что такое функциональный ряд
Функциональные ряды
Пусть имеется функциональный ряд , то есть ряд, составленный из функций. Мы рассматриваем область определения ряда
, а так же ее подобласть
— множество тех значений, при которых ряд сходится. Множество
называется областью сходимости функционального ряда.
На практике большое значение играет равномерная сходимость. Дадим определение.
Функциональный ряд называется равномерно сходящимся на множестве
, если последовательность его частичных сумм
равномерно сходится на этом множестве.
Так же как и для рядов для функциональных рядов вводится понятие абсолютной сходимости.
Ряд сходится абсолютно, если сходится ряд из его абсолютных величин:
. Имеет место признак Вейерштрасса равномерной сходимости.
Равномерная сходимость функциональных последовательностей и рядов нужна для определения свойств суммы ряда (или предела числовой последовательности).
Теорема 1. Сумма равномерно сходящегося ряда непрерывных функций есть функция непрерывная.
При ряд представляет собой геометрическую прогрессию, которая, как мы знаем из школы, сходится. При
ряд расходится, так как он не удовлетворяет необходимому признаку сходимости числовых рядов. Таким образом, область сходимости (да и абсолютной сходимости тоже) является интервал
.
а). Предельная функция на первом промежутке , поскольку
при
. Равномерная сходимость последовательности на всем промежутке следует из оценки
для
.
в). Здесь промежуток и предельная функция не является непрерывной:
Предельная функция не является непрерывной, следовательно, сходимость не равномерная.
Возникает вопрос, а если бы предельная функция была бы непрерывной, гарантировало бы это равномерную сходимость? Оказывается, нет. Рассмотрим следующий пример.
Равномерная сходимость также нужна для обоснования почленного дифференцирования и интегрирования функционального ряда.
Теорема 3. Если члены ряда непрерывны и этот ряд сходится равномерно на отрезке
, то этот ряд можно почленно проинтегрировать, и справедлива формула:
Длины волн инфракрасного света достаточно велики, чтобы перемещаться сквозь облака, которые в противном случае блокировали бы наш обзор. Используя большие инфракра сные телескопы, астрономы смогли заглянуть в ядро нашей галактики. Большое количество звезд излучают часть своей электромагнитной энергии в виде видимого света, крошечной части спектра, к которой чувствительны наши глаза.
Так как длина волны коррелирует с энергией, цвет звезды говорит нам, насколько она горячая. Используя телескопы, чувствительные к различным диапазонам длин волн спектра, астрономы получают представление о широком круге объектов и явлений во вселенной.
Пример №1 Постройте центральную симметрию тетраэдра, относительно точки O, изображенных на рисунке 3.
Для построения такой центральной симметрии сначала проведем через все точки тетраэдра прямые, каждая из которых будет проходить через точку O. На них построим отрезки, удовлетворяющие условиям |AO|=|A?O|, |BO|=|B?O|, |CO|=|C?O|, |DO|=|D?O| Таким образом, и получим искомую симметрию (рис. 4).
В ряду разных механических движений особенным значением обладают колебания. Это движения и процессы, имеющие периодичность во времени.
В среде электромагнитных явлений также значительное место заняли электромагнитные колебания. В этих колебаниях заряды, токи, электрические и магнитные поля изменяются согласно периодическим законам.
Совет №1 Велосипедист, имеющий скорость 300 м/с, или идеальный газ, оказывающий давление 100 паскалей в большой тепловой машине — это странно.
Нужна помощь с курсовой или дипломной работой?
Функциональные последовательности и ряды
в комплексной области
Основные понятия, связанные с функциональными последовательностями и рядами в комплексной области, вводятся так же, как и в действительной.
Определение функциональной последовательности
z\in D» png;base64,iVBORw0KGgoAAAANSUhEUgAAAKMAAAAWCAMAAACbtdx0AAAANlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAR2LVAAAAEXRSTlMAIZGhaUERAcSBMYbcURDwsY9ZCyUAAAKgSURBVEjH3VeLjtwgDAxgsKEQ4v//2fLMQsJd9qprK52llUgIZjweG3bbfrrt9DC9/2NAwibLA50HOg0Muc+XBI9/tpdtBuaLpGnFnKEJiAQiDaR8WvP8xdq0ZK+1BmL44kql+CgDKuEJfoxSsHjX+cw4cEnZdhRWFhmy673Rm1j2NDWFSj3vfLzxzeYsJZsoP9i1II/1GiC1Cl/QJjl7CsUdxjMP+KHs4FmRu1TBIE4+MMb6iJwd7JLCBgeNiUe9Qgk2hRUTxzKU6Fuomz4i05SSXaVqcpAdLZJdZ217MrSQnOv0IXPCaMFGCQhz4hNKuipB6ZwD6HIErqFaAq3VlCnyPsrSeJDDDUCaZXm2JbuqCui1ojNGJJTZj2Z7jUWRnvjPrOvEfZOjrRjNvUc6wCQMV3mwN8nIczbbUgxdjom6TGhAooL8XkBCjVwKKkBZVzm+MAZr92uN9ta5wJjXKPeKvPfCsJDj1pqPKXWgGFcYwyTHEpiqcnxhJH/r5Wd3X2Ice/8S4ylHwZXmkFON8VghxIsck//I3owY0374MYgVxul4QvpEjtjbo8ytOAFFP9WMutQMNuGoFlqrmUGOAs5U5ihIFIz5pRgLxxyiz2b7BSs56kZDm/SUq5sNDBGn3nORJ0KjT7DseXAFukiFp2XRjm08ebK29mSdP8I4HGn7MFu/vhYCplylbomBYo+teNZRqhGhuCLkZBVC1yh6qHRmQeaikbFyKiG9ZFXXFfFTfLWmNntWGe6JDxx6uONm9LpRVHEYMRzo976Ll4NgOAtFANcpqS/yz0xnoXvlaJw9N5zOQuz2HZe1aOaTMMAHdwqE5+vLdyBa3bzs5Up7u4s0Ae30lxC8caP0U1+806gragT3H/8rHO/9V8Dtp9tvpTIYsac5nSsAAAAASUVORK5CYII=» style=»vertical-align: middle;» />.
Равномерная сходимость функциональной последовательности
Функциональный ряд в комплексной области
Область сходимости и равномерная сходимость рядов
z\in D.» png;base64,iVBORw0KGgoAAAANSUhEUgAAAX4AAAAWCAMAAADw1AdNAAAANlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAR2LVAAAAEnRSTlMAoSFhgUEQ/AHAMQrQ4LFRkXEy3g3GAAAFvUlEQVRo3u1ZiY7kKAwNlw2I8/9/djgrQKiku7dW21oNI406IYB5PD8b13H8bf9tk+T8M/27NEKHB0W/NKXs84CbRkPrD//EXvkvA0L8fbf+LPyq74dbixzUslocn7SBxwmBoDVeF4jVtBXRRkv1Y2spUeg/uHueWmYI5D9Y2TB/2J79If6Mt0Z38INxkKFz8xg1k40/IqeRS0kN5r1wt2y20l78GH5ALlB9EH4REbNRwAzyjKu3T94lzM+W0gzRC8EIkg38wdT9xfmoxbp/8eBMtkDskeaPF62i9cXP4Y8IR/yo9zOHWHwyFO4f9tG3pGVfVpaFmBVqhvwCP23vzLQ5Zi/S5x62g2UCkQfyC08IeQs/DV+AleNPlZ+8iVpEuOKoh6HV/OcFmP2CEZQ5lRpM0PB2fsMiDX6BVRhmxBRZp/UP9vEqzToPNPzKXrmHP2m6eM+bD8CfF5A7KkuBGU5ZMXXuwYLC1GeiRMOolHOaQLpyqGGCBr9OGnixT3YpAp6CKOVlbfEAP0a6CBUQpQ/Nyyp6B79wM/iUWDRXFZBcYYlcTBEnCqRBO7fhNVM8MUAFmA/AXzClSiYyprlEJVrXhWyBjUvYY2knIyrziunli6yB7E66c0cNGHbtV5gagUWt2ncOLQaly9r3mQHN01heHaodsrJ5NLwsn+GXQi3JHDNRiF2QF4lAApIAwkFNTPHSWsc2BgknkBCApYsSw+SajmRRSJSvaU9njC4WmJlXBp0rnFBuw7pXbz3UHTLtrcQN/MBtAm7es+jfhZwZsXqGD4mZJvkA4qCjNMiElj5ehzfCLxOT6ZoKw632xxLAS5BJPAKuN7m5z+mFvCRJwJcDICJjjlTWG03bsNzk14mZ4GrQVVdmJD+TZ44e/DYq8hdD5SbvP2hsWcAJ//lIWPucvLZytmk5mU4gTzoINTR+X+D3ZhMTredcv4VfqhpAcrBS+1jAjlAzr+v9Lh0An6S/iDIHK0e+qWTBVWR5S3nIjtwHOxdTHZe4k/44JvcVftZFRs/w0xd+on+u7uBvZ4RG9jhbPlV92iv8/Eo0p4xh7+FHrLapt/An+mY42eaGBnGEn6pGR08md99aQPqbLfxh+P4FP99If401E/wt7if45QEJKk1n8Tnxa3n9O+VRDX5XRsvL6I342JX/iTPyRnzaPkSWl3fwQ7nauEtv4n6ERfpL3Gu5fNswi5vaxgv9nfgMvW/Eh3YljFNEKvDTqjKQhZ04wmO9WffQW/Fzz6E3msGHe+ito4u4bkOvn9Vf3qTVRc9I8Umf03WF++9KZz6DKahTvlK6+bTH5uayGC7NqZoMRnyr/JTQe/a8emOcnGov/aJeesHDCT9DUkQwhRzN8v1XxWpNizUmuZNqjnp3LXSll5pw7iXFbJtHh/M818Qz5z5DLlCiNN1d72RAkBnW9F82J4WBvaPwTCeBXqu7vEe+MjtrujAUjEoaXDDknbMpnAVODLwY6MbaQbC594yUgVxyeIcpr89hkTcL3Qk/CcRybmvKkTPuRlxHal0qnQ86qES5KbpJw4zjpCVHUvEmiqyntG+vXXq4dmm0yuwKWyLnVGkGrYyzKdcoz9swWKgC1jm4uXaVHLmaEsN0qT8t8C1L8SSdFVYRrVcfhqePeJd7x4JBuifBeO3C1kyg3T/jCX8CXPtWTIEEsLcHPYsOhY1tWLit14jEZPbyylgS5zyQwnPR4dQJEFzI21I2aLmUtpfJ6nonHuA2M25Gt2T5tKDXZPJLOn0zpoxwlJA5CZ0aiw6yt/VeL1f6eJO9QbQs/7slt/ljur2ui0/WLD/868dacgN3dXHe+PLNkttDvX+oCgcV+136+GbBefqabJ9/MfyHX2y7JjGilSGd+Mh5r/DD+4Tq0Ba+NTnZ/tzym+E/wlxxv6TZ0CRes8+420MFOYwC4r5Zawe1+7FRu18M/0HuWR388bf9P9ofGMYxA4Alcy8AAAAASUVORK5CYII=» style=»vertical-align: middle;» />
\forall z\in D.» png;base64,iVBORw0KGgoAAAANSUhEUgAAAXcAAAAWCAMAAAAMwSyHAAAAOVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLcPMfAAAAEnRSTlMAITHQWqEQAcCBCUKR8LHgcUE1p6CjAAAF0klEQVRo3u1Z2ZLjKgw1q6DYbP7/Y6/YbAzE6e7J3JmHoau6khiEdBBHi7ft3/hDA+z1Ef+mIY7ui6JfEgmnHEu6372ctvyBvvCbARH82wb/yA7VDNkZc1ayQYu9/0aVfCtQChcCp2KyYaNM1i1/rK0UyvEPWq9xkPYhC7a6f07YZDA99yf7l/bgug6yxF2hO4Jwd0w4u7vX/hYy6jQAYQ51Aq7uq7X4RdwlsyaqD+JueIxJKcmZ08m3j3BTGU2YdTjN+ZIHAOXRcWO4iGKBuw35ZN3tuLcwiJbOvNmGZeE80jT5GFZH8mu47yhg/+jVRzRcNlwX52WDwTAbLKoCwF5S3v0Bjb5qv0+4y1gAV+Z22mEUbZ8xAx6Pom4mrkll8RJ3or+Ap44/ZXfxQrpF4PeLybl7bzCv4cmIlUCye4Xj7i0Fbwid9Ir7US+Bvwnxk2gT5RtkssOQJIdN8bOYtcCdCMVfO8wHcMcNjsVaYNLE5FxQIBFqTDIWBjPIY3mUu+cE4B78fawzVSQj7iRGOykGJ+tohEVmIoz8DRO4nRY50KZKrQ7057wLXeFuBlCICDHMQQu0ijk6cZWPCbFU1Hu6uHVKb1QoIYejhZmsAVjS0/jikbrTQN+s6K5ASB7NChecyLQLPe0Brro5qGgmfvcRh7ifLWnzrAtRsIxZ1M+Rz6GYovHRVqsQolUkr94n3MEof+dQynZzaLaIgiIaI9EpJSYaGoNhiIrHOSul/oheSOnu15VYNiKfOIOnSF3ovYFMw6nBeRSdHJ8cmu8FGRa9b3HsWDFoo3eUHumEu9QMEVMDqTTck2fwMt2+u9AJeZ1Xl1sl82q6nafW446oCzLd/Ud+zzEb/6NuNnK5iAvCHMlWYCMMaCSXd3pP/oiKZrdAiIrBvueDmcbT5KolPpSeP0aRM5zSOPN7CQkxkiXuVyoOZ8iQ+hr3q0hFZBkfuIqztnrAnYcR9WQWZrzHa9xVlpsDkl5HG44PSOLEGTJEXo9HrKOAQhrNYM933UxXsw8nVye+P7uGZQNkX9G77vUpuHNSpxxr3KFVQM+4A+8Y7cJdNg4ut6XHnekZd68Y4y9xR/fMwTmzwzLOIgmokBXgC+rvcS+5OMH8WtwMFoyd02bcAaPChXZXGy5xv+g99F6dcW+pqEh2IEaU3HE/gcPp/olkVN3BdzyzybPaXvAMZ6PHozfBQz6DcRAaa9oX+Q1kzxLTbZA6aDmnhD7WOqUGNPz51AAW/o5EBmHVVljxzEnv+y00ZtxrQbMFm0KytTwcJak3HXAZe3D6KXsv50fztTkWq2fcYRsY/qEcKf5tK7/vr3E/YuZtcQcisTtsI71nD6n217jad0MgOz4ZmbQl8fboC9fDv6Z3U1hGcnnhzpHh8vWSG+Ua/yvdx3LPlNWKbW/zSBGTYbLUrC05YAyvX/Eakg9kzCMxtqqO3/JnssoMAPkcNhmSsgqPBxOzdaaf6R3Bl6oP+FM2Q1uvJ9T6sIC85UApS+ArVvghjWMlDm/CITLiSr2EnnJxFTFHBlrLs611CzLuVthgNSvnnFLjWuGX+lIL4C6WhyaSB38Pu1LauuoLJfWxOx5rzL1IrGbly7rJXGgETI7pij3SgI0qpoKVCGz5Pg8VMnn7q524yN5lbAkc8BbwrD81cHS7DNZDplf7VFwARWQ6SDCdl33d5GIZrHZmoQWd4u+pzdYaH7gRdRsp6UZWIylZZVv22O1A3+WcnEGzrSb1J+Ff9wns6fLSaAOPHWbZSrMXgYCUu0yvp34l8SLxk6BKDATUQDaDYaGzLFiRDpmz35GKqjNJhDbGOhiGnuF2hOT/R8nWw9QmeteD67dwdNlVg092FD/dFR8Nrgjwb70zgK/sNExKzVrdqqOxDcq/BZn2y+9/Me6bCWuDFflt7z2aUz689yDhe9sP7z2C/Otx3/T9vUeNM4Z//Gb5bzRQv/3ay5PF6ndb/tmxfs/3218v/hv/w/gPDcg5MrK05pEAAAAASUVORK5CYII=» style=»vertical-align: middle;» />
Равномерно сходящиеся ряды (и последовательности) непрерывных функций комплексной переменной, как и аналогичные ряды в действительной области, обладают свойствами конечных сумм, в частности сумма такого ряда является функцией, непрерывной на множестве, где ряд сходится равномерно. Кроме того, ряд можно почленно интегрировать. Это означает, что полученный ряд, т.е. ряд, членами которого являются интегралы от членов данного ряда, сходится и его сумма равна интегралу от суммы данного ряда:
Признак Вейерштрасса и равномерная сходимость
8. Для исследования функционального ряда на равномерную сходимость и нахождения области его равномерной сходимости можно использовать, как и в действительной области, достаточный признак равномерной сходимости.
Теорема 3.1 (признак Вейерштрасса). Если ряд (3.1) на множестве мажорируется сходящимся числовым рядом с положительными членами, то он сходится на равномерно, т.е. из условия
c_n>0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAhgAAAA5BAMAAACGxU+ZAAAAJ1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+jSoGAAAADHRSTlMAAcYXhUFa6TGhsXG4mJu0AAAIQ0lEQVRo3u1azVMbRxZ/rfmwBD7MSCA2Xg5CgIS9HMYEzMLqoMjC2CkdWIzjjc1hcFLLOtHBYAVIloPWThVlwkGlOOt8HSivsx9eDipvymSdXCyQMGH+qPTXfEhoREgqW67VvLKlmeme7vd+/fq932sB4Iknnvz/iOBBYIkcXYLU65oHBBY0hrI3dSHpIUHkTyDuA3hgUM94C4RlzQODgTEMgRu9QsFDgoARTseE+BkvgFJRR3B2zaseEBYgHgSe1EUMVcX/mLQ8+1w1LNlTWr0sWS1Tpwhd+e+qMdXqrpE1KNtCCkiDm60ORofxwrxs3/kF5/mm9vYO/fQTpvfRSxRAB/csuvX1LzjPRM1d6Db7voT/zxx/MCmatMvM6CG6iF51fzWUxvIfN4KxZli7I3C4uTjguLnRB6H88eG+ohwCw1diwdqn/yQw/Bm7khpZRvT7vD3h795rEiSvfX/l+rKbFWHjoMm00xXHzbkydFUBjonHfHrlEBhXzWS28JPAQFndvv6efU1/Yj7pilYavsTjArbA5xYQ1K29JtaJFSclKYOvAqjneC5dgW2tHow+82LJCYb/46YD2WsPX9pbQzLX8lo/pwZIbADGTDRaohdBDIS87zbJqNHrrkG7c1xUBlDA/2PAmLG0DdyC7mQdGCFr1M8dYHSebu5z0zZWi47lemFFj5hyeAW5DH1icspEBM9fdqNUfmO36bryzMvBAGjrcdYyauNhpdMmGl0R6OohYMi4MOY5RX6OP9b/JuuwrVhghM1X3jntDIlCUX8nxnfCp+azXUiV+HVwQXrM+itjS0o9GMLn+T+SrxWbS+CVkcrwrovB3xm64+7NM+b6yA//VZIqOGqC9Air4099WoYnA9JWbgKuPf5MTl+Q0q+Jj/tszZ1WWMuMVyL4nICx3p30V/nS4VAhLC6nAGbzJhgYC2bKeO8pJ+ERZ3Jz2by5E3jf6vjMAm/v3nx7e4qv2HCsHozReI74fcDikyiDjZXLqhvD9Bm37ZvAe6f4NOiqNpSUynMbSZjXxjdRdm6sDPcqwnT/ZQx00Z/p9y/q2c2hiOWKvUGHFdJDNt2sCUbvRknkgSuAXUXWO7Gas1McjHCfxr0trs06wQi+UoVZM3mMsbgQ2Pnnhjnt7NO5wbzlXPVgvKGukQUaUmwqge/FfXA7AMeU3L7J5Ltv8ctJpb0k78LJCF5Q4QC7Jt4meNsEe1DnDqxD1wL0wmhStmaus0Io/p6DQYL3BOgZLchx9tGwc08DlOBgiDlTufABSE5FZbzPslNmCB+ja3/ifc1v9snELFphbjRnzBAoN5gm7IL6v0DCRVcFKUdQcrqe+5YqKJt7C+QqNh4PjsodFQsMCO19oeEpBWy7cL3iYoUaKuocDOoZaBG6Cw4w/MR/LTBi5quH0l4iCVuW6mwjJOIxqzn+jySPW5ZzOcFY1ywwKKLyLtPJPX/aYASqzsd7eWo8zqdgnLLAiACaN7Cz7Is6yPF0xc0KIUXA2DC3if8AZnW8ilgnkYBxB6uJrG0ybMae7gVKIaccnAJ9UJsw8KMtzaIZZm4dxs4VrgfDzzLlEA2wJs1A8SZpS7DTLrXoVbhMSW1nZlMkYLRhHPYsz/BFwsLZj5YV2MI7MfOaVFGcVgiWFaHiHH0cAbLxJsirmXPnJ9NPWADFauL3HQGUo4Gxhj/QXoLOOYVcDbI+9/pNmpG5G5GmGM0QdgMa9RkFI2qBITF772hCT00AJQYGcG4ZcQMjYDOHNryIlx98PU+GvwAdEQJGRCZugD9MMIJSErIaZPsALStyZYKphfc2XJlMp8w1KTIF2m7R3YE9oyqsBj4cLSVYal07k8aM6zsrtarh9yka4m0Yu097dVEvRVEQn7Oqafori2Zkwnp3hdEMYXecXBAs+F4T8Ysb1E9Di48mk87UihI9KIwdA626OUfR3uryDvz6i6HCSWJISusoUM+AqCbeRlFNLitSFdp2xqUVmMfK7pDY3HYwwNXCVqRP6gkefM7wxZBeEOAI6Xrw+vxnsEHeFPALA6+QzVm0SZfayeLf5KUY6+Vj/AeHolyhlnTtwmiRN2OsHw6Y8YT5aLdhlGF0ifrBX75kg9y5yEhX1sCNxOMGSy6nXY7MCpPp30BC2yCXqb7iWcPoM4ypsQ9waTiee2RUBo2If7FXit7HDituKrCW+3u8wNQSHl6KoTW4UUe6YPvbJVabCHmUhydwXyN0HGlwFz/+s5OOdxJrEbqs8F6sJU/2LRnyY2R2zCM1DwptFjRgicUmoEDsRk+pe/JGQDcZHUfm6aasN6565p0eg1VBV+EZnh5pv8I0CNGhRxQ80W8V3IZzUqcinCXqdeDx0AgpgJjWArbiGTyis7+pWQkg9FRjYNB09m9YSdJCTTXX4VChhvuxXk8dT6xPWy7W3I311zbX1TkKoNrQ0Jhn+JfqVbkEsfNH/HygKnLBp5idLjqs2GGZSXUeOTuq1hXUp7PSvVkJT3sJzYugUG1+/KrOqkjzune88fM1y2Ha+XcMTpeOKMRU8L240ECtFcgd9j/neYZG/xpE4LXhM5fDHdqrvXndJjZtFrVjnbyZedUqp+FajcJHHbAsJhuo5frqxUbHfiGCyfWX6BB0qOCyX+BI5/j5Z44v24lw0dJse6HVT8cDvfwXtTce2KS8VYWwEGMxTn9Sy7c4FrL966LhehbWMqI6pOXB8MSTI+UbDwJLblY8DGw66IExfPdbzQODy19zw8lhcnaseWDAuxGxgFRFVT3PAGhLntC9bcLlxFTinLdNuGzAM/OPqjwwPoR1XrmnohGPX5g0w4PgfyQ/AAKs8/B2MmmOAAAAAElFTkSuQmCC» style=»vertical-align: middle;» />
9. Для равномерно сходящихся рядов аналитических функций справедливы отмеченные выше свойства непрерывности суммы ряда и почленного интегрирования. Кроме того, имеет место свойство, связанное с почленным дифференцированием ряда.
Теорема Вейерштрасса для рядов аналитических функций
Нахождение области сходимости рядов
Примеры исследования сходимости рядов с комплексными членами
Пример 3.1. Исследовать сходимость рядов с комплексными членами:
Пример 3.2. Исследовать сходимость комплексных функциональных рядов:
a) ; область сходимости 1″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAAVBAMAAAAOWFv7AAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADXRSTlMAwoFBKKBYQuoQkXGxE+DiDQAAAJJJREFUKM9jYMAPtkAoVuyyyhCKEUPCAZ+s6QU8shonMGRZVBDSjJh6C0MwZZnEOAOgJiOk4bIregMdYPbWiKPLBnCKIVzlKoZuL2sCkptd29Bkw5B95CSGKjurgAGPySIMXAkwWVd0V7E2LhKE6S0URvfRVvZeSaisIdy7tnfvXgLLOjBMgYVkCNExSLEsvpQDAFnBICbT0tyvAAAAAElFTkSuQmCC» style=»vertical-align: middle;» /> — внешность круга с центром в точке и радиусом 1. На границе круга ряд расходится.
б) ; область сходимости 2″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAC4AAAAQBAMAAACb51DZAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAQqHA6l0h0RCRMbAyfQ/L+w8AAACrSURBVBjTY2AgAUhgF55uV4VNmPMCl0sCnCfbAGPxeTDMmwAXZzSCqeF7xSBnwMDAtbshECJxAKoigCFuAwNDSonnBgh/swBMs14AA0MgQzjUaDZlqATXIxDJYwFTxqYeAKZbFEDk4gZ08Uqwcg24sDJEmCmAAejOQwwcBRB7YcarMjBuYOBy3zslAOJOqDCvs7HfBQb2A3quaP569+5dAAMbAxeYJ5SAEkgA9HIgzw7zK3AAAAAASUVORK5CYII=» style=»vertical-align: middle;» /> — внешность круга с центром в точке и радиусом 2. На границе круга ряд расходится.
Используем для решения радикальный признак Коши:
Лекция по математике «Числовые ряды. Функциональные ряды»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Лекция № «Числовые ряды. Функциональные ряды»
При этом числа будем называть членами ряда, а u n – общим членом ряда.
Определение. Суммы , n = 1, 2, … называются частными (частичными) суммами ряда.
Таким образом, возможно рассматривать последовательности частичных сумм ряда S 1 , S 2 , …, S n , …
Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.
1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.
2) Рассмотрим два ряда и
, где С – постоянное число.
Теорема. Если ряд сходится и его сумма равна S , то ряд
тоже сходится, и его сумма равна С S . ( C 0)
3) Рассмотрим два ряда и
. Суммой или разностью этих рядов будет называться ряд
, где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.
Теорема. Если ряды и
сходятся и их суммы равны соответственно S и , то ряд
тоже сходится и его сумма равна S + .
Разность двух сходящихся рядов также будет сходящимся рядом.
Сумма сходящегося и расходящегося рядов будет расходящимся рядом.
О сумме двух расходящихся рядов общего утверждения сделать нельзя.
При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.
(необходимые и достаточные условия сходимости ряда)
Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любого
существовал такой номер N , что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:
.
Пусть , тогда для любого числа
найдется номер N такой, что неравенство
Необходимость доказана. Доказательство достаточности рассматривать не будем.
Сформулируем критерий Коши для ряда.
Для того, чтобы ряд был сходящимся необходимо и достаточно, чтобы для любого
существовал номер N такой, что при n > N и любом p >0 выполнялось бы неравенство
.
Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому как правило используются более простые признаки сходимости:
1) Если ряд сходится, то необходимо, чтобы общий член u n стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится. Например, так называемый гармонический ряд
является расходящимся, хотя его общий член и стремится к нулю.
Пример. Исследовать сходимость ряда
Найдем — необходимый признак сходимости не выполняется, значит ряд расходится.
2) Если ряд сходится, то последовательность его частных сумм ограничена.
Однако, этот признак также не является достаточным.
Например, ряд 1-1+1-1+1-1+ … +(-1) n +1 +… расходится, т.к. расходится последовательность его частных сумм в силу того, что
Ряды с неотрицательными членами.
При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.
Признак сравнения рядов с неотрицательными членами.
Пример. Исследовать на сходимость ряд
Т.к. , а гармонический ряд
расходится, то расходится и ряд
.
Пример. Исследовать на сходимость ряд
Т.к. , а ряд
сходится ( как убывающая геометрическая прогрессия), то ряд
тоже сходится.
Также используется следующий признак сходимости:
Теорема. Если и существует предел
, где h – число, отличное от нуля, то ряды
и
ведут одинаково в смысле сходимости.
(Жан Лерон Даламбер (1717 – 1783) – французский математик)
Если для ряда с положительными членами существует такое число q n выполняется неравенство
то ряд сходится, если же для всех достаточно больших n выполняется условие
то ряд расходится.
Предельный признак Даламбера.
Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.
Если существует предел , то при > 1 – расходится. Если = 1, то на вопрос о сходимости ответить нельзя.
Пример. Определить сходимость ряда .
Вывод: ряд сходится.
Пример. Определить сходимость ряда
Вывод: ряд сходится.
Признак Коши. (радикальный признак)
Если для ряда с неотрицательными членами существует такое число q n выполняется неравенство
,
то ряд сходится, если же для всех достаточно больших n выполняется неравенство
то ряд расходится.
Следствие. Если существует предел , то при >1 ряд расходится.
Пример. Определить сходимость ряда .
Вывод: ряд сходится.
Пример. Определить сходимость ряда .
Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.
,
таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.
Интегральный признак Коши.
Если (х) – непрерывная положительная функция, убывающая на промежутке [1; ), то ряд (1) + (2) + …+ ( n ) + … = и несобственный интеграл
одинаковы в смысле сходимости.
Пример. Ряд сходится при >1 и расходится 1 т.к. соответствующий несобственный интеграл
сходится при >1 и расходится 1. Ряд
называется общегармоническим рядом.
Знакочередующийся ряд можно записать в виде:
где
Если у знакочередующегося ряда абсолютные величины u i убывают
и общий член стремится к нулю
, то ряд сходится.
Абсолютная и условная сходимость рядов.
Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков).
(1)
и ряд, составленный из абсолютных величин членов ряда (1):
(2)
Теорема. Из сходимости ряда (2) следует сходимость ряда (1).
По свойству абсолютных величин :
То есть по критерию Коши из сходимости ряда (2) следует сходимость ряда (1).
Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают.
Признаки Даламбера и Коши для знакопеременных рядов.
Пусть — знакопеременный ряд.
Признак Даламбера. Если существует предел , то при >1 ряд будет расходящимся. При =1 признак не дает ответа о сходимости ряда.
Признак Коши. Если существует предел , то при >1 ряд будет расходящимся. При =1 признак не дает ответа о сходимости ряда.
Свойства абсолютно сходящихся рядов.
Следствие. Условно сходящийся ряд является разностью двух расходящихся рядов с неотрицательными стремящимися к нулю членами.
2) В сходящемся ряде любая группировка членов ряда, не изменяющая их порядка, сохраняет сходимость и величину ряда.
3) Если ряд сходится абсолютно, то ряд, полученный из него любой перестановкой членов, также абсолютно сходится и имеет ту же сумму.
Перестановкой членов условно сходящегося ряда можно получить условно сходящийся ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.
Если же производить перемножение условно сходящихся рядов, то в результате можно получить расходящийся ряд.
Так как пределом каждой функции, входящей в область сходимости ряда, является некоторое число, то пределом функциональной последовательности будет являться некоторая функция:
Пример. Рассмотрим последовательность
Построим графики этой последовательности:
sinx
Определение. Частными (частичными) суммами функционального ряда называются функции
Теорема. (Критерий Коши равномерной сходимости ряда)
Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа >0 существовал такой номер N ( ), что при n > N и любом целом p >0 неравенство
выполнялось бы для всех х на отрезке [ a , b ].
Теорема. (Признак равномерной сходимости Вейерштрасса)
(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)
Ряд сходится равномерно и притом абсолютно на отрезке [ a , b ], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами :
т.е. имеет место неравенство:
.
Еще говорят, что в этом случае функциональный ряд мажорируется числовым рядом
.
Пример. Исследовать на сходимость ряд .
Так как всегда, то очевидно, что
.
При этом известно, что общегармонический ряд при =3>1 сходится, то в соответствии с признаком Вейерштрасса исследуемый ряд равномерно сходится и притом в любом интервале.
Пример. Исследовать на сходимость ряд .
Свойства равномерно сходящихся рядов.
1) Теорема о непрерывности суммы ряда.
Если члены ряда — непрерывные на отрезке [ a , b ] функции и ряд сходится равномерно, то и его сумма S ( x ) есть непрерывная функция на отрезке [ a , b ].
2) Теорема о почленном интегрировании ряда.
3) Теорема о почленном дифференцировании ряда.
Если члены ряда сходящегося на отрезке [ a , b ] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных
сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.
На практике часто применяется разложение функций в степенной ряд.
Определение. Степенным рядом называется ряд вида
.
Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.
Пример. Исследовать на сходимость ряд
Применяем признак Даламбера:
.
Получаем, что этот ряд сходится при и расходится при
.
Теперь определим сходимость в граничных точках 1 и –1.
При х = 1: ряд сходится по признаку Лейбница (см. Признак Лейбница. ).
(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)
Теорема. Если степенной ряд сходится при x = x 1 , то он сходится и притом абсолютно для всех
.
Доказательство. По условию теоремы, так как члены ряда ограничены, то
Из этого неравенства видно, что при x x 1 численные величины членов нашего ряда будут меньше ( во всяком случае не больше ) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.
Поэтому на основании признака сравнения делаем вывод, что ряд сходится, а значит ряд
сходится абсолютно.
Следствие. Если при х = х 1 ряд расходится, то он расходится для всех .
Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.
Радиус сходимости может быть найден по формуле:
Пример. Найти область сходимости ряда
Находим радиус сходимости .
Действия со степенными рядами.
1) Интегрирование степенных рядов.
Если некоторая функция f ( x ) определяется степенным рядом: , то интеграл от этой функции можно записать в виде ряда:
2) Дифференцирование степенных рядов.
Производная функции, которая определяется степенным рядом, находится по формуле:
3) Сложение, вычитание, умножение и деление степенных рядов.
Сложение и вычитание степенных рядов сводится к соответствующим операциям с их членами:
Произведение двух степенных рядов выражается формулой:
Коэффициенты с i находятся по формуле:
Деление двух степенных рядов выражается формулой:
Для определения коэффициентов q n рассматриваем произведение , полученное из записанного выше равенства и решаем систему уравнений:
Разложение функций в степенные ряды.
Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.
Возможны различные способы разложения функции в степенной ряд. Такие способы как разложение при помощи рядов Тейлора и Маклорена были рассмотрены ранее. (См. Формула Тейлора. )
Существует также способ разложения в степенной ряд при помощи алгебраического деления. Это – самый простой способ разложения, однако, пригоден он только для разложения в ряд алгебраических дробей.
Пример. Разложить в ряд функцию .
Суть метода алгебраического деления состоит в применении общего правила деления многочленов:
1 – x 1 + x + x 2 + x 3 + …
Если применить к той же функции формулу Маклорена
,
то получаем:
Итого, получаем:
Рассмотрим способ разложения функции в ряд при помощи интегрирования.
С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.
Пример. Разложить в ряд функцию
Разложение в ряд этой функции по формуле Маклорена было рассмотрено выше.
При получаем по приведенной выше формуле:
Разложение в ряд функции может быть легко найдено способом алгебраического деления аналогично рассмотренному выше примеру.
Тогда получаем:
Окончательно получим:
Пример. Разложить в степенной ряд функцию .
Применим разложение в ряд с помощью интегрирования.
Подинтегральная функция может быть разложена в ряд методом алгебраического деления:
1 1 + x 2
— x 2
x 4
x 4 + x 6
Тогда
Окончательно получаем:
Решение дифференциальных уравнений с помощью
С помощью степенных рядов возможно интегрировать дифференциальные уравнения.
Рассмотрим линейное дифференциальное уравнение вида:
Если все коэффициенты и правая часть этого уравнения разлагаются в сходящиеся в некотором интервале степенные ряды, то существует решение этого уравнения в некоторой малой окрестности нулевой точки, удовлетворяющее начальным условиям.
Это решение можно представить степенным рядом:
Отметим, что этот метод применим и к нелинейным дифференциальным уравнениям.
Пример. Найти решение уравнения c начальными условиями y (0)=1, y ’(0)=0.
Решение уравнения будем искать в виде
Подставляем полученные выражения в исходное уравнение:
Отсюда получаем:
Получаем, подставив начальные условия в выражения для искомой функции и ее первой производной:
Окончательно получим:
Итого:
Существует и другой метод решения дифференциальных уравнений с помощью рядов. Он носит название метод последовательного дифференцирования.
Рассмотрим тот же пример. Решение дифференциального уравнения будем искать в виде разложения неизвестной функции в ряд Маклорена.
Если заданные начальные условия y (0)=1, y ’(0)=0 подставить в исходное дифференциальное уравнение, получим, что
После подстановки полученных значений получаем:
( Жан Батист Жозеф Фурье (1768 – 1830) – французский математик)
Определение. Тригонометрическим рядом называется ряд вида:
или, короче,
Действительные числа a i , b i называются коэффициентами тригонометрического ряда.
Определим коэффициенты этого ряда.
Для решения этой задачи воспользуемся следующими равенствами:
Справедливость этих равенств вытекает из применения к подынтегральному выражению тригонометрических формул. Подробнее см. Интегрирование тригонометрических функций.
Т.к. функция f ( x ) непрерывна на отрезке [- ; ], то существует интеграл
Такой результат получается в результате того, что
.
Получаем:
Отсюда получаем:
Получаем:
существуют и называются коэффициентами Фурье для функции f ( x ).
Определение. Рядом Фурье для функции f ( x ) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f ( x ) сходится к ней во всех ее точках непрерывности, то говорят, что функция f ( x ) разлагается в ряд Фурье.
Достаточные признаки разложимости в ряд Фурье.
Теорема. (Теорема Дирихле) Если функция f ( x ) имеет период 2 и на отрезке
[- ; ] непрерывна или имеет конечное число точек разрыва первого рода, и отрезок
[- ; ] можно разбить на конечное число отрезков так, что внутри каждого из них функция f ( x ) монотонна, то ряд Фурье для функции f ( x ) сходится при всех значениях х, причем в точках непрерывности функции f ( x ) его сумма равна f ( x ), а в точках разрыва его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. При этом ряд Фурье функции f ( x ) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f ( x ).
Функция f ( x ), для которой выполняются условия теоремы Дирихле называется кусочно – монотонной на отрезке [- ; ].
Теорема. Если функция f ( x ) имеет период 2 , кроме того, f ( x ) и ее производная f ’( x ) – непрерывные функции на отрезке [- ; ] или имеют конечное число точек разрыва первого рода на этом отрезке, то ряд Фурье функции f ( x ) сходится при всех значениях х, причем в точках непрерывности его сумма равна f ( x ), а в точках разрыва она равна . При этом ряд Фурье функции f ( x ) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f ( x ).
Функция, удовлетворяющая условиям этой теоремы, называется кусочно – гладкой на отрезке [- ; ].
Разложение в ряд Фурье непериодической функции.
Задача разложения непериодической функции в ряд Фурье в принципе не отличается от разложения в ряд Фурье периодической функции.
y
Ряд Фурье для четных и нечетных функций.
Отметим следующие свойства четных и нечетных функций:
1)
2) Произведение двух четных и нечетных функций является четной функцией.
3) Произведение четной и нечетной функций – нечетная функция.
Справедливость этих свойств может быть легко доказана исходя из определения четности и нечетности функций.
Таким образом, для четной функции ряд Фурье записывается:
Аналогично получаем разложение в ряд Фурье для нечетной функции:
Пример. Разложить в ряд Фурье периодическую функцию с периодом T = 2 на отрезке [- ; ].
Заданная функция является нечетной, следовательно, коэффициенты Фурье ищем в виде:
Получаем:
.
Построим графики заданной функции и ее разложения в ряд Фурье, ограничившись первыми четырьмя членами ряда.
Ряды Фурье для функций любого периода.
Для четной функции произвольного периода разложение в ряд Фурье имеет вид: