что такое распределительное свойство сложения

Распределительное свойство сложения и умножения: формулы и примеры

Благодаря знанию распределительного свойства умножения и сложения, можно устно решить сложные, на первый взгляд, примеры. Изучается данное правило на уроках алгебры в 7 классе. Задания с использованием данного правила встречаются на ОГЭ и ЕГЭ по математике.

Распределительное свойство умножения

Для того, чтобы произвести умножение суммы некоторых чисел, можно умножить каждое слагаемое по отдельности и сложить полученные результаты.

Проще говоря, a × (в + с) = ав + ас или (в + с) ×а = ав + ас.

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения Вам будет интересно: О том, как становился современный кыргызский язык

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Также, для упрощения решения, данное правило действует и в обратном порядке: а×в + а×с = а × (в + с), то есть общий множитель выносится за скобки.

Используя распределительное свойство сложения, можно решить следующие примеры.

Это же правило действует не только на сумму, но и на разность двух и более выражений.

Распределительное свойство умножения относительно разности

Для того, чтобы выполнить умножение разности на число, следует умножить на него уменьшаемое, а затем вычитаемое и выполнить вычисление полученных результатов.

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Пример 2: 8 × (1 + 20). Аналогично решается данное задание: 8 × 1 + 8 × 20 = 8 + 160 = 168. Ответ: 168.

Применение свойства для более двух слагаемых

Распределительное свойство умножения применяется не только для двух слагаемых, а для абсолютно любого количества, в таком случае формула имеет данный вид:

а × (в + с+ d) = a×в +a×с+ a×d.

Пример 1: 354×3. Представьте 354 как сумму трех чисел: 300, 50 и 3: (300 + 50 + 3) ×3= 300×3 + 50×3 + 3×3 = 900 + 150 + 9 =1059. Ответ: 1059.

Упростите несколько выражений, используя упомянутое ранее свойство.

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Пример 2: 5 × (3х + 14у). Раскройте скобки, используя распределительный закон умножения: 5 × 3х + 5 × 14у = 15х + 70у. 15 х и 70у сложить нельзя, так как слагаемые не являются подобными и имеют различную буквенную часть. Ответ: 15х + 70у.

Используя при решении примеров распределительное свойство сложения и умножения:

Источник

Свойства сложения и вычитания

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Свойства сложения

Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число

Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.

Слагаемые — это числа, единицы которых складываются.

Сумма — это число, которое получается в результате сложения.

Рассмотрим пример 2 + 5 = 7, в котором:

При этом саму запись (2 + 5) можно тоже назвать суммой.

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.

Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.

Свойства вычитания

Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.

Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.

Уменьшаемое — это число, из которого вычитают.

Вычитаемое — это число, которое вычитают.

Разность — это число, которое получается в результате вычитания.

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Примеры использования свойств сложения и вычитания

Мы узнали основные свойства сложения и вычитания — осталось попрактиковаться. Чтобы ничего не забыть, используйте эту шпаргалку:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Пример 1

Вычислить сумму слагаемых с использованием разных свойств:

а) 4 + 3 + 8 = (4 + 3) + 8 = 7 + 8 = 15

б) 9 + 11 + 2 = (9 + 2) + 11 = 11 + 11 = 22

в) 30 + 0 + 13 = 30 + 13 = 43

Пример 2

Применить разные свойства при вычислении разности:

Пример 3

Найти значение выражения удобным способом:

а) 11 + 10 + 3 + 9 = (11 + 10) + (3 + 9) = 21 + 11 = 32

Источник

Законы математики

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Переместительный закон сложения

Начнем изучать основные законы математики со сложения натуральных чисел.

Переместительный закон сложения

От перестановки мест слагаемых сумма не меняется. С помощью переменных его можно записать так:

m + n = n + m

Переместительный закон сложения работает для любых чисел.

Если прибавить шестерку к двойке — получим восьмерку. И наоборот, прибавим двойку к шестерке — снова получим восьмерку. Это доказывает справедливость переместительного закона сложения.

Приведем пример с весами, которые используют продавцы в магазинах.

Если мы положим на одну чашу весов 3 килограмма конфет, а на другую — такие же 3 килограмма конфет, то стрелка весов будет на нейтральной позиции. Это говорит нам о том, что чаши действительно весят одинаково.

