что такое синтетический белок
Что такое синтез белка?
Синтез белка в организме осуществляется на клеточном уровне при непосредственном участии так называемых нуклеиновых кислот. При этом расположение нуклеотидов способно предопределять синтезируемую структуру белка – или другими словами, устанавливать последовательность аминокислот в молекуле белка.
Что говорит наука?
Как выяснила современная наука, синтез белка в живом организма, и человеческом также, происходит.
При наличии ферментной системы, позволяющей соединять аминокислоты в нужной организму последовательности.
И при наличии «природной информации», позволяющей определять последовательность такого соединения.
Учитывая тот факт, что в организме существуют тысячи белков, наделенные самыми различными функциями, и то, что каждый из них составлен из сотен аминокислот, становится понятным, что объем той самой «хранимой информации» может впечатлить кого угодно. По словам исследователей, эта «информация» и записана на химическом уровне в молекулах нуклеиновых кислот.
К примеру, в описанной последовательности синтезируются некоторые виды пищеварительных ферментов и даже гормоны. Так наиважнейший анаболический гормон инсулин появляется после процесса ферментизации своего предшественника – проинсулина. Это как раз один из примеров того, когда синтез белков идет при участии других белковых структур. И естественно, что для завершения этих пластических процессов в организме должен быть в достатке необходимый строительный материал. К счастью, в этом отношении организм с лихвой умеет использовать альтернативные источники строительных материалов. Увы, не всегда выгодные представителям силовых видов спорта.
Сколько живут белковые структуры?
Учеными также достоверно установлено, что образовавшиеся в результате сложного процесса биосинтеза белки не сохраняются в организме до конца его жизни. Иными словами, процесс воссоздания и обновления белковых структур идет постоянно и к тому же он требует не малых затрат АТФ. Белковые структуры постоянно распадаются, а на их место встают другие, заново синтезированные.
Время распада у различных белковых структур различно. Некоторые из них, к примеру, разрушаются, только вместе с гибелью клетки-носителя. В среднем же приводятся такие показатели срока жизни белков – от нескольких часов до нескольких месяцев.
Искусственные белки
Для справки. Современная химическая наука научилась синтезировать отдельно взятые аминокислоты. Но при этом сами аминокислоты соединяются, как правило, в беспорядочном порядке. Так что искусственные белки иногда мало чем похожи на свои природные прототипы.
Но, несмотря на эти трудности, в отельных случаях люди научились восстанавливать нужную последовательность аминокислот. Например, таким образом сегодня производится синтетический аналог человеческого инсулина, спасающий больных диабетом.
В целом же процесс искусственного воспроизводства белков затруднен еще и тем, что большинство нужных человеку белков имеют в своей молекулярной цепочке по несколько сотен аминокислот, и при этом каждая из них должна определенно находиться на «своем» месте.
Но наука не стоит на месте, постоянно открывая все новые горизонты. И не исключено, что научные изыскания в этом направлении в самом скором времени окажут сильное влияние на развитие силовых видов спорта. Отметим также, что эта идея подогревает ученые умы уже больше века…
Протеиновые инвестиции
Протеиновые инвестиции
Альтернативные белковые продукты — результат слаженной работы партнеров: производителей белкового сырья, инвесторов, R&D-отделов и производителей продуктов питания
Автор
Редакторы
Статья на конкурс «Био/Мол/Текст»: Потребность в пище в современном мире огромна, а ее нехватка представляет серьезную проблему. Решить ее стараются ученые, производственные предприятия и инвесторы многих стран. Чьи достижения впереди планеты всей и заставляют трепетать конкурентов? В чей рацион уже входит альтернативная еда? И сколько она все-таки стоит?
Конкурс «Био/Мол/Текст»-2020/2021
Эта работа опубликована в номинации «Академия & Бизнес» конкурса «Био/Мол/Текст»-2020/2021.
Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.
Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.
Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Еще совсем недавно на конкурсе «Био/Мол/Текст»-2019 в статье «Культивируемое мясо — продукт завтрашнего дня» [15] сделали предположение о темпах и направлениях развития, а также инвестиционной привлекательности проектов по получению белков из альтернативных источников. И вот это будущее настало, а значит — пора разобраться, насколько эта тема актуальна как для человечества в целом, так и для ученых с инвесторами.
Протеины, или же белки, — это высокомолекулярные органические соединения, состоящие из аминокислот, соединенных пептидной связью. Белки — основной источник питательных веществ для животных и человека, только с их помощью в организм могут поступать незаменимые аминокислоты. В процессе пищеварения белки ферментируются и разлагаются до аминокислот, которые используются организмом для биосинтеза собственных белков или подвергаются дальнейшему расщеплению с высвобождением энергии (рис. 1).
Рисунок 1. Человек потребляет в пищу белки и расщепляет их до аминокислот. Для синтеза собственных белков организму нужно 20 аминокислот: 9 незаменимых (не синтезируются организмом), 6 условно незаменимых (синтезируются в ограниченном количестве) и 5 заменимых (синтезируются в необходимом объеме).
За последние девять лет численность населения земного шара сильно возросла: если в октябре 2011 количество жителей приближалось к 7 млрд [1], то на ноябрь 2020 года эта цифра составила 7,827 млрд человек. Суточная норма белка для взрослого человека — 80 г [2], а для всего человечества — 626 160 тонн. Цифра очень велика, а в натуральном выражении — 4,8 млн коров, или 1,5 млрд бройлеров, или 1,7 млрд кг соевых бобов в день, — поражает своим масштабом! Производство такого количество белка пагубно влияет на экологию:
И это далеко не полный список всех экологических проблем связанных с нашим здоровым аппетитом и любовью к продовольственным белкам.
Новый белок — всему голова
Согласно иерархии потребностей Абрахама Маслоу (рис. 2), потребность в пище — потребность первого уровня, или же физиологическая, она врожденная и присуща всем людям. Удовлетворение этой потребности делает возможным развитие общества и появление высших потребностей, которые тоже становятся неотъемлемой частью современного развитого общества.
Рисунок 2. Пирамида потребностей Абрахама Маслоу. Потребности распределены по мере убывания важности. Рассмотрим иерархию с точки зрения еды. В основании — физиология (утоление голода). Выше разместилась потребность в безопасности (безопасно ли то, что я ем?), в привязанности и любви (пищевые пристрастия), в принадлежности какой-либо социальной группе (я — вегетарианец?), в уважении и одобрении, познавательные потребности (жажда знаний о том, что я ем, и как это влияет на мир?). Наивысшая ступень пирамиды — стремление к раскрытию внутреннего потенциала, самоактуализация (как человек может получить еду нетрадиционными способами?).
Обеспечение пищей граждан с помощью собственных ресурсов — это стратегическое направление для любого государства, стремящегося минимизировать влияние геополитических факторов на суверенитет, поэтому важны национальные белковые ресурсы. Популяризаци альтернативных источников белка также способствует эпидемиологическая ситуация. Вспышки зооантропонозных заболеваний возникают по всему миру. Более 60% человеческих патогенов имеют зоонозное происхождение. На распространение зоонозов влияет изменение климата, урбанизация, миграция животных и торговля ими, путешествия и туризм, биология переносчиков болезней, антропогенные и природные факторы. Из недавно появившихся зоонозных заболеваний ученые выделяют COVID-19 [5], [6].
Поэтому белки выполняют сверхважную задачу: они не только обеспечивают человека как биологический вид питательными веществами, но и поддерживают государственный строй и существующий уклад жизни всего человечества. А поскольку традиционных источников белка недостаточно, повышается спрос на альтернативные, которые становятся чрезвычайно привлекательными для инвесторов.
Индустрия альтернативных белков динамично развивается. Ученые разрабатывают все более оригинальные и необычные способы получения белков и продуктов из них, с которыми мы познакомимся поближе в этой статье. Один из экспертов на рынке финансовой информации, агентство «Блумберг», в июле 2020 г. сообщило, что венчурные инвесторы в 2020 году более чем в два раза увеличили ставки на альтернативных производителей протеина (начиная от производителей культивируемого мяса и заканчивая получением белков микробами). Какие страны уделяют внимание альтернативным белкам? Как все заинтересованные игроки на протеиновом рынке находят друг друга? И за чей же счет альтернатива?
