к какой группе методов прогнозирования относится функция тенденция

МЕТОДЫ ПРОГНОЗИРОВАНИЯ

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

В третьей главе рассматриваются методы прогнозирования. Представлена классификация методов прогнозирования. Раскрывается сущность формализованных методов: экстраполяции, моделирования, интуитивных методов: индивидуальных экспертных оценок, коллективных экспертных оценок. Даются методы отбора экспертов.

Ключевые слова: метод прогнозирования, формализованные методы, интуитивные методы, экстраполяция, скользящая средняя, экспоненциальное сглаживание, наименьшие квадраты, информационное моделирование, патентный метод, публикационный метод, статистическое моделирование, логическое моделирование, «дерево целей», метод интервью, анкетный опрос, аналитический метод, написание сценария, мозговая атака, метод Дельфи, экспертная комиссия, коллективная генерация идей,

Классификация методов прогнозирования

В настоящее время существует приблизительно 150 методов прогнозирования, но на практике используются около 20-30 основных методов.

Классификация методов прогнозирования осуществляется по трем основным признакам:

1) по степени формализации методов;

2) по общему принципу действия;

3) по способу получения прогнозной информации (рис. 1).

По степени формализации методы прогнозирования делятся на формализованные и интуитивные:

Формализованные методы используются в том случае, когда информация об объекте прогнозирования носит в основном количественный характер, а влияние различных факторов можно описать с помощью математических формул.

Интуитивные методы применяются тогда, когда информация количественного характера об объекте прогнозирования отсутствует или носит в основном качественный характер и влияние факторов невозможно описать математически.

В свою очередь эти две группы можно разделить по общему принципу деятельности и способу получения прогнозной информации. Формализованные методы подразделяются на методы экстраполяции и методы моделирования.

К методам экстраполяции относятся метод скользящей средней, метод экспоненциального сглаживания, метод наименьших квадратов, а к методам моделирования – методы информационного моделирования (патентный и публикационный), статистического моделирования, логического моделирования (прогнозной аналогии, «дерево целей»).

Интуитивные методы прогнозирования делятся на индивидуальные и коллективные экспертные оценки. Причем индивидуальные экспертные оценки основаны на обобщении мнений отдельных экспертов, выраженных независимо друг от друга. К ним относятся: метод интервью, метод анкетного опроса, аналитический метод, метод написания сценария. Коллективные экспертные оценки базируются на получении объединенной оценки от всей группы специалистов-экспертов, выработанной при непосредственном контакте. К таким методам относятся метод Дельфи, метод «мозговой атаки», метод экспертных комиссий.

В экономическом прогнозировании применяются два принципиально отличающихся друг от друга подхода – поисковый и нормативный:

Поисковый прогноз можно определить как условное продолжение в будущее наблюдаемых тенденций исследуемого явления или процесса, закономерности развития которых в прошлом и настоящем достаточно хорошо известны. Причем, если возможные организационные решения способны существенно видоизменить наметившиеся тенденции, от них следует абстрагироваться. Основная цель поискового прогноза состоит в том, чтобы выяснить, что может произойти, какие проблемы могут возникнуть при сохранении существующих тенденций развития.

Нормативный прогноз основан на экстраполяции от будущего к настоящему, т.е. на определении оптимального состояния изучаемого объекта на период прогнозирования с использованием средств целеполагания по заранее сформулированным критериям. При нормативном прогнозе сначала задается некоторая цель развития объекта прогнозирования, а затем определяется траектория движения прогнозируемого процесса или явления. Цель данного подхода – выявление альтернативных путей достижения оптимума.

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

Поисковый и нормативный прогнозы не взаимоисключают, а дополняют друг друга. Как правило, поисковый прогноз составляет первый этап разработки прогнозного исследования, на котором получается сравнительная оценка возможных вариантов развития. На втором этапе осуществляется разработка нормативного прогноза, который исходит из познанных общественных закономерностей, тенденций, потребностей развития, а также формулировка программы возможных путей, мер и условий для достижения поставленных целей с привлечением необходимых ресурсов и средств.

Формализованные методы прогнозирования

Сущность методов экстраполяции

Как поступить, если условия формирования тренда (тренд – тенденция, определяющая общее направление развития) изменились? В этом случае предполагается использование такого искусственного приема, как исправление тренда. Отсекаются показатели ряда, которые были сформированы отжившими факторами, но при разделении старых и новых тенденций следует быть осторожным (можно воспользоваться экспертными оценками).

Прогноз должен иметь высокую точность, ошибка прогноза будет тем меньше, чем меньше период (срок) упреждения и чем больше база прогноза.

Построенные с помощью методов экстраполяции прогнозы нельзя рассматривать как конечный этап прогнозирования, ибо полученный показатель следует оценить с помощью экспертов и в случае необходимости скорректировать, если экономические, политические и другие условия в стране (городе) меняются.

Метод скользящей средней дает возможность выравнивать динамический ряд на основе его средних характеристик. При экстраполяции с помощью среднего уровня ряда используется принцип, при котором прогнозируемый уровень принимается равным среднему значению уровней ряда в прошлом.

Данный метод дает прогнозную точечную оценку и более эффективно используется при краткосрочном прогнозировании. Преимущество данного метода состоит в том, что он прост в применении и не требует обширной информационной базы.

Метод экспоненциального сглаживания дает возможность выявить тенденцию, сложившуюся к моменту последнего наблюдения, и позволяет оценить параметры модели, описывающей тренд, который сформировался в конце базисного периода. Этот метод адаптируется к меняющимся во времени условиям, а не просто экстраполирует действующие зависимости в будущее.

Метод экспоненциального сглаживания наиболее эффективен при разработке кратко- и среднесрочных прогнозов. Его основные достоинства заключаются в простоте вычисления и учете весов исходной информации, т. е. новые данные или данные за последние периоды имеют больший вес, чем данные более отдаленных периодов.

При использовании для прогнозирования данного метода возникают следующие затруднения: а) выбор значения параметра сглаживания; б) определение начального значения экспоненциально взвешенной средней.

Метод наименьших квадратов основан на выявлении параметров модели, которые минимизируют суммы квадратических отклонений между наблюдаемыми величинами и расчетными. Модель, описывающая тренд, в каждом конкретном случае подбирается в соответствии с рядом статистических критериев. На практике наибольшее распространение получили такие функции, как линейная, квадратическая, экспоненциальная, степенная, показательная.

Преимущества метода наименьших квадратов заключаются в том, что он прост в применении и реализуется на ЭВМ. К недостаткам метода можно отнести жесткую фиксацию тренда моделью, небольшой период упреждения, сложность подбора уравнения регрессии, который осуществляется с помощью использования типовых компьютерных программ, например Excel.

Методы моделирования

Методы информационного моделирования были разработаны и впервые использованы для построения прогнозов, связанных с НТП. В настоящее время эти методы все более и более применяются при прогнозировании экономических процессов.

Методы информационного моделирования (или опережающего прогнозирования) основаны на свойстве научно-технической информации предварять внедрение достижений НТП в практическую деятельность.

В группе методов информационного моделирования рассмотрим два вида: патентный и публикационный.

Патентный метод – это опережающий метод прогнозирования, позволяющий рассчитать момент внедрения в практику изобретений по динамике даты их патентования и даты внедрения.

Для того чтобы построить прогноз данным методом, необходимо рассмотреть и проанализировать следующую информацию:

1) дату патентования изобретения;

2) дату внедрения изобретения в производство или в любую другую деятельность;

3) разрыв во времени между первой и второй датой.

Публикационный метод аналогичен и базируется на оценке взаимосвязи между датой опубликования информации о каком-либо достижении НТП и датой внедрения его на практике.

В основу применения методов информационного моделирования положены следующие два допущения:

1) существует связь между динамикой предоставления научно-технической информации и динамикой внедрения достижения в производство;

2) научно-техническая информация на некоторый интервал времени опережает внедрение достижения в производство.

Основными источниками информации, используемой в опережающих методах прогнозирования, являются:

1) патентная документация (патенты, свидетельства);

2) патентно-ассоциируемая документация (лицензии, коммерческая информация, каталоги, прайсы и т.д.);

3) публикации в периодической печати и издания научно-технической литературы, используемые при публикационном методе.

Ретроспективная обработка названных источников информации позволяет проанализировать динамику патентования и опубликования.

В результате анализа исследователи решают две задачи:

1) определяют возможную дату внедрения технического решения в производство;

2) оценивают перспективу различных направлений науки и техники.

В настоящее время данные методы широко используются при экономических прогнозах. С их помощью исследователи-прогнозисты выявляют и изучают взаимосвязь между появлением публикаций о правительственных перестановках и ростом цен на определенные товарные группы, изменением курса национальной валюты, в результате чего получают довольно точные результаты, уходя от сложных математических расчетов.

Методы логического моделирования. К данной группе методов прежде всего относятся методы прогнозирования по аналогии и метод «дерево целей».

В группе прогнозирования по аналогии рассмотрим два метода:

1) математической аналогии;

2) исторической аналогии.

Метод математической аналогии основан на установлении аналогии математических описаний различных по природе объектов (например, закона гравитации и торгового тяготения городов). Для математического описания и прогнозирования менее изученного явления (торгового тяготения) используется математическое описание более изученного явления (гравитации).

Метод исторической аналогии – это метод прогнозирования, основанный на выявлении и использовании аналогии объекта прогнозирования с одинаковым по природе объектом, опережающим объект прогнозирования в своем развитии.

Применяя метод исторической аналогии в прогнозировании, следует иметь в виду, что этот метод не основан на неизбежности и необходимости полного повторения событий. Он базируется на допущении, что основные события прошлых лет повторятся в будущем, если факторы, их порождающие, сохранят свое значение.

Применение аналогии в прогнозировании связано со следующими трудностями: часто сложно отличить истинную причину от мнимой, что ведет к ошибкам; для повышения точности прогнозов необходимо обеспечить представительность выборки (наблюдений), достаточно полно отражающей совокупность всех возможных ситуаций, которые могут иметь место в будущем. Прогнозирование по аналогии обычно применяется в сочетании с другими методами (экспертных оценок).

Метод «дерево целей» используется для прогнозирования сложных экономических процессов, систем, в которых возможно выделение многих структурных или иерархических уровней.

Процедура построения «дерева целей» представляет собой формулировку генеральной цели прогноза с последующим разбиением ее на ряд подцелей 1-го уровня, который является результатом реализации подцелей 2-го уровня, и т.д. При этом разбиение генеральной цели происходит как бы из будущего в настоящее с установлением промежуточных событий и фиксацией причинно-следственных связей между ними.

«Дерево целей» формируется с помощью экспертов, причем при переходе от уровня к уровню состав экспертов меняется. При приближении к более высокому уровню остаются более крупные эксперты в конкретных областях. В обязанности экспертов входят: а) формулировка системы целей (подцелей); б) присвоение коэффициентов относительной важности или весов элементам различных уровней «дерева целей». Построение «дерева целей» заканчивается, когда мы доходим до конкретных практических мероприятий, которые нельзя представить как результат реализации других мероприятий.

Этапы построения «Дерева целей»:

1) формулировка генеральной цели прогноза;

2) формулировка перечня подцелей различных уровней;

3) непосредственно построение «дерева целей»;

4) установление коэффициентов относительной важности различных узловых моментов «дерева целей» (с помощью экспертов);

5) разработка конкретных мероприятий по реализации поставленных целей прогноза;

6) выбор наиболее оптимальных мероприятий;

7) определение состава и объема ресурсов, необходимых для реализации выбранных мероприятий.

Источник

Классификация методов и моделей прогнозирования

Я занимаюсь прогнозированием временных рядов уже более 5 лет. В прошлом году мною была защищена диссертация по теме «Модель прогнозирования временных рядов по выборке максимального подобия», однако вопросов после защиты осталось порядочно. Вот один из них — общая классификация методов и моделей прогнозирования.

Обычно в работах как отечественных, так и англоязычных авторы не задаются вопросом классификации методов и моделей прогнозирования, а просто их перечисляют. Но мне кажется, что на сегодняшний день данная область так разрослась и расширилась, что пусть самая общая, но классификация необходима. Ниже представлен мой собственный вариант общей классификации.

В чем разница между методом и моделью прогнозирования?

Метод прогнозирования представляет собой последовательность действий, которые нужно совершить для получения модели прогнозирования. По аналогии с кулинарией метод есть последовательность действий, согласно которой готовится блюдо — то есть сделается прогноз.

Модель прогнозирования есть функциональное представление, адекватно описывающее исследуемый процесс и являющееся основой для получения его будущих значений. В той же кулинарной аналогии модель есть список ингредиентов и их соотношение, необходимый для нашего блюда — прогноза.

Совокупность метода и модели образуют полный рецепт!

В настоящее время принято использовать английские аббревиатуры названий как моделей, так и методов. Например, существует знаменитая модель прогнозирования авторегрессия проинтегрированного скользящего среднего с учетом внешнего фактора (auto regression integrated moving average extended, ARIMAX). Эту модель и соответствующий ей метод обычно называют ARIMAX, а иногда моделью (методом) Бокса-Дженкинса по имени авторов.

Сначала классифицируем методы

Если посмотреть внимательно, то быстро выясняется, что понятие «метод прогнозирования» гораздо шире понятия «модель прогнозирования». В связи с этим на первом этапе классификации обычно делят методы на две группы: интуитивные и формализованные [1].

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

Если мы вспомним нашу кулинарную аналогию, то и там можно разделить все рецепты на формализованные, то есть записанные по количеству ингредиентов и способу приготовления, и интуитивные, то есть нигде не записанные и получаемые из опыта кулинара. Когда мы не пользуемся рецептом? Когда блюдо очень просто: пожарить картошку или сварить пельмени — тут рецепт не нужен. Когда еще мы не пользуемся рецептом? Когда желаем изобрести что-то новенькое!

Интуитивные методы прогнозирования имеют дело с суждениями и оценками экспертов. На сегодняшний день они часто применяются в маркетинге, экономике, политике, так как система, поведение которой необходимо спрогнозировать, или очень сложна и не поддается математическому описанию, или очень проста и в таком описании не нуждается. Подробности о такого рода методах можно глянуть в [2].

Формализованные методы — описанные в литературе методы прогнозирования, в результате которых строят модели прогнозирования, то есть определяют такую математическую зависимость, которая позволяет вычислить будущее значение процесса, то есть сделать прогноз.

На этом общая классификация методов прогнозирования на мой взгляд может быть закончена.

Далее сделаем общую классификация моделей

Здесь необходимо переходить к классификации моделей прогнозирования. На первом этапе модели следует разделить на две группы: модели предметной области и модели временных рядов.

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

Модели предметной области — такие математические модели прогнозирования, для построения которых используют законы предметной области. Например, модель, на которой делают прогноз погоды, содержит уравнения динамики жидкостей и термодинамики. Прогноз развития популяции делается на модели, построенной на дифференциальном уравнении. Прогноз уровня сахара крови человека, больного диабетом, делается на основании системы дифференциальных уравнений. Словом, в таких моделях используются зависимости, свойственные конкретной предметной области. Такого рода моделям свойственен индивидуальный подход в разработке.

Модели временных рядов — математические модели прогнозирования, которые стремятся найти зависимость будущего значения от прошлого внутри самого процесса и на этой зависимости вычислить прогноз. Эти модели универсальны для различных предметных областей, то есть их общий вид не меняется в зависимости от природы временного ряда. Мы можем использовать нейронные сети для прогнозирования температуры воздуха, а после аналогичную модель на нейронных сетях применить для прогноза биржевых индексов. Это обобщенные модели, как кипяток, в которые если бросить продукт, то он сварится вне зависимости от его природы.

Классифицируем модели временных рядов

Мне кажется, что составить общую классификацию моделей предметной области не представляется возможным: сколько областей, столько и моделей! Однако модели временных рядов легко поддаются простому делению [3]. Модели временных рядов можно разделить на две группы: статистические и структурные.

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

Для обоих групп я указала основные, то есть наиболее распространенные и подробно описанные модели прогнозирования. Однако на сегодняшний день моделей прогнозирования временных рядов имеется уже громадное количество и для построения прогнозов, например, стали использовать SVM (support vector machine) модели, GA (genetic algorithm) модели и многие другие.

Общая классификация

Таким образом мы получили следующую классификацию моделей и методов прогнозирования.

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

UPD. 15.11.2016.
Господа, дошло до маразма! Недавно мне прислали на рецензию статью для ВАКовского издания со ссылкой на эту запись. Обращаю внимание, что ни в дипломах, ни в статьях, ни тем более в диссертациях ссылаться на блог нельзя! Если хотите ссылку, то используйте эту: Чучуева И.А. МОДЕЛЬ ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ ПО ВЫБОРКЕ МАКСИМАЛЬНОГО ПОДОБИЯ, диссертация… канд. тех. наук / Московский государственный технический университет им. Н.Э. Баумана. Москва, 2012.

Источник

Прогнозирование, шаг 6.1: методы прогнозирования

Пункт шестой — «Построение прогноза продаж: основные методы прогнозирования»

Наконец-то мы подобрались к самому основному шагу нашей карты данных — «Построение прогноза продаж». Здесь я вкратце расскажу, какие методы прогнозирования наиболее распространены и популярны и приведу формулы их использования. А в следующей части данной статьи, я расскажу об обработке получившегося прогноза: наложении сезонности, округлении, учете промо и так далее.

Напомню, что до этого мы проделали довольно большой путь: подготовили корректную историю продаж, очищенную от нестабильных показателей, рассчитали коэффициенты сезонности и промо-объемы будущих периодов и определились с элементами графического интерфейса (GUI) нашего будущего инструмента прогнозирования. А теперь, мы будем рассматривать методы прогнозирования и строить сам прогноз.

Классификация методов прогнозирования.

Методы прогнозирования делятся на две группы или класса: интуитивные (субъективные или качественные) и формализованные (объективные или количественные). Интуитивные методы прогнозирования — это такие методы, основой которых НЕ являются сухие расчеты, математика и статистика. Они, в первую очередь, основаны на оценках группы экспертов и предназначены для прогнозирования объемов новой позиции, у которой нет истории продаж. Либо для прогнозирования объемов позиции, история продаж которой настолько нестабильна, что невозможно подобрать под нее адекватную математическую модель. В пример можно привести такие методы, как «Метод Дельфи», «Мозговой штурм», «Опрос/анкетирование» и так далее, но в данной статье данные методы прогнозирования рассмотрены не будут.

Здесь будут рассмотрены следующие формализованные методы прогнозирования:

Немного расскажу про каждый из них, а также затрону метод «прогнозирования по свойствам». А в конце статьи, помимо готового примера в Excel с формулами расчета, добавлю ссылки на некоторые источники информации о методах прогнозирования, может кому-то будет полезно.

Методы прогнозирования: метод линейной регрессии.

Построение прогноза с помощью метода линейной регрессии — один из наиболее простых, часто-встречающихся и распространенных (если рассматривать Excel) методов прогнозирования. Часто встречается он как раз из-за того, что в Excel его очень легко применить — достаточно воспользоваться функцией ЛИНЕЙН, ПРЕДСКАЗ или ТЕНДЕНЦИЯ, где исходными данными будут являться номера периодов и соответствующие им объемы продаж.

Для нахождения прогноза на период x, мы воспользуемся уравнением y=k*x+b, где k — угловой коэффициент, который находится с помощью метода наименьших квадратов (на основании предыдущих периодов x и соответствующих значений y), а b — это точка, в которой наш график пересекается с осью y. Данное уравнение описывает линию, которая называется линия тренда, которая показывает динамику продаж и прогнозы на последующие периоды.

На гистограмме ниже изображены столбцы с объемами продаж для соответствующего периода (номера недель по оси X), пунктирная линия, которая как раз является линией тренда и столбец c предсказанным значением (соответствует «продолжению» линии тренда):

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

Данный метод один из самых простейших, и чаще всего используется для прогнозирования более-менее стабильных и регулярных продаж, однако при максимально аккуратном «сглаживании» промо-объемов, он подойдет и для нестабильных рядов. Важно отметить, что если история продаж у нас не очень большая (менее 4-5 периодов), данный метод прогнозирования не рекомендуется к использованию.

Также важно, что если мы хотим добавить к прогнозному значению коэффициент сезонности, то для начала, перед расчетом прогнозного значения, историю продаж необходимо «выровнять», то есть очистить от сезонных колебаний. А уже потом считать прогноз и накладывать сезонность.

Хочу отметить, что в моем опыте работы данный метод прогнозирования в совокупности с корректным сглаживанием числового ряда, а также с корректными значениями планируемых промо-объемов, которые мне предоставлял отдел трейд-маркетинга, достигал достаточно высокой точности прогнозирования (выше 80%).

Методы прогнозирования: полиномиальный прогноз.

Построение прогноза с помощью полинома немного похоже на построение прогноза с помощью предыдущего метода. Здесь, для нахождения прогноза на последующие периоды вместо линейного уравнение, мы используем полином третьей степени вида y = a*x³+b*x²+c*x+d или полином второй степени вида y = a*x²+b*x+c, где коэффициенты a,b,c,d постоянны и находятся с помощью различных методов решения систем линейных уравнений, на основании предыдущих периодов x и соответствующим им объемов продаж y.

Если степень полинома будет выше третьей — линия, которой описывается наш числовой ряд будет максимально приближена к реальным значениям, но при этом будет не очень пригодна для построения прогноза (особенно, если строите прогноз сразу на несколько периодов). Как раз на примере ниже это очень заметно:

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

Полином пятой степени дает неудовлетворительные результаты в прогнозе.

Здесь используется полином пятой степени. Да, линия почти совпадает с фактическим значениям, но при этом даже невооруженным глазом видно, что прогноз на 31 и 32-ую неделю крайне неадекватный. Поэтому использовать полиномы выше третьей степени не рекомендуется.

Методы прогнозирования: модель на основе экспоненциального сглаживания.

Первоначально, модель экспоненциального сглаживания использовалась для сглаживания числового ряда. Однако, спустя какое-то время, данную модель немного видоизменили и приспособили для краткосрочного прогнозирования. Модель приемлема для нахождения прогноза только на 1 период вперед.

Для нахождения прогноза на период t+1, используется следующая формула:

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

где yt — значение факта на период t, t — сглаженное значение на период t, а α — коэффициент или параметр сглаживания, который принимает значение 0 Методы прогнозирования: модель на основе экспоненциального сглаживания с учетом тренда (Метод Хольта).

Данная модель — усовершенствованная версия модели экспоненциального сглаживания с учетом тренда продаж.

Формула нахождения прогноза на период t+d следующая:

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

И как в случае с обычным экспоненциальным сглаживанием, здесь тоже есть параметры, но их уже два: α1 и α2. И оба они принимают значения ∈(0,1). Подбирать эти параметры нужно так, чтобы прогнозы, построенные на уже имеющиеся периоды с фактическими значениями, с помощью полученной модели, давали наименьшую ошибку прогноза (во многих источниках рекомендуют использовать RMSE или MAPE). Напомню, для нахождения RMSE используется следующая формула:

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

Для нахождения A1 должно использоваться A0, но так как его не существует, мы, опять же, как и в случае с обычным экспоненциальным сглаживанием, вместо него используем фактическое значение y1, а вместо B1 используем 0.

Методы прогнозирования: модель на основе экспоненциального сглаживания с учетом тренда и мультипликативной сезонности (Метод Хольта-Винтерса).

Данная модель — тоже усовершенствованная версия модели экспоненциального сглаживания, только здесь помимо тренда, добавлена еще и мультипликативная сезонность. Подходит модель для работы с числовыми рядами, в которых присутствует ярко-выраженная сезонность или цикличность.

Формула расчета прогноза на период t+d следующая:

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

где d — порядковый номер прогнозируемого периода (как и в предыдущем примере), L — это количество периодов в одном цикле (для месячного прогнозирования — 12, для квартального — 4, для ежедневного — 7). At и Bt — адаптивные переменные: A — экспоненциально-сглаженное фактическое значение, а B — значение тренда. А C с большим индексом «t+(d mod L) — L» — значение сезонности в процентах. Индекс переменной C может немного смутить, но на самом деле все проще, чем кажется: просто используем C из прошлого цикла соответствующего периода (для прогноза на март используем коэффициент сезонности марта прошлого цикла).

Сами переменные A,B и C рассчитываются по следующим формулам:

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

При использовании Метода Хольта-Винтерса рассчитывать коэффициенты сезонности перед построением не нужно, их расчет включен в формулу. Однако очищать числовой ряд от неадекватных значений все так же необходимо. Также, стоит отметить, что для корректной «работы» данной модели, история продаж должна содержать как минимум несколько циклов для корректного расчета сезонности (для месячного прогнозирования, необходима история продаж как минимум за 2-3 последних года).

Особенности расчета начальных переменных:

Параметры α1,α2,α3 ∈(0,1), как и в предыдущей модели, подбираются путем минимизации ошибки прогноза (RMSE или MAPE).

Методы прогнозирования: модель на основе экспоненциального сглаживания с учетом тренда и аддитивной сезонности (Метод Тейла-Вейджа).

Данная модель также разработана на основе экспоненциального сглаживания, в которую добавлен тренд и сезонность, но теперь не мультипликативная, а аддитивная. Особенности здесь такие же, как и в методе Хольта-Винтерса. Основное отличие в том, что здесь сезонность является не коэффициентом, на который мы умножаем полученный прогноз, а целым числом, которое мы прибавляем или вычитаем из прогноза.

Формула расчета прогноза на период t+d следующая:

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

где d — порядковый номер прогнозируемого периода (как и в предыдущем примере), L — это количество периодов в одном цикле (для месячного прогнозирования — 12, для квартального — 4, для ежедневного — 7). At и Bt — адаптивные переменные: A — сглаженное фактическое значение (с помощью экспоненты), а B — значение тренда. А C с большим индексом «t+(d mod L) — L» — значение сезонности в процентах.

Сами переменные A,B и C рассчитываются по следующим формулам:

к какой группе методов прогнозирования относится функция тенденция. Смотреть фото к какой группе методов прогнозирования относится функция тенденция. Смотреть картинку к какой группе методов прогнозирования относится функция тенденция. Картинка про к какой группе методов прогнозирования относится функция тенденция. Фото к какой группе методов прогнозирования относится функция тенденция

Особенности расчета начальных переменных:

Параметры α1,α2,α3 ∈(0,1), как и в предыдущей модели, подбираются путем минимизации ошибки прогноза (RMSE или MAPE).

Методы прогнозирования: построение прогноза основанное на свойствах.

Данный способ довольно интересный, чаще всего используется для определения спроса какого-либо нового продукта. Его нельзя полноценно отнести к формализованному методу, но и интуитивным назвать его тоже нельзя.

Рассмотрим его суть на примере телевизора. Предположим, что этот телевизор — новинка на рынке и необходимо рассчитать его прогноз продаж. Для начала, мы рассматриваем свойства данного телевизора (его функции и характеристики), например такие:

Далее, мы просматриваем статистику продаж других телевизоров и смотрим, как часто покупался какой-либо другой телевизор с тем или иным перечисленным свойством. И на основе всех этих данных, составляем некое уравнение, которое учтет частоту приобретения телевизора с каждым свойством по отдельности. И с помощью полученного уравнения рассчитаем примерный прогноз продаж нашей новинки.

Метод довольно грубый и не очень точный, однако при прогнозировании новинки с большим перечнем свойств, может очень сильно помочь. И да, телевизор — не совсем удачный продукт, так как он не является регулярным или с ярко-выраженной сезонностью, да и к тому же можно их всегда закупить побольше, так как у них нет таких сроков годности, как у пищевой продукции. Однако, именно как пример — он очень подходит, потому что максимально легок для восприятия.

Методы прогнозирования: итоги и полезные ссылки.

Здесь были рассмотрены самые распространенные и наиболее простые способы/методы прогнозирования. Помимо них существует еще и другие, в том числе и более сложные, например:

Возможно, спустя какое-то время, по некоторым из них будут написаны отдельные статьи (либо будет расширена текущая).

Файл с примерами расчетов в Excel, можно скачать нажав на кнопку ниже:

Так как статья про методы прогнозирования получилась довольно большой, информация про «Обработку прогноза» вынесена в отдельную статью: «Прогнозирование, шаг 6.2: обработка прогноза».

Если вы хотите больше узнать больше информации по прогнозированию, изучить более сложные модели и методы прогнозирования, то вам могут пригодиться следующие ссылки:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *