что такое рекурсивная функция
Как работает рекурсия – объяснение в блок-схемах и видео
Представляю вашему вниманию перевод статьи Beau Carnes How Recursion Works — explained with flowcharts and a video.
«Для того чтобы понять рекурсию, надо сначала понять рекурсию»
Рекурсию порой сложно понять, особенно новичкам в программировании. Если говорить просто, то рекурсия – это функция, которая сама вызывает себя. Но давайте попробую объяснить на примере.
Представьте, что вы пытаетесь открыть дверь в спальню, а она закрыта. Ваш трехлетний сынок появляется из-за угла и говорит, что единственный ключ спрятан в коробке. Вы опаздываете на работу и Вам действительно нужно попасть в комнату и взять вашу рубашку.
Вы открываете коробку только чтобы найти… еще больше коробок. Коробки внутри коробок и вы не знаете, в какой из них Ваш ключ. Вам срочно нужна рубашка, так что вам надо придумать хороший алгоритм и найти ключ.
Есть два основных подхода в создании алгоритма для решения данной проблемы: итеративный и рекурсивный. Вот блок-схемы этих подходов:
Какой подход для Вас проще?
В первом подходе используется цикл while. Т.е. пока стопка коробок полная, хватай следующую коробку и смотри внутрь нее. Ниже немного псевдокода на Javascript, который отражает то, что происходит (Псевдокод написан как код, но больше похожий на человеческий язык).
В другом подходе используется рекурсия. Помните, рекурсия – это когда функция вызывает саму себя. Вот второй вариант в псевдокоде:
Оба подхода выполняют одно и тоже. Основный смысл в использовании рекурсивного подхода в том, что однажды поняв, вы сможете легко его читать. В действительности нет никакого выигрыша в производительности от использования рекурсии. Порой итеративный подход с циклами будет работать быстрее, но простота рекурсии иногда предпочтительнее.
Поскольку рекурсия используется во многих алгоритмах, очень важно понять как она работает. Если рекурсия до сих пор не кажется Вам простой, не беспокойтесь: Я собираюсь пройтись еще по нескольким примерам.
Граничный и рекурсивный случай
То, что Вам необходимо принять во внимание при написании рекурсивной функции – это бесконечный цикл, т.е. когда функция вызывает саму себя… и никогда не может остановиться.
Допустим, Вы хотите написать функцию подсчета. Вы можете написать ее рекурсивно на Javascript, к примеру:
Эта функция будет считать до бесконечности. Так что, если Вы вдруг запустили код с бесконечным циклом, остановите его сочетанием клавиш «Ctrl-C». (Или, работая к примеру в CodePen, это можно сделать, добавив “?turn_off_js=true” в конце URL.)
Рекурсивная функция всегда должна знать, когда ей нужно остановиться. В рекурсивной функции всегда есть два случая: рекурсивный и граничный случаи. Рекурсивный случай – когда функция вызывает саму себя, а граничный – когда функция перестает себя вызывать. Наличие граничного случая и предотвращает зацикливание.
И снова функция подсчета, только уже с граничным случаем:
То, что происходит в этой функции может и не быть абсолютно очевидным. Я поясню, что произойдет, когда вы вызовете функцию и передадите в нее цифру 5.
Сначала мы выведем цифру 5, используя команду Console.Log. Т.к. 5 не меньше или равно 1, то мы перейдем в блок else. Здесь мы снова вызовем функцию и передадим в нее цифру 4 (т.к. 5 – 1 = 4).
Мы выведем цифру 4. И снова i не меньше или равно 1, так что мы переходим в блок else и передаем цифру 3. Это продолжается, пока i не станет равным 1. И когда это случится мы выведем в консоль 1 и i станет меньше или равно 1. Наконец мы зайдем в блок с ключевым словом return и выйдем из функции.
Стек вызовов
Рекурсивные функции используют так называемый «Стек вызовов». Когда программа вызывает функцию, функция отправляется на верх стека вызовов. Это похоже на стопку книг, вы добавляете одну вещь за одни раз. Затем, когда вы готовы снять что-то обратно, вы всегда снимаете верхний элемент.