Проект будет длиться четыре года, его основная цель — консолидация всех участников производственной цепи новых белковых продуктов: фермеров, разработчиков белковой массы (полученной из растений, грибов, отходов и побочных продуктов производств), производителей готовых белковых продуктов, маркетологов.
Ожидается, что в результате реализации проекта в 2025 году на рынок будут выпущены новые растительные продукты: мясо, рыба, морепродукты, сыр, молочные смеси для детского питания и другие молочные продукты, а также хлебобулочные изделия.
Государственное финансирование далеко не единственный источник инвестиций в инновационные проекты. Инвестирование в биотехнологическую отрасль, связанную с созданием технологии получения белковых продуктов из альтернативных источников, довольно рискованно. Финансированием инновационных организаций или стартапов занимаются в основном венчурные инвесторы. Узнать теорию венчурного капитала можно, например, с помощью курса лекций Российской ассоциации венчурного инвестирования. Поиск венчурного инвестора — не единственный возможный путь развития стартапа, есть еще бизнес-ангелы и краудфандинг.
Для плодотворного сотрудничества и революционных достижений стартап и инвестор должны существовать не в информационном вакууме, а иметь тесную связь с R&D-отделами компаний, с академической наукой, с государственными органами и др. Такое взаимодействие получило название «открытые инновации» [7].
Альтернативные источники белка
Альтернативными источниками белка считаются растения, водоросли, насекомые и микроорганизмы, культивируемое мясо (рис. 3).
Рисунок 3. Альтернативные источники белка. Среднее содержание белка в 100 г продукта: растения семейства бобовых — 28 г, зеленые водоросли — 57 г, личинки насекомых — 48 г, искусственная курятина — 27 г.
Растительный белок
Первым альтернативным источником белка можно по праву считать растения (рис. 4), особенно богато белком семейство бобовых (горох, соя, и др.).
Рисунок 4. Источники растительного белка. Содержание белка в 100 г муки сильно разнится: желтый горох — 19,0 г, рис — 2,7 г, соя — 36,0 г, чечевица — 9,0 г, миндаль — 18,6 г, овес — 10,0 г.
Помимо Beyond Meat созданием продуктов на основе растительных белков занимаются компании Impossible Food в США и Vegetarian Butcher в Европе. Растительные бургеры Beyond Meat можно попробовать и в российских ресторанах.
Среди растительного сырья, помимо самых популярных сои и гороха, есть и другие перспективные источники белка [8]. FutureBridge полагает, что основным промышленным источником растительных протеинов станет белок из нута (культуры семейства бобовых). Он обладает важным преимуществом перед соей и пшеницей — гипоаллергенностью. Ученые находят и другие преимущества его применения в продуктах питания [9].
Нут уже применяется в мировой пищевой промышленности. Например, под торговой маркой Banza Pasta выпускают нутовую муку, а также крупу и макаронные изделия на ее основе. Компания Barilla также производит макароны со 100% нутовой муки: в продуктовой линейке коротких макарон 20 продуктов, из них один — из нута. Компании Hippeas и Biena Snacks используют нут в снековых продуктах, Rule Breaker производит пирожные с нутовой мукой, Nutriati предлагает добавлять нутовый белок в мороженое, а Cambridge Commodities ProEarth выпускает широкий ассортимент продуктов с нутом.
На 2016 год производство сои составляло 313 млн тонн, гороха — 14,4 млн тонн, а нута — 11 млн тонн. Такого количества нута недостаточно для существенного увеличения его доли на рынке продуктов питания, пока он может только заместить небольшую долю сои.
В натуральном виде в нуте содержится примерно 20% протеина, тогда как ферментативный гидролиз муки из него позволяет получить 70%-концентрат белка [10]. Этот инновационный белковый концентрат гипоаллергенен, обеспечивает высокую питательную ценность, хорошие вкусовые качества конечных продуктов.
Ни рыба, ни мясо
С 2019 г. крупнейшая в мире корпорация по производству продуктов питания Nestlé сотрудничает с биохимической компанией Corbion по разработке нового поколения микроводорослей для пищевых продуктов. Объединив возможности Corbion по производству и ферментации микроводорослей с опытом Nestlé в области разработки растительных продуктов, обе компании стремятся коммерциализировать пищевые ингредиенты на основе микроводорослей. Один из вариантов продуктов на растительной основе — напитки: сливки и кофейные смеси на основе микроводорослей.
