к какой группе относится алюминиевый сплав амг6
сплав АМГ6
АМг6 относится к категории деформируемых алюминиевых сплавов. Пластичность проявляется уже при комнатных температурах, в результате нагрева повышаются показатели прочности и улучшается свариваемость материала. Сплав АМг6 является термически неупрочнённым, при этом обладает повышенной устойчивостью к коррозийным изменениям. Перечисленные факторы определяют область применения данного продукта, он идёт на изготовление полуфабрикатов, слябов и слитков.
Характеристики и состав сплава
Выплавка производится в соответствии с нормативными требованиями ГОСТ 4784-97. Этот документ определяет процентное соотношение компонентов, входящих в состав АМг6.
Химический состав сплава выглядит следующим образом:
Помимо перечисленного, в состав добавляется кремний, нейтрализующий негативное действие натрия. В качестве легирующих присадок используются хром или ванадий.
Плюсы и минусы АМГ6
Сплав АМг6 обладает плотностью 2 640 кг/м3, при этом обладает сравнительно невысокой твёрдостью. Текучесть материала варьируется в пределах 130-385 Мпа, в зависимости от температуры плавления и категории проката.
Алюминий АМг6 обладает такими преимуществами:
Применение изделий проката АМГ6
Алюминиевый сплав АМГ6 используется для изготовления наиболее востребованного сортамента цветного проката:
Из сплавов АМг6 обычно изготавливают обшивку автотранспорта, цистерны для перевозки нефтепродуктов и химически активных веществ. Прокат АМг6 подходит для производства деталей и металлоконструкций многоцелевого применения.
Заполните данные ниже и наши менеджеры обязательно свяжутся с Вами в самое ближайшее время, а также проконсультируют по интересующим вопросам
Характеристики сплава АМг6
Применять алюминий, как конструкционный материал, начали еще в середине 19 века. Тогда инженеров привлек его низкий удельный вес и высокая устойчивость металла к коррозии. Но был у алюминия и ряд существенных недостатков. В частности, низкие механические свойства: прочность и твердость. Решить эту проблему смогли советские ученые, дополнительно легировав алюминий магнием. Так мир узнал об сплаве АМг6 с характеристиками актуальными в производстве.
Расшифровка
Сплав АМг6 относится к группе деформируемых алюминиевых сплавов. Количество его легирующих элементов и механические свойства регулируются государственным стандартом ГОСТ 4784-97. Согласно ему химический состав данного сплава, помимо алюминия, включает в себя следующие компоненты:
Помимо всех вышеназванных компонентов, состав АМг6 иногда легируют хромом и ванадием. По своему назначению они близки к титану и повышают технологические свойства АМг6. По прочностным характеристикам такой сплав также обладает некоторым преимуществом.
Достоинства и недостатки
Сплавы на основе магния и алюминия были разработаны в начале 20 века, но до сих пор не потеряли своей актуальности в производстве. Связано это с целым рядом преимуществ, которыми они, и амг6 в частности, обладают:
Но помимо достоинств, существует и ряд минусов у АМг6. Среди них наиболее значимыми являются:
Область применения
На рынок металлопроката АМг6 поставляется в виде прутков, листов, швеллеров, уголков всевозможного размера. Применяется он главным образом в сварных металлоконструкциях, у которых есть ограничение по массе.
Также из АМг6 изготавливают обшивку как наружную так и внутреннюю для разного рода видов транспорта: автобусы, троллейбусы, железнодорожные вагоны и т.д. Данный сплав отлично зарекомендовал себя в качестве материала для цистерн, в которых транспортируют нефть и другие химически активные вещества.
По прогнозам специалистов, алюминиевые сплавы не потеряют своей важности для промышленности еще как минимум в течение 100 лет, несмотря на активную конкуренцию со стороны композитных материалов. Причина этого – простота технологии выплавки и огромные запасы. По своей распространённости в земной коре алюминий уступает лишь кремнию и кислороду.
Марки алюминия
Вопросы, рассмотренные в материале:
Современную промышленность трудно представить без алюминия и его сплавов. И потому так важно знать, какие марки этого металла используются для тех или иных целей. К примеру, виды, применяемые для строительства фюзеляжа космического корабля, не подойдут для производства пищевой посуды и т. д.
Маркировка алюминия используется для обозначения процентного содержания различных примесей, а также технологии получения или обогащения. Давайте же разберемся, какими физико-химическими свойствами обладают те или иные марки этого металла и где они применяются.
Какие различают марки алюминия
Придание металлу определенных свойств, усиление его характеристик возможно за счет легирования его различными химическими элементами, такими как магний, медь, цинк, кремний, марганец.
Существуют разные марки алюминия, отвечающие определенным стандартам, к примеру, «АД0» по ГОСТу 4784-97. Во избежание путаницы классификация включает высокочастотные металлы.
Алюминий может быть следующих марок:
Помимо перечисленных марок алюминия, отдельно выделяют его соединения, с помощью которых создают сплавы с золотом, серебром, платиной, прочими драгоценными металлами. Такие соединения называют лигатурами.
Марки первичного алюминия
Примером этой группы можно назвать первичный алюминий марки «А5». Для его получения используется обогащенный глинозем. Встретить металл в чистом виде в природе невозможно, поскольку он обладает высокой химической активностью.
При взаимодействии с другими элементами металл образует бокситы, нефелины и алуниты. Впоследствии эти руды используются для получения глинозема, а затем путем определенных химико-физических реакций – чистого алюминия.
Рекомендуем статьи по металлообработке
Требования, которым должны соответствовать марки первичного алюминия, установлены в ГОСТе 11069. Отметки об отнесении металла к определенному классу представляют собой вертикальные и горизонтальные полосы, наносимые на заготовки несмываемой краской определенных цветов. Первичный алюминий используется в ведущих промышленных областях, по большей части в тех, где необходимы повышенные технические характеристики сырья.
Марки технического алюминия
В марках технического (нелегированного) алюминия содержание посторонних примесей составляет не более 1 %.
По ГОСТу 4784-97 марки технического алюминия должны обладать повышенной антикоррозионной стойкостью. При этом их прочность не очень высока. Отсутствие в составе металла легирующих элементов приводит к образованию на его поверхности устойчивой защитной оксидной пленки.
Отличительными чертами марок технического алюминия являются высокая тепло- и электропроводность. Молекулярная решетка отличается почти полным отсутствием примесей, рассеивающих поток электронов. Подобные свойства позволяют применять металл в таких сферах, как приборостроение, изготовление оборудования для нагревания и теплообмена, освещения.
Марки деформируемого алюминия
Различные марки алюминия обрабатываются в горячем и холодном виде путем прокатки, прессования, волочения и т. п. Пластические деформации позволяют получать заготовки с разным продольным профилем: алюминиевые прутки, листы, ленты, плиты, профили и пр.
Требования, предъявляемые к деформируемым маркам алюминия, закреплены в ГОСТе 4784, OCT1 92014-90, OCT1 90048 и OCT1 90026. Отличительная черта металла заключается в твердой структуре раствора, в котором содержится большой процент эвтектики – жидкой фазы, находящейся в равновесии с двумя и более твердыми состояниями вещества.
Марки деформируемого металла широко применяются в таких отраслях, как самолето- и кораблестроение, строительство (для сварочных работ), т. е. в сферах, в которых требуются повышенные технические характеристики материалов.
Марки литейного алюминия
Фасонные изделия производятся из марок алюминия для литья, характерными свойствами которых является высокая удельная прочность, сочетающаяся с низкой плотностью. Благодаря этим особенностям возможно изготовление (отлив) деталей различной конфигурации без появления трещин.
Существует деление литейных марок металла на группы в соответствии с предназначением. Они бывают:
Для повышения свойств деталей из этих видов алюминия используют различные способы термической обработки.
Марки алюминия для раскисления
Физические свойства материала изготовления влияют на итоговые характеристики товара. Алюминий низкого качества не подходит для производства продукции, однако одним из вариантов его использования является раскисление стали. В процессе раскисления из расплавленного железа удаляется растворенный в нем кислород. За счет этого улучшаются механические свойства металла. Процесс выполняется с алюминием марок «АВ86» и «АВ97Ф».
Марки алюминия и его сплавов
Существует деление алюминиевых сплавов на:
Требования к их химическому составу определены в ГОСТах 1131 и 4784-97.
В зависимости от типа упрочнения сплавы могут быть:
Более распространенной является другая классификация, в основе которой лежат характеристики сплавов. Согласно ей термоупрочненные сплавы делятся на:
Термически неупрочняемые стали с повышенной коррозионной устойчивостью и свариваемостью делятся на:
При изготовлении листов должны соблюдаться требования ГОСТа 21631–76. Классифицируется продукция в зависимости от области применения и свойств:
Готовый прокат может быть как листами, толщиной от 0,3–2 мм, так и плитами, толщиной до 10,5 мм. Ширина проката составляет 0,5-2 м, длина – 2–7,2 м.
Отдельно отметим гофрированные алюминиевые листы (профилированные), используемые для кровельных работ. Их отличительными чертами являются долговечность и высокие эксплуатационные характеристики.
Профилированные изделия изготавливаются из марок алюминия, подходящих для гибки, и обладают следующими достоинствами:
Кроме того, выпускаются также алюминиевые анодированные листы с матовой, зеркальной или полуматовой поверхностью. Бытовые приборы, оконные жалюзи, осветительные приборы, декоративные элементы, солнечные батареи производятся из аланода – листа алюминия, имеющего зеркальную поверхность. Сфера его использования напрямую связана со светоотражающими способностями.
Таблица основных марок алюминия и его сплавов
Ниже приведены марки стали алюминия в соответствии с классами, к которым они относятся:
Алюминий АМг6
Поставщик Ауремо ООО www.auremo.org
Купить: Санкт-Петербург +7(812)680-16-77, Днепр +380(56)790-91-90, info[æ]auremo.org
АМг6 труба, лента, проволока, лист, круг АМг6
Механические свойства сплава АМг6 при Т=20 o С | |||||||||||
Прокат | Толщина или диаметр, мм | E, ГПа | G, ГПа | σ-1, ГПа | σв, (МПа) | σ0,2, (МПа) | δ5, (%) | ψ, % | σсж, МПа | KCU, (кДж/м 2 ) | KCV, (кДж/м 2 ) |
Лист плакированный отожженный | 2 | 71 | 27 | 100 | 340 | 170 | 20 | 180 | |||
Лист плакированный нагартованный 20% | 2 | 400 | 300 | 9 | 320 | ||||||
Лист плакированный нагартованный 30% | 2 | 420 | 320 | 10 | 330 | ||||||
Плита нагартованная 16% | 30 | 71 | 27 | 400 | 310 | 7 | 320 | 0,2 | 0,09 | ||
Профиль горячекатаный отожженный | 6 | 345 | 170 | 20,5 | 170 | 0,2 | 0,17 | ||||
Профиль горячекатаный без термообработки | 6 | 355 | 190 | 19,5 | 190 | ||||||
Поковка отожженная | до 2500 кг | 300 | 150 | 14 |
Механические свойства сплава АМг6 при высоких температурах | |||||
Прокат | T испытания | σв, (МПа) | σ0,2, (МПа) | δ5, (%) | ψ, % |
Лист отожженный 2 мм | 20 100 200 300 | 350 320 195 130 | 165 160 135 60 | 22 34 45 55 | |
Лист нагартованный 2 мм | 20 100 200 | 385 335 250 | 290 285 185 | 11 15 25 | |
Профиль (все размеры) отожженный и без термической обработки | 20 100 200 250 | 350 310 200 170 | 180 160 140 120 | 18 20 30 35 |
Механические свойства сплава АМг6 при низких температурах | |||||
Прокат | T испытания | σв, (МПа) | σ0,2, (МПа) | δ5, (%) | ψ, % |
Лист отожженный 2,5 мм | 20 -196 | 365 470 | 160 185 | 22 24 | |
Плита 30 мм нагартованная 18% в продольном направлении | 20 -196 | 395 505 | 345 380 | 10 22 | 22 32,5 |
Плита 30 мм полунагартованная | 20 -196 | 405 515 | 330 350 | 9,5 16,5 | 14,5 16 |
Плита 30 мм с повышенным качеством выкатки | 20 -196 | 315 360 | 280 325 | 3,5 1,5 | 5 2 |
Профиль отожженный и без термической обработки (все размеры) | 20 -70 -196 | 350 360 510 | 180 Получение алюминиевого сплава АМг6: для выплавки алюминия АМг6 подготавливают шихту и затем производят ее плавку. Загрузка шихтовых материалов в печь при приготовлении деформируемых алюминиевых сплавов должна производиться в соответствии с общими правилами и учетом наименьших потерь металла при плавке в виде угара и минимального загрязнения сплава неметаллическими включениями. Наиболее рациональным в этом отношении является следующий порядок загрузки шихты. Сначала в печь загружают чушковый первичный алюминий, потом бракованные слитки, затем отходы первого сорта и рафинированный переплав, затем лигатуры. Медь может быть введена в расплав как в виде алюминиевомедной лигатуры, так и в виде электролитической меди и отходов. Температура расплава перед введением меди должна быть в пределах 710—750° С. Легкоокисляющиеся металлы (магний, цинк) вводятся в расплав в чистом виде после полного расплавления всей шихты при температуре расплава 660—720° С. Магний вводят в расплав с помощью колокольчика (дырчатой коробки), а цинк — погружают в расплав ложкой. Перед введением легкоокисляющих металлов расплав очищают от шлака. Для обеспечения более равномерного распределения легирующих компонентов после введения каждого из них расплав тщательно перемешивают. В случае приготовления мягких сплавов (АВ, АМц) рекомендуется загружать и плавить составляющие шихты одновременно. Технология приготовления деформируемых алюминиевых сплавов, содержащих более 5% Mg, имеет некоторые особенности вследствие повышенной их окисляемости в жидком состоянии. Алюминиевомагниевые сплавы с высоким содержанием магния обладают повышенной склонностью к образованию горячих трещин в слитках непрерывного литья. Это объясняется малой прочностью сплавов при высоких температурах и формированием на поверхности слитка непрочной и рыхлой окисной пленки магния. Так, по мнению В. А. Ливанова, микротрещины, которые возникают на поверхности, становятся местами концентрации напряжений и при недостаточно равномерном охлаждении вызывают появление горячих трещин. На горячеломкость алюминиевомагниевых сплавов (АМг5В и АМг6) большое влияние оказывает содержание основных компонентов и примесей. Исследованиями установлено, что для снижения горячеломкости сплавов АМг5В и АМг6 необходимо: 1) поддерживать отношение содержания железа и кремния выше 1,5; 2) выдерживать содержание марганца в сплаве 0,50—0,55%; 3) производить подшихтовку бериллием в количестве 0,0001 — 0,0002%. Присадка бериллия не только снижает склонность сплава к горячеломкости, но и обеспечивает серебристый цвет поверхности слитка. Для получения слитков без грубых скоплений интерметаллических соединений содержание титана и ванадия в сплавах АМг5В и АМг6 должно быть по 0,02—0,05% каждого. Таким образом, при расчете и составлении шихты для алюминиевомагниевых сплавов должны быть учтены изложенные выше особенности. Плавка алюминиевых сплавов с высоким содержанием магния должна проводиться по возможности в печах, исключающих контакт печных газов с расплавом, с применением защитных флюсов. После расплавления всех составляющих шихты расплав тщательно перемешивают, снимают шлак с поверхности расплава и отбирают жидкий металл для образцов на экспресс-анализ. Отбор проб рекомендуется производить при температуре 710— 740° С из средней зоны по глубине ванны расплава. В случае положительных результатов экспресс-анализа расплав подвергают рафинированию. Из сплава АМг6 выпускается много видов проката, один из самых высокотехнологичных это биметалические листы. Производство биметалла: алюминиевый сплав — сталь Х18Н10Т. Для соединения разнородных металлов, которые не поддаются сварке плавлением, широко используют метод биметаллических проставок; в этом случае сварку плавлением производят между однородными металлами, а роль соединительного шва разнородных металлов выполняет многослойный металл, который в настоящее время получил название конструкционного материала. Основное его отличие состоит в том, что толщина покрытия должна быть равной или несколько больше основного слоя. В качестве такого материала хорошо зарекомендовал себя биметалл сплав АМг6-сталь Х18Н10Т Большая толщина алюминиевого покрытия обусловливается как конструкцией, так и необходимостью интенсивного отвода тепла при сварке с границы соединения, чтобы предотвратить прохождение диффузионных процессов, вызывающих охрупчивание переходного слоя. В настоящее время разработана технология прокатки биметаллических листов стали с алюминиевыми сплавами, обеспечивающая равное соотношение слоев и высокую стабильность свойств. При теплой прокатке стали Х18Н10Т пластические характеристики при одних и тех же обжатиях практически в 2 раза выше, чем при холодной прокатке. В отличие от малоуглеродистой стали, у стали Х18Н10Т провалы пластичности в температурном интервале 200-400° С отсутствуют. Поэтому совместную прокатку нержавеющей стали с алюминиевыми сплавами целесообразно проводить при повышенных температурах. В работе описан метод асимметричной прокатки конструкционного биметалла сталь—алюминиевые сплавы, который предусматривает однопроходную схему с обжатием алюминиевого сплава до 80%. При такой прокатке происходит в основном пластическая деформация алюминиевого сплава. Сталь при этом не деформируется. Несмотря на преимущества этого метода (сталь остается недеформированной), ширина листа ограничена силовыми возможностями оборудования и обычно не превышает 250—300 мм. Более благоприятна схема получения таких листов прокаткой симметричным пакетом, поскольку она исключает изгиб полосы в процессе деформации. Симметричный пакет представляет собой комбинацию четырех листов, сложенных в следующей последовательности: АМг6-Х18Н10Т-Х18Н10Т-АМг6. Листы сплава АМг6 имеют припуск до 30 мм по отношению к стальным листам, что позволяет крепить пакет и исключает попадание смазки в процессе прокатки на границу соединения слоев. Стальные листы сваривают по торцам (со стороны задачи и выхода пакета из валков). Прокатка симметричных пакетов (толщина стального слоя в пакете 10 мм) с соотношением слоев АМг6 и стали 1,5 : 1 при температуре 370-390° С, с суммарным обжатием 55—60% и с обжатием за проход от 10 до 30% показала, что увеличение частного обжатия до 30% приводит к гофрам, надрывам и полному разрушению стального слоя. В процессе совместной прокатки в сплаве АМг6 возникают сжимающие напряжения, в то время как в стальном слое — растягивающие, в результате которых может разрушиться стальной слой (см. рисунок). Температура нагрева пакетов ограничивается интервалом 370—390° С, иначе в средней части биметаллического пакетанаблюдается большой перепад температуры по ширине, достигающий 40—50 град. Несмотря на то что к этому времени образуются прочные металлические связи, высокие дополнительные напряжения, возникающие в листе АМг6 вследствие неравномерной деформации, вызывают отрыв слоя АМг6 от стали и образуют складки и пузыри. Использование для смазки охлаждения эмульсии создает более равномерное распределение температуры по всей площади пакета, в результате складки и пузыри не образуются. Появившиеся мостики сцепления развиваются в процессе дальнейшей деформации, так как средние рабочие напряжения в последующих проходах велики, а относительная площадь, занимаемая окисными пленками, значительно уменьшается с увеличением степени деформации. Поэтому наблюдается повышение прочности сцепления слоев с увеличением суммарной степени деформации. Рациональное распределение обжатий при достаточно развитых металлических связях оказывает влияние на качество поверхности стали. Особое значение это имеет при наклепе стали, когда пластические свойства ее резко снижаются. В результате действия растягивающих напряжений на стали появляется волнистость. Это очень заметно на листах, имеющих более толстое покрытие сплава АМг6, так как неравномерность деформации в данном случае несколько выше. Обычно в процессе многочисленных опытов подбирают оптимальные обжатия для каждого прохода при соответствующей суммарной деформации, позволяющие получать относительно ровную поверхность под плакирующим слоем сплава АМг6. Например, при суммарном обжатии в 50% количество проходов достигает 15—26 и частное обжатие в последних проходах составляет не более 2%. С увеличением толщины покрытия алюминиевого сплава при одном и том же суммарном обжатии количество проходов значительно увеличивается. Средние удельные давления, возникающие при выбранных режимах, позволяют вести прокатку листов шириной до 1400 мм и более на существующем оборудовании. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|