При этом неважно, как будут лежать конфеты, в каком порядке. Если перемешать конфеты в пакете, как шары в лотерейном мешке — их вес не изменится и будет по-прежнему 3 килограмма. От перестановки мест конфет их сумма, то есть вес, не меняется.

Поэтому, между выражениями 8 + 2 и 2 + 8 можно поставить знак равенства. Это значит, что их сумма равна:

Формула переместительного закона для обыкновенных дробей:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Чтобы сложить две дроби нужно сложить числители, а знаменатель оставить прежним. Вот так:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Сочетательный закон сложения

Сочетательный закон сложения помогает группировать слагаемые для удобства их вычислений.

Сочетательный закон сложения: два способа

Чтобы лучше запомнить суть этого закона, просто выбирайте формулировку, которая вам больше нравится.

Рассмотрим сумму из трех слагаемых:

Чтобы вычислить это выражение, можно сначала сложить числа 1 и 3 и к полученному результату прибавить 4. Чтобы было удобнее, можно сумму 1 и 3 взять в скобки — так мы поймем, что ими нужно заняться в первую очередь:

Или по-другому: сложим числа 3 и 4 и к результату прибавим 1:

В обоих случаях получается один и тот же результат — что и требовалось доказать.

Между выражениями (1 + 3) + 4 и 1 + (3 + 4) можно поставить знак равенства, так как они равны одному и тому же значению:

Отразим сочетательный закон сложения с помощью переменных:

(a + b) + c = a + (b + c)

Формула сочетательного закона для обыкновенных дробей:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Например, если к сумме одной седьмой и трёх седьмых прибавить четыре седьмых, то в результате получим восемь седьмых.

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Переставим скобки — к одной седьмой прибавим сумму трёх седьмых и четырех седьмых. И снова ответ будет восемь седьмых.

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Значит, сочетательный закон справедлив и для обыкновенных дробей.

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Переместительный закон умножения

С каждым новым правилом решать задачки по математике все интереснее.

Переместительный закон умножения

От перемены мест множителей произведение не меняется. То есть, если множимое и множитель поменять местами — их произведение никак не изменится.

Проверим, действительно ли это так. Умножим пятерку на двойку, а потом наоборот:

В обоих случаях получили один ответ — значит между выражениями 5 * 2 и 2 * 5 можно поставить знак равенства.

Переместительный закон умножения с помощью переменных выглядит так:

a * b = b * a

Сочетательный закон умножения

Рассмотрим еще один полезный закон в математике.

Сочетательный закон умножения

Если выражение состоит из нескольких сомножителей, то их произведение не зависит от порядка действий.

Другими словами, умножайте числа в любом порядке — как вам больше нравится.

Это выражение можно вычислить в любом порядке. Давайте сначала перемножим числа 2 и 3, а полученный результат умножим на 4:

А теперь по-другому: перемножим числа 3 и 4, а результат умножим на 2:

Тот же ответ! Значит между выражениями (2 * 3) * 4 и 2 * (3 * 4) можно поставить знак равенства, так как они равны одному значению.

Для любых натуральных чисел a, b и c верно равенство:

a * b * с = (a * b) * с = a * (b * с)

Пример

Вычислить: 5 * 6 * 7 * 8.

Это выражение можно вычислять в любом порядке. Вычислим слева направо:

Распределительный закон умножения

Для умножения есть еще один закон — распределительный. На математике в 6 классе он звучит так:

Распределительный закон умножения

То есть при помощи распределительного закона умножения можно умножить сумму на число и число на сумму. Проверим на примере:

Сначала выполним действие в скобках:

В главном выражении (3 + 5) * 2 заменим выражение в скобках на восьмерку:

Получили ответ 16. Этот же пример можно решить с помощью распределительного закона умножения. Для этого каждое слагаемое в скобках, нужно умножить на 2, а потом сложить полученные результаты:

Отразим распределительный закон умножения с помощью переменных:

(a + b) * c = a * c + b * c

Выражение в скобках (a + b) — это множимое. Тогда переменная с — множитель, так как они соединены знаком умножения.

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Из переместительного закона умножения мы знаем, что от перемены мест множимого и множителя произведение не изменится.

Если множимое (a + b) и множитель c поменять местами, то получим выражение c * (a + b). Тогда получится, что мы умножаем переменную c на сумму (a + b). Для такого умножения можно применять распределительный закон умножения. Переменную c можно умножить на каждое слагаемое в скобках:

c * (a + b) = c * a + c * b

Пример 1

Умножим пятерку на каждое слагаемое в скобках и сложим полученные результаты:

5 * (3 + 2) = 5 * 3 + 5 * 2 = 15 + 10 = 25

Пример 2

Найти значение выражения 2 * (5 + 2).

Умножим двойку на каждое слагаемое в скобках и сложим полученные результаты:

2 * (5 + 2) = 2 * 5 + 2 * 2 = 10 + 4 = 14

Если в скобках не сумма, а разность, то сначала нужно умножить множимое на каждое число, которое в скобках. А после из полученного первого числа вычесть второе число.

Пример 3

Умножим четверку на каждое число в скобках. Из полученного первого числа вычтем второе число:

4 * (6 − 2) = 4 * 6 − 4 * 2 = 24 − 8 = 16

Распределительный закон умножения для суммы обыкновенных дробей:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Распределительный закон умножения для разности обыкновенных дробей:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Проверим справедливость этого закона:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Посчитаем, чему равна левая часть равенства.

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Теперь посчитаем, чему равна правая часть равенства.

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Так мы доказали справедливость распределительного закона.

Задания для самопроверки

Давайте потренируемся! Решите примеры и сравните с ответами — только чур, не подглядывать 🙂

Задание 1. Найти значение выражения: 8 * (1 + 6).

Задание 2. Применить распределительный закон умножения: 2 * (9 + 5).

Задание 3. Решить в порядке выполнения действий: 3 * (6 + 4) + 7 * (8 + 2).

Задание 4. Решить выражение: 4 * (5 + 4) + 9 * (3 + 2).

Задание 5. Применить распределительный закон умножения: 13 * (3 + 8) + 5 * (4 + 2)

Задание 6. Какое из действий (умножение, деление, сложение или вычитание) нужно выполнить последним ((20 − 1) * 12 + 30) : 3?

Задание 7. В смартфоне 32 гб памяти. Какое количество приложений можно установить, если одно занимает 1,2 гб?

Задание 8. Верно ли равенство: 8 * 5 = 49?

Источник

Свойства умножения и деления

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Свойства умножения

Умножение — арифметическое действие, в котором участвуют два аргумента: множимый и множитель. Результат их умножения называется произведением.

Узнаем, какие бывают свойства умножения и как их применять.

Переместительное свойство умножения

От перестановки мест множителей произведение не меняется.

То есть, для любых чисел a и b верно равенство: a * b = b * a.

Это свойство можно применять к произведениям, в которых больше двух множителей.

Сочетательное свойство умножения

Произведение трех и более множителей не изменится, если какую-то группу множителей заменить их произведением.

То есть, для любых чисел a, b и c верно равенство: a * b * c = (a * b) * c = a * (b * c).

Сочетательное свойство можно использовать, чтобы упростить вычисления при умножении. Например: 25 * 15 * 4 = (25 * 4) * 15 = 100 * 15 = 1500.

Если не применять сочетательное свойство и вычислять последовательно, решение будет значительно сложнее: 25 * 15 * 4 = (25 * 15) * 4 = 375 * 4 = 1500.

Распределительное свойство умножения относительно сложения

Чтобы умножить сумму на число, нужно умножить на это число каждое слагаемое и сложить полученные результаты.

То есть, для любых чисел a, b и c верно равенство: (a + b) * c = a * c + b * c.

Это свойство работает с любым количеством слагаемых: (a + b + с + d) * k = a * k + b * k + c * k + d * k.

В обратную сторону распределительное свойство умножения относительно сложения звучит так:

Чтобы число умножить на сумму чисел, нужно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.

Распределительное свойство умножения относительно вычитания

Чтобы умножить разность на число, нужно умножить на это число сначала уменьшаемое, затем вычитаемое, и из первого произведения вычесть второе.

То есть, для любых чисел a, b и c верно равенство: (a − b) * c = a * c − b * c.

В обратную сторону распределительное свойство умножения относительно вычитания звучит так:

Чтобы число умножить на разность чисел, нужно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.

Свойство нуля при умножении

Если в произведении хотя бы один множитель равен нулю, то само произведение будет равно нулю.