Американский стартап Triton Alges Innovations производит из водорослей Essential Red вегетарианское сырье для имитации мяса. Triton Alges Innovations также ведет разработки в области генной инженерии. Участники стартапа выделили штамм водорослей, ферментацией которого можно получать остеопоэтин — белок, содержащийся в молоке млекопитающих.
Нидерландская компания Phycom из-за вкусовых и связующих свойств микроводорослей использует именно их при создании альтернативных мясных продуктов (рис. 5).
Рисунок 5а. Компания Phycom из пасты водорослей получает порошок.
Рисунок 6. Тунец на основе смеси белков и водорослей от стартапа Kuleana выглядит вполне естественно
Российское ООО «АкваСар» запустило инновационный стартап по производству водоросли Chlorella. Размножение хлореллы в оптимальных условиях происходит очень интенсивно, что позволяет за короткое время получать прирост биомассы в 200 раз больший, чем у высших растений [13].
Существует два пути культивирования водорослей: выращивание в естественных условиях под открытым небом и в аппаратах с полностью контролируемыми условиями. Получение максимальных выходов биомассы требует оптимальных параметров (освещенности, температуры, содержания углекислого газа и др.) для роста и фотосинтетической продуктивности культур микроводорослей. Средняя производительность установки при этом — 0,3 г водорослей (0,17 г белка) в литре воды за сутки [14], а его еще надо отделить и высушить. Поэтому экономически выгодным проект по выращиванию водорослей может быть только в регионах с теплым климатом и возможностью нагрева за счет альтернативных источников. Производство водорослей пока вряд ли станет повсеместным и массовым, но останется одним из самых экологичных.
Культивируемое мясо
Еще один альтернативный источник белка — искусственное мясо или мясо из пробирки. Это мясо выращено в лабораторных условиях на питательной среде в виде культуры клеток и никогда не было частью живущего, полноценного животного (рис. 7). Подробнее познакомиться с историей и процессом создания искусственного мяса можно в тексте «Биомолекулы» «Культивируемое мясо — продукт завтрашнего дня» [15].
В декабре 2020 года в продажу впервые поступило искусственное куриное мясо американской компании Eat Just. Его произвели в лабораторных условиях без забоя кур. Чтобы произвести искусственное мясо, специалисты компании взяли клетки кур путем биопсии, а затем культивировали их в биореакторах, соединив с запатентованной смесью из белков, аминокислот, минералов, сахаров, солей и других питательных веществ.
Рисунок 7. Основные этапы изготовления искусственного мяса: из тканей животного выделяют стволовые клетки, из которых в биореакторе выращивают волокна, а волокна с помощью каркаса превращаются в мясной продукт
Протеины из насекомых
Использование биомассы насекомых для производства белковых продуктов предполагается в виде муки, которая примерно на 70% состоит из белка, и добавление ее небольшого количества (до 5–10%) способно качественно улучшить состав пищи.
Международная биотехнологическая компания «Энтопротэк» специализируется на переработке отходов сельского хозяйства в кормовые добавки для животных с помощью черной львинки — мухи происхождением из Южной Америки. Компания была создана в 2015 году.
Черная львинка была выбрана из-за абсолютной безвредности для человека. Первую партию лабораторных насекомых привезли с ее родины, а дальше перед специалистами стояла задача — создать такие условия, в которых насекомые почувствовали бы себя как дома. «Заставить насекомых поверить, что они находятся не в Пензенской области, а где-то рядом с Амазонкой, было самым сложным для нас», — сообщил генеральный директор биотехнологической компании «Энтопротэк» Иван Соколов в своем интервью.
Личинки на этом предприятии стали главными «биологическими санитарами». Они готовы переработать абсолютно любую органику: основой их обеда бывают даже остатки шоколадных конфет. Отходы пищевой и сельскохозяйственной промышленности на «Энтопротэк» привозят крупнейшие предприятия России, рестораны и сети.
К 2021 году компания планирует увеличение мощностей действующего производства до 50 т в сутки. Сейчас мощности завода (рис. 8) позволяют утилизировать до 15 т различных пищевых отходов в сутки с получением 700 кг белковой кормовой добавки.
Рисунок 8. Предприятие «Энтопротэк» производит белковую кормовую добавку из личинок амазонской мухи
Продукцию «Энтопротэка» употреблять в пищу могут и люди, но такого спроса на российском рынке пока нет. «Нам звонит много желающих покормить своих животных — и продуктивных, и непродуктивных, и экзотических, и любых других. Но ни одного звонка с идеей что-то приготовить из насекомых для людей пока не поступало», — рассказывает технический директор Игорь Абалакин.
Компания «НордТехСад» также занимается выращиванием черной львинки (рис. 9), но здесь мух кормят не отходами, а отборными зерновыми, замоченными в молочных продуктах определенной жирности. Рацион мухи разработан с расчетом на определенные биохимические параметры продукта и его употребление в пищу человеком. Всего «НордТехСад» производит до 5 т биомассы в месяц. Для проведения научных исследований «НордТехСад» учредил компанию — ООО «Биолаборатория», ставшую резидентом «Сколково».
Рисунок 9. Условия выращивания личинок мух в компании «НордТехСад»
Поголовье свиней в России на 2020 год составляет 24,5 млн, и за сутки они съедают 36 750 тонн корма на 550 млн руб. Включение 3 г добавки «НордТехСада» на 1 кг комбикорма позволяет увеличить привес свиней на 8% и сэкономить 9,8% корма в сутки, в стоимостном выражении экономия составит 53,9 млн руб. ежедневно.
Сейчас компания активно сотрудничает с западными производителями кормовых добавок. В Литве при поддержке «НордТехСада» ведется строительство биозавода по выпуску продукции из биомассы личинки черной львинки. Ведутся переговоры и с другими компаниями.
Компания «Зоопротеин» по праву может считаться «зеленой», ведь главным звеном в технологическом процессе является муха Lucilia caesar (обыкновенная зеленая падальница). Она занимается переработкой отходов животноводческих предприятий в кормовой белок и удобрения (рис. 10). Предприятие существует с 2016 года, его производительность — до 500 кг кормового белка в месяц. Чтобы рыночная стоимость белка была на уровне конкурента (рыбной муки) — 120–140 тыс. руб за тонну, — объем его производства в месяц должен составлять не менее 30–50 тонн. При этом себестоимость должна быть не более 80 тыс. руб. за тонну. Продукция пользуется большим спросом у птицефабрик, животноводческих и рыбоводческих предприятий. В 2016 году проект получил аккредитацию инновационного центра Сколково в направлении «Биотехнологии в сельском хозяйстве и промышленности». Исследования применения белковой субстанции в различных кормах осуществляются при грантовой поддержке фонда «Сколково» [16].
Рисунок 10. Производственные площади компании «Зоопротеин», где трудится зеленая мясная муха
И хотя данную технологию получения белка никак не назовешь гуманной (насекомые сначала высушиваются при высокой температуре, а затем — измельчаются), научные исследования в этом направлении продолжаются. Например, изучается возможность замены обезжиренного молока — основного ингредиента высококалорийного печенья — насекомыми. Полученное по альтернативному рецепту печенье по органолептическим, питательным и микробиологическим показателям не уступает традиционному [17].
В одном батончике Jungle bar массой 50 г содержится 200 ккал и 16% белка. Для сравнения, в 50 г злакового батончика Nestle Fitness — 236 ккал и 10% белка. Но важное преимущество батончиков Jungle bar — отсутствие основных аллергенов (глютена, арахиса, сои и молочных продуктов). Поскольку сверчки содержат большое количество железа, кальция, витамина B12 и других минералов, то пользы от такого батончика больше. А экологическая нагрузка на окружающую среду от сверчков значительно ниже, чем от коров.
Для получения килограмма протеина сверчкам необходимо 1,7 кг травы, а коровам — 10 кг. Еще меньше сверчкам требуется воды — дефицитного ресурса во многих регионах. На 1 кг сверчков нужно 8 л воды, на 1 кг птицы — 1250 л и 8350 л на 1 кг веса для коров.
Протеины из микроорганизмов
Чрезвычайно перспективно — получать белки с помощью микроорганизмов. Тем более что для России этот путь — исторически сложившийся. В советское время промышленная микробиология давала существенный объем продукции для животноводства. Технология получения протеина из природного газа была разработана (и впоследствии утеряна) в СССР: с 1988 по 1994 год на Светлоярском БВК в год производили около 15 тыс. т белка. В основу технологии был положен процесс непрерывного культивирования активного штамма — Methylococcus capsulatus, окисляющего природный газ, содержащий до 96% метана. Дальнейшие стадии содержали процессы концентрирования белка из биосуспензии, стерилизацию и сушку с получением белка гаприна в виде порошка или гранул [18].
При этом состав биомассы получался высококачественным, с полноценным набором незаменимых аминокислот, а также витаминами группы В и микроэлементами, и был предпочтительней традиционных белковых добавок.
Рисунок 11. Получение белка «Унопротеин» с помощью Methylococcus capsulatus из метана, аммиака, кислорода и минеральных веществ в ферментере Unibio
Основными потребителями биопротеина должны стать крупные агропромышленные предприятия и производители комбикормов. Ученые рассматривают возможность замещения белковой муки животного происхождения мукой бактериального происхождения в рационах не только свиней, птиц и крупного рогатого скота, но и рыб [19].
Финский стартап Solar Foods и вовсе позиционирует созданную им технологию как получение белка из воздуха (а если точнее, то из углекислого газа воздуха). Хотя это, конечно, маркетинговый ход, поскольку получение протеина протекает с помощью микробиологического синтеза.
Создатели стартапа скромно сообщают, что придумали только технологию, сама же идея родилась еще в 1960-е годы. На заре космической эры ученые думали, как обеспечить пропитанием людей, находящихся на орбите или совершающих долгие космические перелеты и полностью оторванных от привычных способов получения пищи. Согласно этой технологии, используя электричество и углекислый газ, можно получить вещество (рис. 12), которое по вкусу напоминает пшеничную муку и на 50–60% состоит из белка, остальную массу составляют углеводы и жиры. При производстве происходит разделение воды на водород и кислород с помощью электричества в биореакторе. Полученный водород затем добавляют к углекислому газу и подают микробам для процесса ферментации.
Рисунок 12. Самый экологичный белок в мире от компании Solar Foods
Стоимость такого производства сильно зависит от цены на электроэнергию. В Финляндии, где собираются построить первый завод, электричество недорогое. А углекислый газ планируют получить из отходов производства биотоплива — заодно снижая вредные выбросы.
Расчетная мощность завода — 1 млн тонн в год: этого хватит, чтобы обеспечить белком примерно 5 млн человек, то есть почти всё население Финляндии.
Проект Solar Foods выбран для бизнес-инкубатора Европейского космического агентства: там тестируют возможность обеспечивать таким белком космические миссии на Марс.
В земной жизни Solar Foods надеется использовать полученный протеиновый порошок в качестве ингредиента в пищевых продуктах или в качестве основы для гамбургеров. Solar Foods готовится представить свою продукцию потребителям к 2021 году после получения лицензии на продукты питания в Европейском союзе.
Кто придет к финишу первым?
На сегодняшний день до «финиша» (прилавков магазинов и ресторанов) дошел только один альтернативный источник белка — растительное мясо. Искусственное мясо тоже приближается к этому результату, но пока оно доступно только в общепите одной страны мира. Первенство в разработках растительного и искусственного мяса принадлежит США.
У насекомых и микроорганизмов есть шанс стать российскими национальными источниками белка. Количество проектов с участием насекомых в России достаточно велико. А проекты с переработкой природного газа — обеспечены собственным недорогим сырьем. Кормление альтернативным белком животных успешно осуществляется, но до употребления его в пищу человеком еще далеко.
Получение белка из альтернативных источников, несомненно, очень актуально. Это достаточно рисковое предприятие, нуждающееся в отважных инвесторах и гениальных ученых. Если два этих «двигателя прогресса» встретятся, то новые белковые продукты, жизненно необходимые человечеству, несомненно, выйдут на рынок. Наверняка, на всех вышеперечисленных альтернативных источниках протеина разработки не закончатся, и на последующих конкурсах «Био/Мол/Текст» будут представлены новые статьи о нео- или постальтернативных источниках протеинов.