Что такое чистые числа
Откуда есть пошло комплексное число
В современной математике комплексное число является одним из фундаментальнейших понятий, находящее применение и в «чистой науке», и в прикладных областях. Понятно, что так было далеко не всегда. В далекие времена, когда даже обычные отрицательные числа казались странным и сомнительным нововведением, необходимость расширения на них операции извлечения квадратного корня была вовсе неочевидной. Тем не менее, в середине XVI века математик Рафаэль Бомбелли вводит комплексные (в данном случае точнее сказать, мнимые) числа в оборот. Собственно, предлагаю посмотреть, в чем была суть затруднений, доведших в итоге солидного итальянца до подобных крайностей.
Существует распространенное заблуждение, что комплексные числа потребовались для того, чтобы решать квадратные уравнения. На самом деле, это совершенно не так: задача поиска корней квадратного уравнения никоим образом введение комплексных чисел не мотивирует. Вот совершенно.
Давайте убедимся сами. Всякое квадратное уравнение можно представить в виде: .
Геометрически, это означает, что мы хотим найти точки пресечения некоторой прямой и параболы
Я тут даже картинку сделал, для иллюстрации.
Как нам всем хорошо известно из школы, корни квадратного уравнения (в указанных выше обозначениях) находятся по следующей формуле:
Оказываются возможными 3 варианта:
1. Подкоренное выражение положительно.
2. Подкоренное выражение равно нулю.
3. Подкоренное выражение отрицательно.
В первом случае имеются 2 различных корня, во втором два совпадающих, в третьем уравнение «не решается». Все эти случаи имеют вполне наглядную геометрическую интерпретацию:
1. Прямая пересекает параболу (синяя прямая на рисунке).
2. Прямая касается параболы.
3. Прямая не имеет с параболой общих точек (сиреневая прямая на рисунке).
Ситуация проста, логична, непротиворечива. Пытаться извлекать квадратный корень из отрицательного числа нет совершенно никаких оснований. Никто и не пытался.
Обстановка существенно изменилась, когда пытливая математическая мысль добралась до кубических уравнений. Чуть менее очевидно, используя некоторую несложную подстановку, всякое кубическое уравнение можно свести к виду: . С геометрической точки зрения ситуация похожа на предыдущую: мы ищем точку пересечения прямой и кубической параболы.
Взгляните на картинку:
Существенное отличие от случая квадратного уравнения в том, что какую бы прямую мы не взяли, она всегда пересечет параболу. Т.е., уже из чисто геометрических соображений, кубическое уравнение всегда имеет хотя бы одно решение.
Найти его можно воспользовавшись формулой Кардано:
где .
Немного громоздко, но пока, вроде бы, все в порядке. Или нет?
Вообще, формула Кардано — это яркий пример «принципа Арнольда» в действии. И что характерно, Кардано никогда на авторство формулы не претендовал.
Вернемся, однако, к нашим баранам. Формула замечательная, без преувеличение великое достижение математики начала-середины XVI века. Но есть у нее один нюанс.
Возьмем классический пример, который рассматривал еще Бомбелли: .
Внезапно, ,
и, соответственно, .
Приплыли. А формулу жалко, а формула-то хорошая. Тупик. При том, что решение у уравнения, безусловно, есть.
Идея Рафаэля Бомбелли заключалась в следующем: давайте прикинемся шлангом и сделаем вид, что корень из отрицательного — это какое-то число. Мы, конечно, знаем, что таких чисел нет, но тем не менее, давайте представим, что оно существует и его, как обычные числа, можно складывать с другими, умножать, возводить в степень и т.п.
Используя подобный подход, Бомбелли установил, в частности, что ,
и .
Давайте проверим: .
Заметьте, в выкладках никаких предположений о свойствах квадратных корней из отрицательных чисел не предполагалось, кроме упомянутого выше допущения, что они ведут себя как «обычные» числа.
В сумме получаем . Что вполне себе правильный ответ, который элементарно проверяется прямой подстановкой. Это был настоящий прорыв. Прорыв в комплексную плоскость.
Тем не менее, подобные выкладки выглядят как некоторая магия, математический фокус. Отношение к ним, как к некоему трюку, сохранялось среди математиков еще очень долго. Собственно, придуманное Рене Декартом для корней из отрицательных название «мнимые числа» вполне отражает отношение математиков тех времен к таким развлечениям.
Однако, время шло, «трюк» применялся с неизменным успехом, авторитет «мнимых чисел» в глазах математического общества рос, сдерживаемый, однако, неудобством их использования. Лишь получение Леонардом Эйлером (кстати, это именно он ввел ныне общеупотребительное обозначение для мнимой единицы) знаменитой формулы
открыло комплексным числам дорогу в самые различные области математики и ее приложений. Но это уже совсем другая история.
Комплексные числа
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Вычислить сумму и разность заданных комплексных чисел:
Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:
Аналогично выполним вычитание чисел:
Выполнить умножение и деление комплексных чисел:
Так, теперь разделим первое число на второе:
Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:
Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:
Для возведения в квадрат достаточно умножить число само на себя:
Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:
В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.
Вычисляем значение модуля:
Найдем чем равен аргумент:
$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$
Записываем в тригонометрическом виде:
Преобразуем в алгебраическую форму для наглядности:
Представим число в тригонометрической форме. Найдем модуль и аргумент:
Используем знакомую формулу Муавра для вычисления корней любой степени:
Что такое чистые числа
VII .1. Формы записи комплексных чисел и действия над ними
где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы
Понятия «больше» и «меньше» для комплексных чисел не вводятся.
Числа z = x + iy и называются комплексно сопряженными.
Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.
Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотношений сторон в прямоугольном треугольнике получаем
Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле
Аргумент определяется из формул:
Используя формулу Эйлера
комплексное число можно записать в так называемой показательной (или экспоненциальной) форме
где r =| z | — модуль комплексного числа, а угол ( k =0;–1;1;–2;2…).
Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.
На множестве комплексны х чисел определен ряд операций.
Из (7.11) следует важнейшее соотношение i 2 = –1. Действительно,
Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:
(7.13) называется первой формулой Муавра.
Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = –1 и формулы разности квадратов.
Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:
Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.
Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
Пользуясь формулой (7.11), вычислим их произведение
На основании формулы (7.14) вычислим их частное
Решение. Используя (7.4) и (7.5), получаем:
Аналогично, для z 2 можно записать:
По формулам (7.12) и (7.16) получим в тригонометрической форме:
Пользуясь формулами (7.14) и (7.17), получим в показательной форме:
в натуральную степень, определенному ранее формулой (7.13).
(7.18) называется второй формулой Муавра.
Пример 7.4. Найти все корни уравнения z 4 +16=0.
Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами
Приведем еще одну теорему, имеющую место над множеством комплексных чисел.
Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.
10 чисел, на которых держится мир
Пространство
Чему равно: 3,1415926535… На сегодня просчитано до 1,24 трлн знаков после запятой
Кто и когда открыл:
Точное авторство неизвестно. Приписывается древним индусам, грекам, китайцам и прочим хорошим людям. Впервые обозначил его греческой буквой π в начале XVIII века английский математик Уильям Джонс
Когда праздновать день π — единственная константа, у которой есть свой праздник, и даже два. 14 марта, или 3.14, соответствует первым знакам в записи числа. А 22 июля, или 22/7 — не что иное, как грубое приближение π дробью. В университетах (например, на мехмате МГУ) предпочитают отмечать первую дату: она, в отличие от 22 июля, не попадает на каникулы
В этом виновато само пространство: оно однородно и симметрично. Именно поэтому фронт взрывной волны — это шар, а от камней на воде остаются круги. Так что π здесь оказывается вполне уместным.
Но все это относится только к привычному евклидовому пространству, в котором мы все живем. Будь оно неевклидовым, симметрия была бы другой. А в сильно искривленной Вселенной π уже не играет такой важной роли. Скажем, в геометрии Лобачевского окружность бывает вчетверо длиннее своего диаметра. Соответственно реки или взрывы «кривого космоса» потребовали бы других формул.
Числу π столько же лет, сколько всей математике: около 4 тысяч. Старейшие шумерские таблички приводят для него цифру 25/8, или 3,125. Ошибка — меньше процента. Вавилоняне абстрактной математикой особо не увлекались, так что π вывели опытным путем, просто измеряя длину окружностей. Кстати, это первый эксперимент по численному моделированию мира.
Самой изящной из арифметических формул для π больше 600 лет: π/4=1–1/3+1/5–1/7+… Простая арифметика помогает вычислить π, а само π — разобраться с глубинными свойствами арифметики. Отсюда его связь с вероятностями, простыми числами и многим другим: π, например, входит в известную «функцию ошибок», которая одинаково безотказно работает и в казино, и у социологов.
Есть даже «вероятностный» способ сосчитать саму константу. Во-первых, нужно запастись мешком иголок. Во-вторых, бросать их, не целясь, на пол, расчерченный мелом на полосы шириной в иглу. Потом, когда мешок опустеет, поделить число брошенных на количество тех, что пересекли меловые линии, — и получить π/2.
Чему равно: 4,66920016…
Где применяется: В теории хаоса и катастроф, с помощью которых можно описывать любые явления — от размножения кишечной палочки до развития российской экономики
Кто и когда открыл: Американский физик Митчелл Фейгенбаум в 1975 году. В отличие от большинства других открывателей констант (Архимеда, например), он жив и преподает в престижном Рокфеллеровском университете
Когда и как праздновать день δ: Перед генеральной уборкой
Что общего у капусты брокколи, снежинок и елки? То, что их детали в миниатюре повторяют целое. Такие объекты, устроенные как матрешка, называют фракталами.
Фракталы возникают из беспорядка, как картинка в калейдоскопе. Математика Митчелла Фейгенбаума в 1975 году заинтересовали не сами узоры, а хаотические процессы, которые заставляют их появляться.
С фрактала Мандельброта (см. рис.) началось повсеместное увлечение этими объектами. В теории хаоса он играет примерно ту же роль, что и круг в обычной геометрии, а число δ фактически задает его форму. Получается, что эта константа — то же π, только для хаоса.
Время
Чему равно: 2,718281828…
Кто и когда открыл: Джон Непер, шотландский математик, в 1618 году. Самого числа он не упоминал, зато выстроил на его основе свои таблицы логарифмов. Одновременно кандидатами в авторы константы считаются Якоб Бернулли, Лейбниц, Гюйгенс и Эйлер. Достоверно известно только то, что символ e взялся из фамилии последнего
Когда и как праздновать день e: После возврата банковского кредита
Число е — тоже своего рода двойник π. Если π отвечает за пространство, то е — за время, и тоже проявляет себя почти всюду. Скажем, радиоактивность полония-210 уменьшается в е раз за средний срок жизни одного атома, а раковина моллюска Nautilus — это график степеней е, обернутый вокруг оси.
Число е встречается и там, где природа заведомо ни при чем. Банк, обещающий 1% в год, за 100 лет увеличит вклад примерно в е раз. Для 0,1% и 1000 лет результат будет еще ближе к константе. Якоб Бернулли, знаток и теоретик азартных игр, вывел е именно так — рассуждая о том, сколько зарабатывают ростовщики.
Экзотический способ рассчитать е потребует кинозала и запаса терпения. Зрители с билетами рассаживаются как попало. Шансы, что никто не окажется на своем месте, тем ближе к 1/е, чем больше кинозал.
Как и π, е — трансцендентное число. Говоря проще, его нельзя выразить через дроби и корни. Есть гипотеза, что у таких чисел в бесконечном «хвосте» после запятой встречаются все комбинации цифр, какие только возможны. Например, там можно обнаружить и текст этой статьи, записанный двоичным кодом.
Постоянная тонкой структуры
Чему равно: 1/137,0369990…
Кто и когда открыл: Немецкий физик Арнольд Зоммерфельд, аспирантами которого были сразу два нобелевских лауреата — Гейзенберг и Паули. В 1916 году, еще до появления настоящей квантовой механики, Зоммерфельд ввел константу в рядовой статье про «тонкую структуру» спектра атома водорода. Роль константы вскоре переосмыслили, а вот название осталось прежним
Когда праздновать день α: В День электрика
Скорость света — величина исключительная. Быстрее, показал Эйнштейн, не могут двигаться ни тело, ни сигнал — будь то частица, гравитационная волна или звук внутри звезд.
Вроде бы ясно, что это — закон вселенской важности. И все-таки скорость света — не фундаментальная константа. Проблема в том, что ее нечем измерить. Километры в час не годятся: километр определен как расстояние, которое свет проходит за 1/299792,458 секунды, то есть сам выражается через скорость света. Платиновый эталон метра — тоже не выход, потому что скорость света входит и в уравнения, которые описывают платину на микроуровне. Словом, если скорость света без лишнего шума изменится во всей Вселенной, человечество об этом не узнает.
Вот тут-то на помощь физикам и приходит величина, связывающая скорость света с атомными свойствами. Константа α — это деленная на скорость света «скорость» электрона в атоме водорода. Она безразмерна, то есть не привязана ни к метрам, ни к секундам, ни к каким-либо еще единицам.
Кроме скорости света в формулу для α входят также заряд электрона и константа Планка, мера «квантовости» мира. С обеими постоянными связана та же проблема — их не с чем сверить. А вместе, в виде α, они являют собой что-то вроде залога постоянства Вселенной.
Можно задаться вопросом, не менялась ли α c начала времен. Физики всерьез допускают «дефект», достигавший когда-то миллионных долей от нынешней величины. Достигни он 4%, человечества не было бы, потому что внутри звезд прекратился бы термоядерный синтез углерода, главного элемента живой материи.
Добавка к реальности
Кто и когда открыл: Итальянский математик Джероламо Кардано, друг Леонардо да Винчи, в 1545 году. Карданный вал назван так именно в его честь. По одной из версий, свое открытие Кардано украл у Никколо Тартальи, картографа и придворного библиотекаря
Когда праздновать день i: Мартобря 86 числа
Число i ни константой, ни даже настоящим числом назвать нельзя. Учебники описывают его как величину, которая, будучи возведенной в квадрат, дает минус один. Другими словами, это сторона квадрата с отрицательной площадью. В реальности такого не бывает. Но иногда из нереального тоже можно извлечь пользу.
История открытия этой постоянной такова. Математик Джероламо Кардано, решая уравнения с кубами, ввел мнимую единицу. Это был просто вспомогательный трюк — в итоговых ответах i не было: результаты, которые его содержали, выбраковывались. Но позже, присмотревшись к своему «мусору», математики попробовали пустить его в дело: умножать и делить обычные числа на мнимую единицу, складывать результаты друг с другом и подставлять в новые формулы. Так родилась теория комплексных чисел.
Минус в том, что «реальное» с «нереальным» нельзя сравнивать: сказать, что больше — мнимая единица или 1 — не получится. С другой стороны, неразрешимых уравнений, если воспользоваться комплексными числами, практически не остается. Поэтому при сложных расчетах удобнее работать с ними и только в самом конце «вычищать» ответы. Например, чтобы расшифровать томограмму мозга, без i не обойтись.
Физики именно так обращаются с полями и волнами. Можно даже считать, что все они существуют в комплексном пространстве, а то, что мы видим, — только тень «настоящих» процессов. Квантовая механика, где и атом, и человек — волны, делает такую трактовку еще убедительнее.
Число i позволяет свести в одной формуле главные математические константы и действия. Формула выглядит так: e πi +1 = 0, и некоторые говорят, что такой сжатый свод правил математики можно отправлять инопланетянам, чтобы убедить их в нашей разумности.
Микромир
Чему равно: 1836,152…
Кто и когда открыл: Эрнест Резерфорд, физик родом из Новой Зеландии, в 1918 году. За 10 лет до этого получил Нобелевскую премию по химии за изучение радиоактивности: Резерфорду принадлежат понятие «период полураспада» и сами уравнения, описывающие распад изотопов
Когда и как праздновать день μ: В День борьбы с лишним весом, если такой введут — это соотношение масс двух базовых элементарных частиц, протона и электрона. Протон — не что иное, как ядро атома водорода, самого распространенного элемента во Вселенной.
Как и в случае скорости света, важна не сама величина, а ее безразмерный эквивалент, не привязанный к каким-то единицам, то есть во сколько раз масса протона больше массы электрона. Получается примерно 1836. Без такой разницы в «весовых категориях» заряженных частиц не было бы ни молекул, ни твердых тел. Впрочем, атомы бы остались, но вели бы себя совсем по-другому.
Как и α, μ подозревают в медленной эволюции. Физики изучали свет квазаров, дошедший до нас через 12 млрд лет, и обнаружили, что протоны со временем тяжелеют: разница между доисторическим и современным значениями μ составила 0,012%.
Темная материя
Чему равно: 110-²³ г/м3
Кто и когда открыл: Альберт Эйнштейн в 1915 году. Сам Эйнштейн называл ее открытие своим «главным промахом»
Когда и как праздновать день Λ: Ежесекундно: Λ, согласно определению, присутствует всегда и везде
Космологическая константа — самая туманная из всех величин, какими оперируют астрономы. С одной стороны, ученые не до конца уверены в ее существовании, с другой — готовы объяснять с ее помощью, откуда взялась большая часть массы-энергии во Вселенной.
Можно сказать, что Λ дополняет константу Хаббла. Они соотносятся как скорость и ускорение. Если Н описывает равномерное расширение Вселенной, то Λ — непрерывно ускоряющийся рост. Первым ее ввел в уравнения общей теории относительности Эйнштейн, когда заподозрил у себя ошибку. Его формулы указывали, что космос либо расширяется, либо сжимается, а в это было сложно поверить. Новый член понадобился, чтобы устранить выводы, казавшиеся неправдоподобными. После открытия Хаббла Эйнштейн от своей константы отказался.
Гипотезу подтвердили наблюдения за реликтовым излучением. Это доисторические волны, родившиеся в первые секунды существования космоса. Астрономы считают их чем-то вроде рентгена, просвечивающего Вселенную насквозь. «Рентгенограмма» и показала, что темной энергии в мире 74% — больше, чем всего остального. Однако так как она «размазана» по всему космосу, получается всего 110-²³ грамма на кубический метр.
Большой взрыв
Чему равно: 77 км/с /МПс
Кто и когда открыл: Эдвин Хаббл, отец-основатель всей современной космологии, в 1929 году. Чуть раньше, в 1925-м, он первым доказал существование других галактик за пределами Млечного пути. Соавтор первой статьи, где упоминается константа Хаббла, — некто Милтон Хьюмасон, человек без высшего образования, работавший в обсерватории на правах лаборанта. Хьюмасону принадлежит первый снимок Плутона, тогда еще не открытой планеты, из-за дефекта фотопластинки оставленный без внимания
Когда и как праздновать день H: 0 января. С этого несуществующего числа астрономические календари начинают отсчет Нового года. Как и о самом моменте Большого взрыва, о событиях 0 января известно мало, что делает праздник вдвойне уместным
Главная константа космологии — мера скорости, с которой расширяется Вселенная в результате Большого взрыва. И сама идея, и постоянная H восходят к выводам Эдвина Хаббла. Галактики в любом месте Вселенной разбегаются друг от друга и делают это тем быстрее, чем больше расстояние между ними. Знаменитая константа — просто коэффициент, на который умножают дистанцию, чтобы получить скорость. Со временем она меняется, но довольно медленно.
Единица, деленная на H, дает 13,8 млрд лет — время, прошедшее с момента Большого взрыва. Эту цифру первым получил сам Хаббл. Как доказали позднее, метод Хаббла был не совсем верен, но все равно он ошибся меньше чем на процент, если сравнивать с современными данными. Ошибка отца-основателя космологии состояла в том, что он считал число Н постоянным с начала времен.
Сферу вокруг Земли радиусом 13,8 млрд световых лет — скорость света, деленная на константу Хаббла, — называют хаббловской сферой. Галактики за ее границей должны «убегать» от нас со сверхсветовой скоростью. Противоречия с теорией относительности здесь нет: стоит подобрать правильную систему координат в искривленном пространстве-времени, и проблема превышения скорости сразу исчезает. Поэтому за хаббловской сферой видимая Вселенная не заканчивается, ее радиус примерно втрое больше.
Гравитация
Чему равно: 21,76… мкг
Где работает: Физика микромира
Кто и когда открыл: Макс Планк, создатель квантовой механики, в 1899 году. Планковская масса — это всего-навсего одна из набора величин, предложенных Планком в качестве «системы мер и весов» для микромира. Определение, упоминающее черные дыры, — и сама теория гравитации — появились несколькими десятилетиями позже
Обычная река cо всеми ее изломами и изгибами в π раз длиннее, чем путь напрямик от ее устья к истоку
Когда и как праздновать день m p: В день открытия Большого адронного коллайдера: микроскопические черные дыры собираются получать именно там
Якоб Бернулли, знаток и теоретик азартных игр, вывел e, рассуждая о том, сколько зарабатывают ростовщики
Подбирать явлениям теорию по размеру — популярный в XX веке подход. Если элементарная частица требует квантовой механики, то нейтронная звезда — уже теории относительности. Ущербность такого отношения к миру была понятна с самого начала, но единой теории всего так и не создали. Пока удалось примирить только три из четырех фундаментальных видов взаимодействия — электромагнитные, сильные и слабые. Гравитация все еще остается в стороне.
Поправка Эйнштейна и есть плотность темной материи, которая расталкивает космос изнутри
Планковская масса — условная граница между «большим» и «малым», то есть как раз между теорией гравитации и квантовой механикой. Столько должна весить черная дыра, размеры которой совпадают с длиной волны, отвечающей ей как микрообъекту. Парадокс заключается в том, что астрофизика трактует границу черной дыры как строгий барьер, за который не могут проникнуть ни информация, ни свет, ни вещество. А с квантовой точки зрения волновой объект будет равномерно «размазан» по пространству — и барьер вместе с ним.
Планкова масса — это масса личинки комара. Но пока гравитационный коллапс комару не грозит, квантовые парадоксы его не коснутся
mp — одна из немногих единиц в квантовой механике, которыми стоит измерять объекты в нашем мире. Столько может весить личинка комара. Другое дело, что пока гравитационный коллапс комару не грозит, квантовые парадоксы его не коснутся.
Бесконечность
Кто и когда открыл: Рональд Грэхем и Брюс Ротшильд
в 1971 году. Статья была опубликована под двумя фамилиями, но популяризаторы решили сэкономить бумагу и оставили только первую
Когда и как праздновать день G: Очень нескоро, зато очень долго
Константу Грэхема принято считать самым большим числом, когда-либо встречавшимся в научном доказательстве. Если попытаться полностью выписать G, используя привычные методы, то на бумагу не хватит всего вещества Вселенной.
Константа появилась в абстрактной комбинаторной задаче и оставила позади все величины, связанные с нынешними или будущими размерами Вселенной, планетами, атомами и звездами. Чем, похоже, лишний раз подтвердила несерьезность космоса на фоне математики, средствами которой тот может быть осмыслен.