЕ ДЕФОРМИРУЕМЫЕ
Wrought titanium and titanium alloys. Grades
Дата введения 1992-07-01
1. РАЗРАБОТАН И ВНЕСЕН Министерством авиационной промышленности СССР
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 17.07.91 N 1260
ВНЕСЕНО Изменение N 1, принятое Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол от 12.05.2011 N 39). Государство-разработчик Россия. Приказом Росстандарта от 07.11.2011 N 513-ст введено в действие на территории РФ с 01.07.2012
Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 1, 2012 год
1. Настоящий стандарт устанавливает марки титана и титановых деформируемых сплавов, предназначенных для изготовления полуфабрикатов (листов, лент, фольги, полос, плит, прутков, профилей, труб, поковок и штампованных заготовок) методом деформации, а также слитков.
Требования настоящего стандарта являются обязательными.
2. Марки и химический состав титана и титановых сплавов должны соответствовать приведенным в таблице.
Массовая доля химических элементов, %
сумма прочих приме- сей
1. Массовая доля элементов максимальная, если не указаны пределы.
2. Массовую долю водорода указывают в нормативной документации на конкретные виды полуфабрикатов.
Массовая доля водорода указана для слитков.
5. В сплаве марки ВТ3-1, предназначенном для изготовления штамповок лопаток и лопаточной заготовки, верхний предел массовой доли алюминия должен быть не более 6,8%.
6. В сплаве марки ПТ-3В массовая доля циркония в сумме с прочими примесями не должна превышать 0,30%.
7. Во всех сплавах, содержащих в качестве легирующего элемента молибден, допускается частичная замена его вольфрамом в количестве не более 0,3%.
Суммарная массовая доля молибдена и вольфрама не должны превышать норм, предусмотренных таблицей для молибдена.
8. Во всех сплавах, не содержащих в качестве легирующих элементов хром и марганец, массовая доля последних не должна превышать 0,15% (в сумме).
9. Массовая доля меди и никеля в титане и во всех сплавах должна быть не более 0,10% (в сумме), в том числе никеля не более 0,08%.
10. В графу «Сумма прочих примесей» входят элементы, оговоренные в пп.8 и 9, а также другие элементы, приведенные в таблице, но не регламентированные как примеси.
11. Для сплавов марок ПТ-1М, 3М, 2В, 5В, 14, 19, 27, 37, 40 допускается введение модифицирующих химических элементов до 0,003%. Сплавы, модифицированные бором, дополнительно маркируют индексом Б.
Бор вводят в сплавы в соответствии с расчетным составом и фактическое содержание его не определяют.
12. В сплаве марки 5В содержание циркония в сумме с прочими примесями не должно превышать 0,3%.
13. В сплавах марок 3М и 19 содержание ванадия и олова допускается не более 0,15% (в сумме).
14. Для сплавов марок ПТ-1М, 3М, 2В, 5В, 14, 19, 27, 37, 40 допускается сужение пределов по содержанию основных легирующих элементов по нормативной документации на конкретные виды полуфабрикатов.
11-14. (Введены дополнительно, Изм. N 1).
Электронный текст документа
подготовлен АО «Кодекс» и сверен по:
Редакция документа с учетом
изменений и дополнений подготовлена
АО «Кодекс»
📚Всё, что необходимо знать о металле ТИТАН (Ti)…
-Титан обладает высокой прочностью, хорошей коррозионной стойкостью и при этом имеет сравнительно небольшую массу, что делает его применение незаменимым в областях, где важны хорошие механические свойства изделий одновременно с их массой. На странице представлено описание данного металла: физические, химические свойства, области применения, марки и его сплавов, виды продукции.
Основные сведения:
-Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Данный материал сочетает легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.
История открытия:
-Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.
Свойства титана:
-В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа. Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления. По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью. Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает. Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности. Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником. Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.
Физические и механические свойства:
Марки титана и сплавов:
-Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св. В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо. Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С. Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С. Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий. Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С. Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.
Области применения:
-Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах. По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии. Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях. Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж. Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести. Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении. Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла. Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.
-Удачной Вам эксплуатации и спасибо за внимание! Надеюсь, что помог Вам!
-С уважением DrPavlov.
Титановые сплавы
Одним из самых распространенных элементов, который находится в земле, можно назвать титан. Согласно результатам проведенных исследований, он занимает 4-е место по степени распространенности, уступая лидирующие позиции алюминию, железу и магнию. Несмотря на столь большое распространение, титан стал использоваться в промышленности лишь в 20 веке. Титановые сплавы во многом повлияли на развитие ракетостроения и авиации, что связано с сочетанием малой плотности с высокой удельной прочностью, а также коррозионной стойкостью. Рассмотрим все особенности данного материала подробнее.
Общая характеристика титана и его сплавов
Именно основные механические свойства титановых сплавов определяют их большое распространение. Если не уделять внимание химическому составу, то все титановые сплавы можно охарактеризовать следующим образом:
Эти основные преимущества титановых сплавов определили их достаточно большое распространение. Однако, как ранее было отмечено, многое зависит от конкретного химического состава. Примером можно назвать то, что твердость изменяется в зависимости от того, какие именно вещества применяются при легировании.
Важно, что температура плавления может достигать 1700 градусов Цельсия. За счет этого существенно повышается устойчивость состава к нагреву, но также усложняется процесс обработки.
Виды титановых сплавов
Классификация титановых сплавов ведется по достаточно большому количеству признаков. Все сплавы можно разделить на несколько основных групп:
Маркировка титановых сплавов проводится по определенным правилам, которые позволяют определить концентрацию всех элементов. Рассмотрим некоторые из наиболее распространенных разновидностей титановых сплавов подробнее.
Сферы из титанового сплава
Рассматривая наиболее распространенные марки титановых сплавов, следует обратить внимание ВТ1-00 и ВТ1-0. Они относятся к классу технических титанов. В состав данного титанового сплава входит достаточно большое количество различных примесей, которые определяют снижение прочности. Однако за счет снижения прочности существенно повышается пластичность. Высокая технологическая пластичность определяет то, что технический титан можно получить даже при производстве фольги.
Очень часто рассматриваемый состав сплава подвергается нагартовке. За счет этого повышается прочность, но существенно снижается пластичность. Многие специалисты считают, что рассматриваемый метод обработки нельзя назвать лучшим, так как он не оказывает комплексного благоприятного воздействия на основные свойства материала.
Сплав ВТ5 довольно распространен, характеризуется применением в качестве легирующего элемента исключительно алюминия. Важно отметить, что именно алюминий считается самым распространенным легирующим элементом в титановых сплавах. Это связано с нижеприведенными моментами:
В горячем состоянии ВТ5 хорошо куется, прокатывается и штампуется. Именно поэтому его довольно часто применяют для получения поковки, проката или штамповки. Подобная структура может выдержать воздействие не более 400 градусов Цельсия.
Титановый сплав ВТ22 может иметь самую различную структуру, что зависит от химического состава. К эксплуатационным особенностям материала можно отнести следующие моменты:
Существенно повысить эксплуатационные качества титанового сплава ВТ22 можно путем применения сложной технологии отжига. Она предусматривает нагрев до высокой температуры и выдержки в течение нескольких часов, после чего проводится поэтапное охлаждение в печи также с выдержкой в течение длительного периода. После качественного проведения отжига сплав подойдет для изготовления высоконагруженных деталей и конструкций, которые могут нагреваться до температуры более 350 градусов Цельсия. Примером можно назвать элементы фюзеляжа, крыла, детали системы управления или крепления.
Титановый сплав ВТ6 сегодня получил самое широкое распространение за рубежом. Назначение подобного титанового сплава заключается в изготовлении баллонов, которые могут работать под большим давлением. Кроме этого, согласно результатам проведенных исследований, в 50% случаев в авиакосмической промышленности применяется титановый сплав, который по своим эксплуатационным качествам и составу соответствует ВТ6. Стандарт ГОСТ сегодня практически не применяется за рубежом для обозначения титановых и многих других сплавов, что следует учитывать. Для обозначения применяется своя уникальная маркировка.
ВТ6 обладает исключительными эксплуатационными качествами по причине того, что в состав добавляется также ванадий. Этот легирующий элемент характеризуется тем, что повышает не только прочность, но и пластичность.
Данный сплав хорошо деформируется в горячем состоянии, что также можно назвать положительным качеством. При его применении получают трубы, различные профили, плиты, листы, штамповки и многие другие заготовки. Для сваривания можно применять все современные методы, что также существенно расширяет область применения рассматриваемого титанового сплава. Для повышения эксплуатационных качеств также проводится термическая обработка, к примеру, отжиг или закалка. На протяжении длительного времени отжиг проводился при температуре не выше 800 градусов Цельсия, однако результаты проведенных исследований указывают на то, что есть смысл в повышении показателя до 950 градусов Цельсия. Двойной отжиг зачастую проводится для повышения сопротивления коррозионному воздействию.
Внешний вид титановых сплавов
Также большое распространение получил сплав ВТ8. В сравнении с предыдущим он обладает более высокими прочностными и жаропрочными качествами. Достигнуть уникальных эксплуатационных качеств смогли за счет добавления в состав большого количества алюминия и кремния. Стоит учитывать, что максимальная температура, при которой может эксплуатироваться данный титановый сплав около 480 градусов Цельсия. Разновидностью этого состава можно назвать ВТ8-1. Его основными эксплуатационными качествами назовем нижеприведенные моменты:
Для существенно повышения эксплуатационных качеств довольно часто проводится двойной изотермический отжиг. В большинстве случаев данный титановый сплав применяется при производстве поковок, прудков, различных плит, штамповок и других заготовок. Однако стоит учитывать, что особенности состава не позволяют проводить сварочные работы.
Применение титановых сплавов
Рассматривая области применения титановых сплавов отметим, что большая часть разновидностей применяется в авиационной и ракетостроительной сферах, а также в сфере изготовления морских судов. Для изготовления деталей авиадвигателей другие металлы не подходят по причине того, что при нагреве до относительно невысоких температур начинают плавиться, за счет чего происходит деформация конструкции. Также увеличения веса элементов становится причиной потери КПД.
Применим материал при производстве:
В целом можно сказать, что область применения титановых сплавов весьма обширна. При этом проводится легирование, за счет чего существенно повышаются основные эксплуатационные качества материала.
Трубы из титановых сплавов
Термообработка титановых сплавов
Для повышения эксплуатационных качеств проводится термическая термообработка титановых сплавов. Данный процесс существенно усложняется по причине того, что перестроение кристаллической решетки поверхностного слоя проходит при температуре выше 500 градусов Цельсия. Для плавов марки ВТ5 и ВТ6-С довольно часто проводят отжиг. Время выдержки может существенно отличаться, что зависит от толщины заготовки и других линейных размеров.
Детали, изготавливаемые из ВТ14, на момент применения должны выдерживать температуру до 400 градусов Цельсия. Именно поэтому термическая обработка предусматривает закалку с последующим старением. При этом закалка требует нагрева среды до температуры около 900 градусов Цельсия, в то время как старение предусматривает воздействие среды с температурой 500 градусов Цельсия на протяжении более 12-и часов.
Индукционные методы нагрева позволяют проводить самые различные процессы термической обработки. Примером можно назвать отжиг, старение, нормализацию и так далее. Конкретные режимы термической обработки выбираются в зависимости от того, какие нужно достигнуть эксплуатационные характеристики.