к какой группе классификации относятся химические соединения
К какой группе классификации относятся химические соединения
Оксиды могут быть солеобразующими и несолеобразующими. Солеобразующим оксидам соответствуют гидроксиды и соли с элементом в той же степени окисления, что и в оксиде. Несолеобразующие оксиды не имеют соответствующих гидроксидов и солей. Таких оксидов немного: N 2 O, NO, SiO, CO.
Солеобразующие оксиды в зависимости от кислотно-основного характера делятся на кислотные, амфотерные и основные.
Основные оксиды образованы металлами с небольшими степенями окисления +1, +2. Амфотерные оксиды образованы переходными металлами со степенями окисления +3, +4, а также Be, Zn, Sn, Pb. Кислотные оксиды образованы неметаллами, а также металлами со степенью окисления больше, чем +4. Рис. 3.
ОСНОВАНИЯ – это сложные вещества, состоящие из ионов металла и гидроксид-ионов.
это сложные вещества, которые имеют свойства и кислот, и оснований, и потому их формулы можно записывать в разных формах:
форма основания форма кислоты
КИСЛОТЫ – это сложные вещества, состоящие из ионов водорода и кислотных остатков.
СОЛИ – это сложные вещества, состоящие из ионов металла и кислотных остатков.
Средние соли состоят из катионов металла (или аммония) и анионов кислотных остатков. Кислые соли, кроме катионов металла, содержат катионы водорода и анион кислотного остатка. Основные соли в своем составе содержат гидроксид-анионы.
Соли с двумя разными анионами и одним катионом называют смешанными. Например, Са(OCl)Cl – хлорид-гипохлорит кальция.
В комплексных солях содержится сложный ион, который принято заключать в квадратные скобки.
Классификация неорганических веществ
Среди простых веществ выделяют металлы и неметаллы. Среди сложных: оксиды, основания, кислоты и соли. Классификация неорганических веществ построена следующим образом:
Большинство химических свойств мы изучим по мере продвижения по периодической таблице Д.И. Менделеева. В этой статье мне хотелось бы подчеркнуть ряд принципиальных деталей, которые помогут в дальнейшем при изучении химии.
Оксиды
Все оксиды подразделяются на солеобразующие и несолеобразующие. Солеобразующие имеют соответствующие им основания и кислоты (в той же степени окисления (СО)!) и охотно вступают в реакции солеобразования. К ним относятся, например:
Солеобразующие оксиды, в свою очередь, делятся на основные, амфотерные и кислотные.
Основным оксидам соответствуют основания в той же СО. В химических реакциях основные оксиды проявляют основные свойства, образуются исключительно металлами. Примеры: Li2O, Na2O, K2O, Rb2O CaO, FeO, CrO, MnO.
Основные оксиды взаимодействуют с водой с образованием соответствующего основания (реакцию идет, если основание растворимо) и с кислотными оксидами и кислотами с образованием солей. Между собой основные оксиды не взаимодействуют.
Li2O + H2O → LiOH (основный оксид + вода → основание)
Здесь не происходит окисления/восстановления, поэтому сохраняйте исходные степени окисления атомов.
Эти оксиды действительно имеют двойственный характер: они проявляют как кислотные, так и основные свойства. Примеры: BeO, ZnO, Al2O3, Fe2O3, Cr2O3, MnO2, PbO, PbO2, Ga2O3.
С водой они не взаимодействуют, так как продукт реакции, основание, получается нерастворимым. Амфотерные оксиды реагируют как с кислотами и кислотными оксидами, так и с основаниями и основными оксидами.
ZnO + KOH + H2O → K2[Zn(OH)4] (амф. оксид + основание = комплексная соль)
ZnO + N2O5 → Zn(NO3)2 (амф. оксид + кисл. оксид = соль; СО азота сохраняется в ходе реакции)
Fe2O3 + HCl → FeCl3 + H2O (амф. оксид + кислота = соль + вода; обратите внимание на то, что СО Fe = +3 не меняется в ходе реакции)
Проявляют в ходе химических реакций кислотные свойства. Образованы металлами и неметаллами, чаще всего в высокой СО. Примеры: SO2, SO3, P2O5, N2O3, NO2, N2O5, SiO2, MnO3, Mn2O7.
Кислотные оксиды вступают в реакцию с основными и амфотерными, реагируют с основаниями. Реакции между кислотными оксидами не характерны.
SO2 + Na2O → Na2SO3 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +4)
SO3 + Li2O → Li2SO4 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +6)
P2O5 + NaOH → Na3PO4 + H2O (кисл. оксид + основание = соль + вода)
Реакции несолеобразующих оксидов с основаниями, кислотами и солеобразующими оксидов редки и не приводят к образованию солей. Некоторые из несолеобразующих оксидов используют в качестве восстановителей:
FeO + CO → Fe + CO2 (восстановление железа из его оксида)
Основания
Основания классифицируются по количеству гидроксид-ионов в молекуле на одно-, двух- и трехкислотные.
Так же, как и оксиды, основания различаются по свойствам. Все основания хорошо реагируют с кислотами, даже нерастворимые основания способны растворяться в кислотах. Также нерастворимые основания при нагревании легко разлагаются на воду и соответствующий оксид.
Mg(OH)2 → (t) MgO + H2O (при нагревании нерастворимые основания легко разлагаются)
Если в ходе реакции основания с солью выделяется газ, выпадает осадок или образуется слабый электролит (вода), то такая реакция идет. Нерастворимые основания с солями почти не реагируют.
Ba(OH)2 + NH4Cl → BaCl2 + NH3 + H2O (в ходе реакции образуется нестойкое основание NH4OH, которое распадается на NH3 и H2O)
KOH + BaCl2 ↛ реакция не идет, так как в продуктах нет газа/осадка/слабого электролита (воды)
В растворах щелочей pH > 7, поэтому лакмус окрашивает их в синий цвет.
Al(OH)3 + HCl → AlCl3 + H2O (амф. гидроксид + кислота = соль + вода)
Al(OH)3 + KOH → K[Al(OH)4] (амф. гидроксид + основание = комплексная соль)
При нагревании до высоких температур комплексные соли не образуются.
Кислоты
Кислоты отлично реагируют с основными оксидами, основаниями, растворяя даже те, которые выпали в осадок (реакция нейтрализации). Также кислоты способны вступать в реакцию с теми металлами, которые стоят в ряду напряжений до водорода (то есть способны вытеснить его из кислоты).
Zn + HCl → ZnCl2 + H2↑ (реакция идет, так как цинк стоил в ряду активности левее водорода и способен вытеснить его из кислоты)
Cu + HCl ↛ (реакция не идет, так как медь расположена в ряду активности правее водорода, менее активна и не способна вытеснить его из кислоты)
Все кислоты подразделяются на сильные и слабые. Напомню, что мы составили подробную таблицу сильных и слабых кислот (и оснований!) в теме гидролиз. В реакции из сильной кислоты (соляной) можно получить более слабую, например, сероводородную или угольную кислоту.
В завершении подтемы кислот предлагаю вам вспомнить названия основных кислот и их кислотных остатков.
Блиц-опрос по теме Классификация неорганических веществ
Классификация химических соединений
Все вещества можно разделить на простые(состоящие из атомов одного химического элемента) и сложные(состоящие из атомов разных химических элементов). Простые вещества делятся на металлы и неметаллы.
Металлы обладают характерным “металлическим” блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы, кроме ртути, находятся в твердом состоянии.
Неметаллы не обладают блеском, хрупки, плохо проводят теплоту и электричество. При комнатной температуре некоторые неметаллы находятся в газообразном состоянии.
Сложные вещества делят на органические и неорганические.
Органическими соединениями принято называть соединения углерода. Органические соединения входят в состав биологических тканей и являются основой жизни на Земле.
Все остальные соединения называются неорганическими (реже минеральными). Простые соединения углерода (СО, СО2 и ряд других) принято относить к неорганическим соединениям, их обычно рассматривают в курсе неорганической химии.
Классификация неорганических соединений
Неорганические вещества делят на классы либо по составу (бинарные и многоэлементные; кислородосодержащие, азотсодержащие и т.п.), либо по функциональным признакам.
К важнейшим классам неорганических соединений, выделяемых по функциональным признакам, относятся соли, кислоты, основания и оксиды.
Соли – это соединения, которые в растворе диссоциируют на катионы металла и кислотные остатки. Примерами солей могут служить, например, сульфат бария BaSO4 и хлорид цинка ZnCl2.
Кислоты – вещества, диссоциирующие в растворах с образованием ионов водорода. Примерами неорганических кислот могут служить соляная (НCl), серная (H2SO4), азотная (HNO3), фосфорная (H3PO4) кислоты. Наиболее характерное химическое свойство кислот – их способность реагировать с основаниями с образованием солей. По степени диссоциации в разбавленных растворах кислоты подразделяются на сильные кислоты, кислоты средней силы и слабые кислоты. По окислительно–восстановительной способности различают кислоты–окислители (HNO3) и кислоты–восстановители (HI, H2S). Кислоты реагируют с основаниями, амфотерными оксидами и гидроксидами с образованием солей.
Основания – вещества, диссоциирующие в растворах с образованием только гидроксид-анионов (OH 1- ). Растворимые в воде основания называют щелочами (КОН, NaOH). Характерное свойство оснований – взаимодействие с кислотами с образованием соли и воды.
Оксиды – это соединения двух элементов, один из которых кислород. Различают оксиды основные, кислотные и амфотерные. Основные оксиды образованы только металлами (CaO, K2O), им соответствуют основания (Ca(OH)2, KOH). Кислотные оксиды образуются неметаллами (SO3, P2O5) и металлами, проявляющими высокую степень окисления (Mn2O7), им соответствуют кислоты (H2SO4, H3PO4, HMnO4). Амфотерные оксиды в зависимости от условий проявляют кислотные и основные свойства, взаимодействуют с кислотами и основаниями. К ним относятся Al2O3, ZnO, Cr2O3 и ряд других. Существуют оксиды, не проявляющие ни основных, ни кислотных свойств. Такие оксиды называются безразличными (N2O, CO и др.)
Классификация органических соединений
Углерод в органических соединениях, как правило, образует устойчивые структуры, в основе которых лежат углерод-углеродные связи. В способности образовывать такие структуры углерод не имеет себе равных среди других элементов. Большинство органических молекул состоит из двух частей: фрагмента, который в ходе реакции остаётся без изменения, и группы, подвергающейся при этом превращениям. В связи с этим определяется принадлежность органических веществ к тому или иному классу и ряду соединений.
Неизменный фрагмент молекулы органического соединения принято рассматривать в качестве остова молекулы. Он может иметь углеводородную или гетероциклическую природу. В связи с этим можно условно выделить четыре больших ряда соединений: ароматический, гетероциклический, алициклический и ациклический.
В органической химии также выделяют дополнительные ряды: углеводороды, азотсодержащие соединения, кислородосодержащие соединения, серосодержащие соединения, галогеносодержащие соединения, металлоорганические соединения, кремнийорганические соединения.
В результате комбинации этих основополагающих рядов образуются составные ряды, например: «Ациклические углеводороды», «Ароматические азотсодержащие соединения».
Наличие тех или иных функциональных групп либо атомов элементов определяет принадлежность соединения к соответствующему классу. Среди основных классов органических соединений выделяют алканы, бензолы, нитро- и нитрозосоединения, спирты, фенолы, фураны, эфиры и большое количество других.
Типы химических связей
Химическая связь – это взаимодействие, удерживающее два или несколько атомов, молекул или любую комбинацию из них. По своей природе химическая связь представляет собой электрическую силу притяжения между отрицательно заряженными электронами и положительно заряженными атомными ядрами. Величина этой силы притяжения зависит главным образом от электронной конфигурации внешней оболочки атомов.
Способность атома образовывать химические связи характеризуется его валентностью. Электроны, участвующие в образовании химической связи, называются валентными.
Различают несколько типов химических связей: ковалентную, ионную, водородную, металлическую.
При образовании ковалентной связи происходит частичное перекрывание электронных облаков взаимодействующих атомов, образуются электронные пары. Ковалентная связь оказывается тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.
Различают полярную и неполярную ковалентные связи.
Если двухатомная молекула состоит из одинаковых атомов (H2, N2), то электронное облако распределяется в пространстве симметрично относительно обоих атомов. Такая ковалентная связь называется неполярной (гомеополярной). Если же двухатомная молекула состоит из разных атомов, то электронное облако смещено к атому с большей относительной электроотрицательностью. Такая ковалентная связь называется полярной (гетерополярной). Примерами соединений с такой связью могут служить HCl, HBr, HJ.
В рассмотренных примерах каждый из атомов обладает одним неспаренным электроном; при взаимодействии двух таких атомов создается общая электронная пара – возникает ковалентная связь. В невозбужденном атоме азота имеется три неспаренных электрона, за счет этих электронов азот может участвовать в образовании трех ковалентных связей (NH3). Атом углерода может образовать 4 ковалентных связи.
Перекрывание электронных облаков возможно только при их определенной взаимной ориентации, при этом область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам. Другими словами, ковалентная связь обладает направленностью.
Энергия ковалентных связей находится в пределах 150–400 кДж/моль.
Химическая связь между ионами, осуществляемая электростатическим притяжением, называется ионной связью. Ионную связь можно рассматривать как предел полярной ковалентной связи. В отличие от ковалентной связи ионная связь не обладает направленностью и насыщаемостью.
Важным типом химической связи является связь электронов в металле. Металлы состоят из положительных ионов, которые удерживаются в узлах кристаллической решетки, и свободных электронов. При образовании кристаллической решетки валентные орбитали соседних атомов перекрываются и электроны свободно перемещаются из одной орбитали в другую. Эти электроны уже не принадлежат определенному атому металла, они находятся на гигантских орбиталях, которые простираются по всей кристаллической решетке. Химическая связь, осуществляемая в результате связывания положительных ионов решетки металла свободными электронами, называется металлической.
Между молекулами (атомами) веществ могут осуществляться слабые связи. Одна из самых важных – водородная связь, которая может быть межмолекулярной и внутримолекулярной. Водородная связь возникает между атомом водорода молекулы (он заряжен частично положительно) и сильно электроотрицательным элементом молекулы (фтор, кислород и т.п.).
Энергия водородной связи значительно меньше энергии ковалентной связи и не превышает 10 кДж/моль. Однако этой энергии оказывается достаточно для создания ассоциаций молекул, затрудняющих отрыв молекул друг от друга. Водородные связи играют важную роль в биологических молекулах (белках и нуклеиновых кислотах), во многом определяют свойства воды.
Силы Ван-дер-Ваальсатакже относятся к слабым связям. Они обусловлены тем, что любые две нейтральных молекулы (атома) на очень близких расстояниях слабо притягиваются из-за электромагнитных взаимодействий электронов и ядер одной молекулы с электронами и ядрами другой.
Виды простых и сложных веществ
Простые и сложные вещества в химии
В неорганической химии вещества по составу делятся на простые и сложные.
Сложные вещества — соединения:
Классификация простых веществ
1. Простые вещества условно делят на две группы: металлы и неметаллы.
Неметаллы в Периодической системе — это все элементы VIII А-группы (благородные газы) и VII А-группы (галогены), элементы VI А-группы (кроме полония), элементы V А-группы: азот, фосфор, мышьяк; углерод, кремний (IV А-группа); бор (III А-группа), а также водород. Остальные элементы относят к металлам.
Отличия свойств металлов и неметаллов приведены в таблице 1:
Амфотерные элементы находятся в А-группах Периодической системы: бериллий Be, алюминий Al, галлий Ga, германий Ge, олово Sn, свинец Pb, сурьма Sb, висмут Bi, полоний Po и др., а также большинство элементов Б-групп: хром Cr, марганец Mn, железо Fe, цинк Zn, кадмий Cd, золото Au и др., проявляют и металлические (оснóвные для соединений), и неметаллические (кислотные для соединений) свойства.
Благородные (инертные) газы (VIII А-группа Периодической системы): гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe и радиоактивный радон Rn:
2. Сложные соединения и их отличия от простых веществ.
Сложные вещества бывают органические, в основе которых лежит углерод, и неорганические (безуглеродные и некоторые углеродсодержащие соединения: карбиды, карбонаты, оксиды углерода и другие). Неорганические чаще всего подразделяют на оксиды, основания, кислоты и соли.
Главные отличия сложных неорганических веществ:
Классификация неорганических соединений и их основные свойства приведены в таблице 2.
Классы и номенклатура неорганических веществ
Номенклатура — способ называния веществ.
Химическая формула — представление состава вещества с использованием символов химических элементов, числовых индексов и других знаков. Химическое название определяется составом вещества и изображается с помощью слова или группы слов. Названия строятся по номенклатурным правилам, с использованием русских названий элементов, кроме случаев, когда традиционно употребляются латинские корни (таблица 3):
Li+1 и O-2→ Li2O; Al+3 и O-2→ Al2O3; N+5 и O-2→ N2O5.
Название оксида: слово «оксид» в именительном падеже + название элемента Э в родительном падеже: оксид лития Li2O, оксид алюминия Al2O3.
Если элемент образует несколько оксидов, то в конце добавляют степень окисления римскими цифрами, заключая их в скобки:
Оксиды, которым соответствуют кислоты, также называют ангидридами: серный ангидрид SO3, азотный ангидрид N2O5 и др.
K+1 и OH- → KOH, Mg+2 и OH- → Mg(OH)2.
Название: слово «гидроксид» в именительном падеже + название элемента в родительном падеже: гидроксид калия, гидроксид магния.
Если элемент образует несколько гидроксидов, то в конце добавляют степень окисления римскими цифрами, заключая их в скобки:
Fe(OH)2 — гидроксид железа (II), Cr(OH)3 — гидроксид хрома (III).
Названия бескислородных кислот: корень русского названия элемента, образующего кислоту + суффикс «о» + «-водородная кислота», например: HBr — бромоводородная кислота, HCl — хлороводородная кислота, H2S — сероводородная кислота.
Названия кислородсодержащих кислот: русское название образующего элемента + «кислота», с учетом правил:
Названия наиболее распространенных кислот и их остатков приведены в таблице 4:
Формула и название кислоты | Название кислотного остатка, образующего соль |
HAlO2 метаалюминиевая | метаалюминат |
H3AlO3 ортоалюминиевая | ортоалюминат |
HAsO3 метамышьяковая | метаарсенат |
H3AsO4 ортомышьяковая | ортоарсенат |
H3BO3 ортоборная | ортоборат |
HBr бромоводородная | бромид |
HBrO бромноватистая | гипобромит |
HBrO3 бромноватая | бромат |
HCN циановодородная | цианид |
H2CO3 угольная | карбонат |
HCl хлороводородная | хлорид |
HClO хлорноватистая | гипохлорит |
HClO2 хлористая | хлорит |
HClO3 хлорноватая | хлорат |
HClO4 хлорная | перхлорат |
HF фтороводородная | фторид |
HJ йодоводородная | йодид |
HMnO4 марганцовая | перманганат |
HNO2 азотистая | нитрит |
HNO3 азотная | нитрат |
HPO3 метафосфорная | метафосфат |
H3PO4 ортофосфорная | ортофосфат |
H2S сероводородная | сульфид |
H2SO3 сернистая | сульфит |
H2SO4 серная | сульфат |
H2SiO3 метакремниевая | метасиликат |
H3SiO4 ортокремниевая | ортосиликат |
Название образуется в зависимости от типа соли.
Бинарные соединения — сложные вещества, состоящие из двух элементов. В таких соединениях встречается два типа химической связи: ковалентная полярная (для неметаллов и некоторых амфотерных элементов) или ионная (для солей бескислородных кислот).
Для некоторых есть тривиальные названия: NH3 — аммиак, SiН4 — силан, PH3 — фосфин и др.
Строение и химические свойства
Простые вещества состоят из атомов одного химического элемента:
Порядок соединения атомов при образовании из них веществ обусловливает особенности строения веществ. Различают вещества молекулярного и немолекулярного строения. Немолекулярное строение имеют все металлы и большинство их соединений, графит, красный фосфор, алмаз, кремний Si и др. Большинство неметаллов и их соединений состоят из молекул, т. е. имеют молекулярное строение.
Химические свойства металлов и неметаллов
1. Химические свойства металлов определяются способностью отдавать свободные электроны с внешнего уровня. Они являются восстановителями. Взаимодействие идет с:
2. Химические свойства неметаллов обусловлены свободными электронами (от 3 до 7) на внешнем электронном уровне.
Химические свойства благородных газов
Строение и основные химические свойства сложных веществ
Сложные соединения имеют ионную или ковалентную связь между атомами.
ZnO + H2SO4 → ZnSO4 + H2О,
ZnO+ 2NaOH + H2O → Na2[Zn(OH)4].
Все основания реагируют с кислотами (реакция нейтрализации):
1. Щелочи взаимодействуют с:
2. Нерастворимые основания разлагаются при нагревании: Cu(OH)2 → CuO + H2O.
Также о химических свойствах неорганических соединений можно почитать в статье «Классы неорганических соединений».