Я продемонстрирую Вам стек вызовов в действии, используя функцию подсчета факториала. Factorial(5) пишется как 5! и рассчитывается как 5! = 5*4*3*2*1. Вот рекурсивная функция для подсчета факториала числа:
Теперь, давайте посмотрим что же происходит, когда вы вызываете fact(3). Ниже приведена иллюстрация в которой шаг за шагом показано, что происходит в стеке. Самая верхняя коробка в стеке говорит Вам, что вызывать функции fact, на которой вы остановились в данный момент:
Заметили, как каждое обращение к функции fact содержит свою собственную копию x. Это очень важное условие для работы рекурсии. Вы не можете получить доступ к другой копии функции от x.
Нашли уже ключ?
Давайте кратенько вернемся к первоначальному примеру поиска ключа в коробках. Помните, что первым был итеративный подход с использованием циклов? Согласно этому подходу Вы создаете стопку коробок для поиска, поэтому всегда знаете в каких коробках вы еще не искали.
Но в рекурсивном подходе нет стопки. Так как тогда алгоритм понимает в какой коробке следует искать? Ответ: «Стопка коробок» сохраняется в стеке. Формируется стек из наполовину выполненных обращений к функции, каждое из которых содержит свой наполовину выполненный список из коробок для просмотра. Стек следит за стопкой коробок для Вас!
И так, спасибо рекурсии, Вы наконец смогли найти свой ключ и взять рубашку!
Вы также можете посмотреть мое пятиминутное видео про рекурсию. Оно должно усилить понимание, приведенных здесь концепций.
Заключение от автора
Надеюсь, что статья внесла немного больше ясности в Ваше понимание рекурсии в программировании. Основой для статьи послужил урок в моем новом видео курсе от Manning Publications под названием «Algorithms in Motion». И курс и статься написаны по замечательной книге «Grokking Algorithms», автором которой является Adit Bhargava, кем и были нарисованы все эти замечательные иллюстрации.
И наконец, чтобы действительно закрепить свои знания о рекурсии, Вы должны прочитать эту статью, как минимум, еще раз.
От себя хочу добавить, что с интересом наблюдаю за статьями и видеоуроками Beau Carnes, и надеюсь что Вам тоже понравилась статья и в особенности эти действительно замечательные иллюстрации из книги A. Bhargav «Grokking Algorithms».
Простыми словами о рекурсии
Dec 19, 2020 · 4 min read
В программировании рекурсия, или же рекурсивная функция — это такая функция, которая вызывает саму себя.
Рекурсию также можно сравнить с матрёшкой. Первая кукла самая большая, за ней идёт точно такая же кукла, но поменьше. Суть матрёшки состоит в том, что вы можете открывать её и доставать из неё точно такую же куклу, только немного меньше. Такой продолжительный процесс длится до тех пор, пока вы не дойдёте до последней куклы, которая и прервёт цикл. Так выглядит визуальная репрезентация рекурсии.
Не приведёт ли рекурсивная функция к бесконечному циклу?
Вот пример кода того, как можно реализовать функцию обратного отсчёта с использованием рекурсии:
Как прервать рекурсию:
Проще говоря, рекурсия делает то же, что и код ниже:
Плюсы и минусы рекурсивных функций
Чтобы правильно описать плюсы и минусы, давайте взглянем на производительность рекурсии.
Плюсы:
Под этим подразумевается, что рекурсии, в сравнении с циклами, тратят меньше времени до завершения функции. Чем меньше строк кода у нас будет, тем быстрее функция будет обрабатывать вызовы внутри себя. Особенно хорошо это проявляется при буферизации данных, что позволяет оптимизировать и ускорить код.
В программировании мемоизация — это метод сохранения результатов выполнения функций для предотвращения повторных вычислений. Это один из способов оптимизации, применяемый для увеличения скорости выполнения программ. — Википедия
И всё же стоит отметить, что рекурсия не всегда выигрывает по скорости по сравнению с циклами.
Многие согласятся, что эта причина очень важна. Рекурсия проста в отладке из-за того, что она не содержит сложных и длинных конструкций.
Минусы:
Рекурсивные функции занимают значительный объём памяти во время своего выполнения. Это означает, что при каждом вызове функции в стек будет добавляться новый элемент, который будет занимать место до тех пор, пока функция не завершит работу, найдя ответ, либо пока не дойдёт до выполнения базового условия функции.
Что такое «стек»?
Стек — это такая структура данных, которая работает по принципу «Last In, First Out» (последним пришёл — первым ушёл). Таким образом, элемент «проталкивается» в стек и добавляется в его конец, а затем «выталкивается» из стека при удалении.
Стоит ли использовать рекурсии вместо обычных циклов?
Оба этих метода одинаково эффективны для решения задач, однако выбор одного из них зависит от типа проблемы, поставленной перед вами.
Рекурсии эффективны тогда, когда вы работаете с данными, которые слишком сложны, чтобы пройтись по ним с помощью обычных циклов. Стоит также не забывать о ценности памяти и уменьшении времени, идущем вкупе с рекурсивной функцией, в которой накопилось слишком много элементов.
Циклы так же эффективны в плане скорости и оптимизации, они занимают меньше памяти в стеке и их легче понять, потому что в теле цикла содержится больше информации о том, что происходит внутри.
Рекурсия. Занимательные задачки
В этой статье речь пойдет о задачах на рекурсию и о том как их решать.
Кратко о рекурсии
Рекурсия достаточно распространённое явление, которое встречается не только в областях науки, но и в повседневной жизни. Например, эффект Дросте, треугольник Серпинского и т. д. Один из вариантов увидеть рекурсию – это навести Web-камеру на экран монитора компьютера, естественно, предварительно её включив. Таким образом, камера будет записывать изображение экрана компьютера, и выводить его же на этот экран, получится что-то вроде замкнутого цикла. В итоге мы будем наблюдать нечто похожее на тоннель.
В программировании рекурсия тесно связана с функциями, точнее именно благодаря функциям в программировании существует такое понятие как рекурсия или рекурсивная функция. Простыми словами, рекурсия – определение части функции (метода) через саму себя, то есть это функция, которая вызывает саму себя, непосредственно (в своём теле) или косвенно (через другую функцию).
Задачи
При изучении рекурсии наиболее эффективным для понимания рекурсии является решение задач.
Любой алгоритм, реализованный в рекурсивной форме, может быть переписан в итерационном виде и наоборот. Останется вопрос, надо ли это, и насколько это будет это эффективно.
Для обоснования можно привести такие доводы.
Для начала можно вспомнить определение рекурсии и итерации. Рекурсия — это такой способ организации обработки данных, при котором программа вызывает сама себя непосредственно, либо с помощью других программ. Итерация — это способ организации обработки данных, при котором определенные действия повторяются многократно, не приводя при этом к рекурсивным вызовам программ.
После чего можно сделать вывод, что они взаимно заменимы, но не всегда с одинаковыми затратами по ресурсам и скорости. Для обоснования можно привести такой пример: имеется функция, в которой для организации некого алгоритма имеется цикл, выполняющий последовательность действий в зависимости от текущего значения счетчика (может от него и не зависеть). Раз имеется цикл, значит, в теле повторяется последовательность действий — итерации цикла. Можно вынести операции в отдельную подпрограмму и передавать ей значение счетчика, если таковое есть. По завершению выполнения подпрограммы мы проверяем условия выполнения цикла, и если оно верно, переходим к новому вызову подпрограммы, если ложно — завершаем выполнение. Т.к. все содержание цикла мы поместили в подпрограмму, значит, условие на выполнение цикла помещено также в подпрограмму, и получить его можно через возвращающее значение функции, параметры передающееся по ссылке или указателю в подпрограмму, а также глобальные переменные. Далее легко показать, что вызов данной подпрограммы из цикла легко переделать на вызов, или не вызов (возврата значения или просто завершения работы) подпрограммы из нее самой, руководствуясь какими-либо условиями (теми, что раньше были в условии цикла). Теперь, если посмотреть на нашу абстрактную программу, она примерно выглядит как передача значений подпрограмме и их использование, которые изменит подпрограмма по завершению, т.е. мы заменили итеративный цикл на рекурсивный вызов подпрограммы для решения данного алгоритма.
Задача по приведению рекурсии к итеративному подходу симметрична.
Подводя итог, можно выразить такие мысли: для каждого подхода существует свой класс задач, который определяется по конкретным требованиям к конкретной задаче.
Более подробно с этим можно познакомиться тут
Так же как и у перебора (цикла) у рекурсии должно быть условие остановки — Базовый случай (иначе также как и цикл рекурсия будет работать вечно — infinite). Это условие и является тем случаем к которому рекурсия идет (шаг рекурсии). При каждом шаге вызывается рекурсивная функция до тех пор пока при следующем вызове не сработает базовое условие и произойдет остановка рекурсии(а точнее возврат к последнему вызову функции). Всё решение сводится к решению базового случая. В случае, когда рекурсивная функция вызывается для решения сложной задачи (не базового случая) выполняется некоторое количество рекурсивных вызовов или шагов, с целью сведения задачи к более простой. И так до тех пор пока не получим базовое решение.
Тут Базовым условием является условие когда n=1. Так как мы знаем что 1!=1 и для вычисления 1! нам ни чего не нужно. Чтобы вычислить 2! мы можем использовать 1!, т.е. 2!=1!*2. Чтобы вычислить 3! нам нужно 2!*3… Чтобы вычислить n! нам нужно (n-1)!*n. Это и является шагом рекурсии. Иными словами, чтобы получить значение факториала от числа n, достаточно умножить на n значение факториала от предыдущего числа.
В сети при обьяснении рекурсии также даются задачи нахождения чисел Фибоначчи и Ханойская башня
Рассмотрим же теперь задачи с различным уровнем сложности.
Попробуйте их решить самостоятельно используя метод описанный выше. При решении попробуйте думать рекурсивно. Какой базовый случай в задаче? Какой Шаг рекурсии или рекурсивное условие?
Поехали! Решения задач предоставлены на языке Java.
A: От 1 до n
Дано натуральное число n. Выведите все числа от 1 до n.
Простыми словами о рекурсии
В программировании рекурсия, или же рекурсивная функция — это такая функция, которая вызывает саму себя.
Рекурсию также можно сравнить с матрёшкой. Первая кукла самая большая, за ней идёт точно такая же кукла, но поменьше. Суть матрёшки состоит в том, что вы можете открывать её и доставать из неё точно такую же куклу, только немного меньше. Такой продолжительный процесс длится до тех пор, пока вы не дойдёте до последней куклы, которая и прервёт цикл. Так выглядит визуальная репрезентация рекурсии.
Не приведёт ли рекурсивная функция к бесконечному циклу?
Вот пример кода того, как можно реализовать функцию обратного отсчёта с использованием рекурсии:
Как прервать рекурсию:
Проще говоря, рекурсия делает то же, что и код ниже:
Плюсы и минусы рекурсивных функций
Чтобы правильно описать плюсы и минусы, давайте взглянем на производительность рекурсии.
Плюсы:
Под этим подразумевается, что рекурсии, в сравнении с циклами, тратят меньше времени до завершения функции. Чем меньше строк кода у нас будет, тем быстрее функция будет обрабатывать вызовы внутри себя. Особенно хорошо это проявляется при буферизации данных, что позволяет оптимизировать и ускорить код.
В программировании мемоизация — это метод сохранения результатов выполнения функций для предотвращения повторных вычислений. Это один из способов оптимизации, применяемый для увеличения скорости выполнения программ. — Википедия
И всё же стоит отметить, что рекурсия не всегда выигрывает по скорости по сравнению с циклами.
Многие согласятся, что эта причина очень важна. Рекурсия проста в отладке из-за того, что она не содержит сложных и длинных конструкций.
Минусы:
Рекурсивные функции занимают значительный объём памяти во время своего выполнения. Это означает, что при каждом вызове функции в стек будет добавляться новый элемент, который будет занимать место до тех пор, пока функция не завершит работу, найдя ответ, либо пока не дойдёт до выполнения базового условия функции.
Что такое «стек»?
Стек — это такая структура данных, которая работает по принципу «Last In, First Out» (последним пришёл — первым ушёл). Таким образом, элемент «проталкивается» в стек и добавляется в его конец, а затем «выталкивается» из стека при удалении.
Стоит ли использовать рекурсии вместо обычных циклов?
Оба этих метода одинаково эффективны для решения задач, однако выбор одного из них зависит от типа проблемы, поставленной перед вами.
Рекурсии эффективны тогда, когда вы работаете с данными, которые слишком сложны, чтобы пройтись по ним с помощью обычных циклов. Стоит также не забывать о ценности памяти и уменьшении времени, идущем вкупе с рекурсивной функцией, в которой накопилось слишком много элементов.
Циклы так же эффективны в плане скорости и оптимизации, они занимают меньше памяти в стеке и их легче понять, потому что в теле цикла содержится больше информации о том, что происходит внутри.
Рекурсивные функции — создание собственной математики (Scala)
Столь претензионным заголовком я хочу начать статью про одну из многих моделей исчисления (Computational model) — рекурсивные функции. В первой части этого поста мы разберем (в кратце, ибо подробно все расписано на Википедии) теоретическую составляющую этой модели (примитивная рекурсия), во второй же половине мы попробуем претворить данную модель в жизнь (частично) с помощью языка Scala.
1. Рекурсивные функции — что это?
Всем известно словосочетание «Машина Тьюринга» — модель исчисления, созданная британским математиком, логиком, криптографом и просто хорошим человеком Аланом Тьюрингом. Данная модель является одной из самых известных и популярных моделей исчисления среди многих. Однако, с недавнего времени начали популяризироваться другие модели, такие как лябмда-исчисления и мю-рекурсия.
— Zero(x)=0: для каждого данного аргумента x функция возвращает 0
— Succ(x)=x+1: для каждого данного x функция возвращает x+1
— Композиция функций (суперпозиция): (f•g)(x)=f(g(x));
— Примитивная рекурсия: Пусть есть функция f(x1,x2. xn) от n переменных, и функция g(X1,X2. Xn,Xn+1,Xn+2) от n+2 переменных. Тогда мы можем задать функцию h(X1,X2. Xn,Xn+1) от n+1 переменных:
h(X1,X2. Xn,0) = f(X1,X2. Xn);
h(X1,X2. Xn,i+1) = g(X1,X2. Xn, i, h(X1,X2. Xn,i));
Вот собственно и все, что может делать наша абстрактная вычислительная машина. Главное в этом списке, как вы уже догадались, это примитивная рекурсия. Что бы было понятней, поставим себе задачу, например, реализовать функцию сложения двух чисел a и b:
Sum(a,b):
Sum(a,0) = I(a);
Sum(a,i+1) = Succ(F(a,i,Sum(a,i))) где F — проекция третьего аргумента, то есть в данном случае F вернет Sum(a,i);
Все! Теперь мы умеем складывать два числа и мы этому очень рады.
Кстати, возможно у кого-то возник вопрос, зачем так сложно расписывать Sum(a, i+1), и почему не написать просто Sum(a, i+1)=Succ(Sum(a,i)). Отвечаю: по определению, рекурсивная функция должна иметь как аргументы все аргументы (кроме итерационного) желаемой функции (в нашем случае это a), также итерационный аргумент, уменьшенный на единицу (в нашем случае это i), и собственно сам рекурсивный вызов Sum(a,i). Сделано это для возможности работать с непримитивной рекурсией (итерация идет по двум и больше аргументам).
Как вы понимаете, таким же методом мы можем создать функцию уможения, степени, и т.д. Все эти примеры очень хорошо расписаны на Википедии, да и мы их реализуем во второй части статьи. В любом случае, мы можем уже определить бесконечное множество примитивно-рекурсивных функций:
Вот это и есть примитивная рекурсия.
Я не буду погружаться глубже и рассказывать, что такое μ-recursive function, на википедии все очень приятно расписано, тем более что примитивной рекурсии нам достаточно для начала реализации собственной… математики!
2.Примитивная рекурсия на Scala
Для начала, нам надо определить, что такое число? Создадим абстрактный класс MyNumber:
Как уже видно, у нас будут два дочерних класса, Fraction и MyInteger:
Для определения Integer’а, нам понадобится понятие следующего числа (Suc), предыдущего (Pre), нуля (Zero) и бесконечности (PosInf):
Класс Fraction несколько легче, ибо он полностью базируется на MyInteger:
Вот и все! У нас теперь есть натуральные и дробные числа, и набор простейших операций (заметьте, ни единого использования нативных классов!)
По такому же принципу можно создавать структуры данных для новоявленных чисел:
Да и много чего можно сделать с рекурсивными функциями, даже создать свою вселенную. «С блекджеком и шлюхами». Спасибо за внимание.