То есть, для любых чисел a, b и c верно равенство:
0 * a * b * c = 0.

Свойство единицы при умножении

Если умножить любое целое число на единицу, то в результате получится это же число.

То есть, умножение на единицу не изменяет умножаемое число: a * 1 = a.

Свойства деления

Деление — арифметическое действие обратное умножению. В результате деления получается число (частное), которое при умножении на делитель дает делимое.

Основные свойства деления целых чисел

И еще одно важное свойство деления, которое проходят в 5 классе:

Если делимое и делитель умножить или разделить на одно и тоже натуральное число, то их частное не изменится.

В буквенной форме это свойство выглядит так: a : b = (a * k) : (b * k), где k — любое натуральное число.

Применим свойства деления на практике.

Пример 1

Мама купила 6 кг конфет и разложила их в три пакета. Сколько килограммов конфет в каждом пакете?

Так как в каждом пакете одинаковое количество конфет, разделим 6 кг на три равные части: 6 : 3 = 2. Значит в каждом пакете по 2 кг конфет.

Пример 2

Вычислить: 500 * (100 : 5).

Как решаем: 500 * (100 : 5) = (500 * 100) : 5 = 50000 : 5 = 10000.

Ответ: 500 * (100 : 5) = 10000.

Пример 3

Упростить выражение: 27a – 16a.

Свойства умножения и деления помогают упрощать выражения. То есть, если запомнить эти свойства и научиться их применять, то решать задачки можно быстрее.

Источник

Законы математики

В нашей жизни есть законы, которые надо соблюдать. Соблюдение законов гарантирует стабильность и гармоничное развитие. Несоблюдение же законов приводит к печальным последствиям.

У математики есть свои законы, которые тоже следует соблюдать. Несоблюдение законов математики приводит в лучшем случае к тому, что оценка учащегося снижается, а в худшем случае приводит к тому, что падают самолёты, зависают компьютеры, улетают крыши домов от сильного ветра, снижается качество связи и тому подобные нехорошие явления.

Законы математики состоят из простых свойств. Эти свойства нам знакомы со школы. Но не мешает вспомнить их ещё раз, а лучше всего записать или выучить наизусть.

В данном уроке мы рассмотрим лишь малую часть законов математики. Их нам будет достаточно для дальнейшего изучения математики.

Переместительный закон сложения

Переместительный закон сложения говорит о том, что от перестановки мест слагаемых сумма не изменяется. Действительно, прибавьте пятерку к двойке — получите семёрку. И наоборот, прибавьте двойку к пятерке — опять получите семёрку:

Если положить на одну чашу весов 10 килограмм яблок и на другую чашу так же положить 10 килограмм яблок, то весы выровнятся, и не важно, что яблоки в пакетах лежат вразброс. Если мы возьмём пакет с весов и перемешаем яблоки находящиеся в нём, словно шары в лотерейном мешке, пакет всё так же будет весить 10 килограмм. От перестановки мест слагаемых сумма не изменится. Слагаемые в данном случае это яблоки, а сумма это итоговый вес.

Таким образом, между выражениями 5 + 2 и 2 + 5 можно поставить знак равенства. Это будет означать, что их сумма равна:

Полагаем что, вы изучили один из предыдущих уроков, который назывался выражения, поэтому мы без тени смущения запишем переместительный закон сложения с помощью переменных:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Сочетательный закон сложения

Сочетательный закон сложения говорит о том, что результат сложения нескольких слагаемых не зависит от порядка действий. Этот закон позволяет группировать слагаемые для удобства их вычислений.

Рассмотрим сумму из трёх слагаемых:

Чтобы вычислить данное выражение, можно сначала сложить числа 2 и 3 и полученный результат сложить с числом 5. Для удобства сумму чисел 2 и 3 можно заключить в скобки, указывая тем самым, что эта сумма будет вычислена в первую очередь:

2 + 3 + 5 = (2 + 3) + 5 = 5 + 5 = 10

Либо можно сложить числа 3 и 5, затем полученный результат сложить с числом 2

2 + 3 + 5 = 2 + (3 + 5) = 2 + 8 = 10

Видно, что в обоих случаях получается один и тот же результат.

Таким образом, между выражениями (2 + 3) + 5 и 2 + (3 + 5) можно поставить знак равенства, поскольку они равны одному и тому же значению:

(2 + 3) + 5 = 2 + (3 + 5)

Запишем сочетательный закон сложения с помощью переменных:

Переместительный закон умножения

Переместительный закон умножения говорит о том, что если множимое и множитель поменять местами, то произведение не изменится. Давайте проверим так ли это. Умножим пятерку на двойку, а затем наоборот двойку на пятерку.

В обоих случаях получается один и тот же результат, поэтому между выражениями 5 × 2 и 2 × 5 можно поставить знак равенства, поскольку они равны одному и тому же значению:

5 × 2 = 2 × 5

Запишем переместительный закон умножения с помощью переменных:

Сочетательный закон умножения

Сочетательный закон умножения говорит о том, что если выражение состоит из нескольких сомножителей, то произведение не будет зависеть от порядка действий.

Рассмотрим следующее выражение:

Данное выражение можно вычислять в любом порядке. Сначала можно перемножить числа 2 и 3, и полученный результат умножить на 4:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Либо сначала можно перемножить числа 3 и 4, и полученный результат перемножить с числом 2

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Таким образом, между выражениями (2 × 3) × 4 и 2 × (3 × 4) можно поставить знак равенства, поскольку они равны одному и тому же значению:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Запишем сочетательный закон умножения с помощью переменных:

a × b × с = (a × b) × с = a × (b × с)

Пример 2. Найти значение выражения 1 × 2 × 3 × 4

Данное выражение можно вычислять в любом порядке. Вычислим его слева направо в порядке следования действий:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Распределительный закон умножения

Распределительный закон умножения позволяет умножить сумму на число или число на сумму.

Рассмотрим следующее выражение:

Мы знаем, что сначала надо выполнить действие в скобках. Выполняем:

В главном выражении (3 + 5) × 2 выражение в скобках заменим на полученную восьмёрку:

8 × 2 = 16

Получили ответ 16. Этот же пример можно решить с помощью распределительного закона умножения. Для этого каждое слагаемое, которое в скобках, нужно умножить на 2, затем сложить полученные результаты:

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Мы рассмотрели распределительный закон умножения слишком развёрнуто и подробно. В школе этот пример записали бы очень коротко. К такой записи тоже надо привыкать. Выглядит она следующим образом:

(3 + 5) × 2 = 3 × 2 + 5 × 2 = 6 + 10 = 16

(3 + 5) × 2 = 6 + 10 = 16

Теперь запишем распределительный закон умножения с помощью переменных:

(a + b) × c = a × c + b × c

Давайте внимательно посмотрим на начало этого распределительного закона умножения. Начало у него выглядит так: (a + b) × c.

Если рассматривать выражение в скобках (a + b), как единое целое, то это будет множимое, а переменная с будет множителем, поскольку соединены они знаком умножения ×

что такое распределительное свойство сложения. Смотреть фото что такое распределительное свойство сложения. Смотреть картинку что такое распределительное свойство сложения. Картинка про что такое распределительное свойство сложения. Фото что такое распределительное свойство сложения

Из переместительного закона умножения мы узнали, что если множимое и множитель поменять местами, то произведение не изменится.

c × (a + b) = c × a + c × b

Пример 2. Найти значение выражения 5 × (3 + 2)

Умножим число 5 на каждое слагаемое в скобках и полученные результаты сложим:

5 × (3 + 2) = 5 × 3 + 5 × 2 = 15 + 10 = 25

Пример 3. Найти значение выражения 6 × (5 + 2)

Умножим число 6 на каждое слагаемое в скобках и полученные результаты сложим:

6 × (5 + 2) = 6 × 5 + 6 × 2 = 30 + 12 = 42

Если в скобках располагается не сумма, а разность, то сначала нужно умножить множимое на каждое число, которое в скобках. Затем из полученного первого числа вычесть второе число. В принципе, ничего нового.

Пример 4. Найти значение выражения 5 × (6 − 2)

Умножим 5 на каждое число в скобках. Затем из полученного первого числа вычтем второе число:

5 × (6 − 2) = 5 × 6 − 5 × 2 = 30 − 10 = 20

Пример 5. Найти значение выражения 7 × (3 − 2)

Умножим 7 на каждое число в скобках. Затем из полученного первого числа вычтем второе число:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *