к какому спектральному классу относятся звезды с самой высокой температурой поверхности

Спектральная классификация звезд: зависимость цвета и температуры

Спектральная классификация звезд и зависимость цвета от температуры их поверхности

Цвет звезды определяется разностью между её фотографической и фотовизуальной величинами. По общему соглашению эти шкалы выбраны так, чтобы белая звезда, типа Сириуса, имела в обеих шкалах одну и ту же величину. Разность между фотографической и фотовизуальной величинами называется показателем цвета данной звезды. Для таких голубых звёзд, как Ригель, это число будет отрицательным, так как такие звёзды на обычной пластинке дают большее почернение, чем на чувствительной к жёлтому свету.

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

Классификация звезд по температуре и цвету

У красных звёзд типа Бетельгейзе показатель цвета доходит до +2-3 звёздных ве­личин. Это измерение цвета одновременно является и измерением поверхностной температуры звезды, причём голубые звёзды оказываются значительно горячее красных.

Поскольку показатели цвета можно довольно легко получить даже для очень слабых звёзд, они имеют большое значение при изучении распределения звёзд в пространстве.

К важнейшим инструментам исследования звезд, относятся спектральные приборы. Даже самый поверхностный взгляд на спектры звезд обнаруживает, что не все они одинаковы. Бальмеровские линии водорода в некоторых спектрах сильны, в некоторых — слабы, в некоторых – вообще отсутствуют.

Какую температуру имеют солнечные пятна? Давайте посмотрим. Подробнее об этом

Вскоре стало ясно, что спектры звёзд можно разделить на небольшое число классов, постепенно переходящих друг в друга. Ныне применяемая спектральная классификация была разработана в Гарвардской обсерватории под руководством Э. Пикеринга.

Вначале спектральные классы обозначались латинскими буквами в алфавитном порядке, но в процессе уточнения классификации установились следующие обозначения для последовательных классов: О, В, A, F, G, К, М. Кроме того, немногочисленные необычные звёзды объединяются в классы R, N и S, а отдельные индивидуумы, совершенно не укладывающиеся в эту классификацию, обозначаются символом PEC (peculiar – особенные).

Интересно отметить, что расположение звёзд по классам является одновременно и расположением по цвету.

Вас может заинтересовать

Расположив спектры в том же порядке, мы видим, как максимум интенсивности излучения сдвигается от фиолетового к красному концу спектра. Это указывает на понижение температуры по мере перехода от класса О к классу М. Место звезды в последовательности определяется скорее температурой её поверхности, чем химическим составом. Принято считать, что химический состав один и тот же для огромного большинства звёзд, но различные температуры и давления на поверхности вызывают большие различия в звёздных спектрах.

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

Спектральные классы звезд

Голубые звёзды класса О являются самыми горячими. Их температура поверхности достигает 100 000°С. Спектры их легко узнать по присутствию некоторых характерных ярких линий или по распространению фона далеко в ультрафиолетовую область.

Непосредственно за ними следуют голубые звёзды класса В, также весьма горячие (поверхностная температура 25 000°С). Их спектры содержат линии гелия и водорода. Первые слабеют, а последние усиливаются при переходе к классу А.

В классах F и G (типичная звезда класса G — наше Солнце) постепенно усиливаются линии кальция и других металлов, как, например, железа и магния.

В классе К очень сильны линии кальция, появляются также молекулярные полосы.

Класс М включает красные звёзды с поверхностной температурой, меньшей 3000°С; в их спектрах видны полосы окиси титана.

Классы R, N и S относятся к параллельной ветви холодных звёзд, в спектрах которых присутствуют другие молекулярные компоненты.

Для знатока, однако, есть очень большая разница между «холодной» и «горячей» звёздами класса В. В точной классификационной системе каждый класс подразделяется ещё на несколько подклассов. Самые горячие звёзды класса В относятся к подклассу ВО, звёзды со средней для данного класса температурой — к подклассу В5, самые холодные звёзды — к подклассу В9. Непосредственно за ними следуют звёзды подкласса АО.

Звезды рождаются, живут и умирают почти как живые существа. Узнайте больше об эволюции звезд Подробнее об этом

Изучение спектров звёзд оказывается весьма полезным, так как даёт возможность грубо расклассифицировать звёзды по абсолютным звёздным величинам. Например, звезда ВЗ является гигантом с абсолютной звёздной величиной, примерно равной — 2,5. Возможно, правда, что звезда окажется в десять раз ярче (абсолютная величина — 5,0) или в десять раз слабее (абсолютная величина 0,0), так как по одному только спектральному классу невозможно дать более точной оценки.

Устанавливая классификацию звёздных спектров, весьма важно попытаться внутри каждого спектрального класса отделить гиганты от карликов или там, где этого деления не существует, выделить из нормальной последовательности гигантов звёзды, обладающие слишком большой или слишком малой светимостью.

Источник

Спектральные классы звезд

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

Звезды разных спектральных классов в сравнении

Звезды делятся на спектральные классы в зависимости от их спектра электромагнитного излучения. Из него можно получить такую важную информацию о космическом теле как температура и давление верхних слоев, химический состав, скорость вращения и прочие физические характеристики.

Получение спектров

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

Спектры излучения разных источников света

В простом случае спектр можно получить следующим образом: свет, излучаемый объектом, пропускается через узкое отверстие, позади которого располагается призма. Последняя преломляет свет, который после направляется на экран или специальную фотопленку. Полученное изображение представляется в виде плавного градиента цветов от фиолетового к красному. Спектр без каких-либо черных линий называется непрерывным. Подобная картина наблюдается при излучении света твердыми или жидкими телами, к примеру – лампой накаливания.

Рассмотрим следующий случай: пусть имеется горелка, в пламя которой поместили некоторую массу соли. В описанном случае в свете пламени будет наблюдаться ярко-желтый цвет. И если посмотреть через спектроскоп на эти испарения, то мы увидим яркую желтую линию. Это означает, что разогретые пары натрия излучают свет с длиной волны желтого цвета. Данное свойство присущее любому веществу в газообразном состоянии, а его спектр называется линейчатым.

При наблюдении за Солнцем немецкий оптик Йозеф Фраунгофер отметил, что в его непрерывном спектре излучения имеются некие тонкие черные линии. Позже Густав Кирхгоф определил, что всякий разреженный газ поглощает лучи света именно тех длин волн, которые испускает сам, находясь в состоянии свечения. Получаемые на непрерывном спектре черные линии были названы как линии поглощения. Применив упомянутые законы к Солнцу, ученые, смогли выявить химический состав атмосферы звезды. Так как газы в атмосфере поглощали излучение с определенными длинами волн.

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

40 различных спектров Солнца

В дальнейшем в спектроскопии появилось множество методов изучения других свойств звезд, то бишь смещение спектра в определенную сторону, сравнение со спектром абсолютно черного тела, раздвоение линий наложения и прочее.

Сегодня приборы ученых позволяют измерять спектры звезд, в любых диапазонах помимо оптического, при помощи различных фильтров и окуляров, например в рентгеновском или ультрафиолетовом.

Классы Анджело Секки

Впервые классифицировал звездные спектры священник и астроном из Италии — Анджело Секки. В 1866-м году он разделил все небесные светила на три группы, в зависимости от температуры поверхности звезды и соответствующего ей цвета. За последующие 11 лет астроном добавил еще два класса.

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

Вега из созвездия Лиры

Гарвардская спектральная классификация

Разработана в 1890 — 1924 годах учеными обсерватории Гарварда, и постепенно заменившая классификацию Анджело Секки, став основной и использующейся сегодня. Гарвардская классификация строится на относительной интенсивности линий поглощения и фраунгофервских линий, а также на цвете звезд.

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

Таблица спектральных классов звезд

Каждый из перечисленных классов включает 10 подклассов от 0 до 9, где 0 – это наиболее горячие звезды, а 9 – наиболее холодные. Лишь класс O делится иначе — от 4 до 9,5.

Йеркская классификация с учётом светимости

В 1943 г. в одноименной обсерватории была разработана еще Йеркская классификация, которая учитывает светимость звезд, что отражается в ее названии. Иначе ее называют МКК — по первым буквам фамилий ученых: В.В. Морган, П.К. Кинан и Э. Келлман. Дело в том, что Гарвардская классификация не принимает в расчет такую важную характеристику небесного светила как светимость. Позже Йеркская классификация была отображена Эйнаром Герцшпрунгом (Дания) и Генри Расселом (США) в виде диаграммы с зависимостью спектрального класса от светимости. Таким образом, мы можем визуально наблюдать закономерность в свойствах звезд разного рода.

Материалы по теме

Диаграмма Герцшпрунга-Рассела

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

Звезды разных классов

Данная диаграмма позволяет также определить светимость звезды, при наличии ее спектра. Исходя из вышеописанных классификаций сегодня Солнце относят к классу G2V.

Существует множество дополнительных спектральных классов для более экзотических объектов. Например, Q – для молодых звезд, P – для планетарных туманностей, D – для белых карликов, W для самых горячих светил, температура которых превышает температуру звезд класса O, и может достигать около 100 000 К.

Характеристические особенности в классе

Очевидно, каждая звезда хоть и относится к определенному классу, все же остается индивидуальным и неповторимым объектом, как и человек. Потому существует ряд дополнительных буквенных обозначений, которые указывают на особенности светила. Тип звезды обозначается буквой, которая стоит перед спектральным классом: карлик (d от dwarf), сверхгигант (с), гигант (g), субгигант (sg), субкарлик (sd), белый карлик (w или wd).

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

Пульсар PSR J0348 +0432 — нейтронная звезда и белый карлик

Многие свойства звезды выражаются особенностями его спектра, для них существует множество буквенных обозначений, которые располагаются после спектрального класса, например сильные линии металлов буквой m, а резкие и узкие линии – s.

Используя вышеописанные спектральные классы, астрономы могут кратко изложить основные свойства и особенности космического объекта. Так ярчайшая точка ночного небосвода – Сириус АB представляет собой систему из двух звезд и имеет спектральный класс A1Vm/DA2. Это означает, что видимая звезда (Сириус А) относится к классу А с подклассом температуры 1, является карликом главной последовательности и имеет сильные линии металлов, о чем говорят буквы «V» и «m». Ее компаньон Сириус Б – желтый карлик с подклассом 2, имеющий в атмосфере водород, и не имеющий гелий, линии которых соответственно присутствуют/отсутствуют в спектре, на что указывает буква А.

Похожие статьи

Понравилась запись? Расскажи о ней друзьям!

Источник

К какому спектральному классу относятся звезды с самой высокой температурой поверхности

Спектры звезд – это их паспорта с описанием всех звездных особенностей. Звезды состоят из тех же химических элементов, которые известны на Земле, но в процентном отношении в них преобладают легкие элементы: водород и гелий.

Спектры звезд – это их паспорта с описанием всех звездных особенностей.

По спектру звезды можно узнать ее светимость, расстояние до звезды, температуру, размер, химический состав ее атмосферы, скорость вращения вокруг оси, особенности движения вокруг общего центра тяжести.

Спектральный аппарат, устанавливаемый на телескопе, раскладывает свет звезды по длинам волн в полоску спектра. По спектру можно узнать, какая энергия приходит от звезды на различных длинах волн и оценить очень точно ее температуру. Цвет и спектр звезд связан с их температурой. В холодных звездах с температурой фотосферы 3000 К преобладает излучение в красной области спектра. В спектрах таких звездах много линий металлов и молекул. В горячих голубых звездах с температурой свыше 10000–15000 К большая часть атомов ионизована. Полностью ионизованные атомы не дают спектральных линий, поэтому в спектрах таких звездах линий мало.

На основе многочисленных снимков спектров звезд, полученных в США на Гарвардской обсерватории, в начале XX в. была разработана детальная классификация звездных спектров, которая легла в основу современной спектральной классификации.

В Гарвардской классификации спектральные типы (классы) обозначены буквами латинского алфавита: О, В, A, F, G, К и М. Поскольку в эпоху разработки этой классификации связь между видом спектра и температурой не была еще известна, то после установления соответствующей зависимости пришлось изменить порядок спектральных классов, который первоначально совпадал с алфавитным расположением букв.

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

Основная (гарвардская) спектральная классификация звёзд

Внутри класса звёзды делятся на подклассы от 0 (самые горячие) до 9 (самые холодные). В классе О подклассы начинаются с О5. Последовательность спектральных классов отражает непрерывное падение температуры звезд по мере перехода к все более поздним спектральным классам.

Подавляющее большинство звезд относится к последовательности от О до М. Эта последовательность непрерывна: характеристики звезд плавно изменяются при переходе от одного класса к другому.

Спектр. классЦветТемпер., KОсобенности спектраТипичные звезды
ОГолубой40000Интенсивные линии ионизированного гелия, линий металлов нетМинтака
ВГолубовато-белый20000Линии нейтрального гелия. Слабые линии Н и К ионизованного кальцияСпика
АБелый10000Линии водорода достигают наибольшей интенсивности. Видны линии Н и К ионизованного кальция, слабые линии металловСириус, Вега
FЖелтоватый7000Ионизированные металлы. Линии водорода ослабеваютПроцион, Канопус
GЖелтый6000Нейтральные металлы, интенсивные линии ионизованного кальция Н и КСолнце, Капелла
КОранжевый4500Линий водорода почти нет. Присутствуют слабые полосы окиси титана. Многочисленные линии металловАрктур, Альдебаран
МКрасный3000Сильные полосы окиси титана и других молекулярных соединенийАнтарес, Бетельгейзе

Характерной особенностью звездных спектров также является наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд. Химический состав наружных слоев звезд, откуда к нам непосредственно приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а количество остальных элементов достаточно невелико. Приблизительно на каждые десять тысяч атомов водорода приходится тысяча атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Примеси остальных элементов совершенно ничтожны. Без преувеличения можно сказать, что звезды состоят из водорода и гелия с небольшой примесью более тяжелых элементов.

Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с нашим Солнцем (спектральный класс которого G2), представляются желтыми, звезды же спектральных классов К и М – красные. В астрофизике имеется тщательно разработанная и вполне объективная система цветов. Она основана на сравнении наблюдаемых звездных величин, полученных через различные строго эталонированные светофильтры. Количественно цвет звезд характеризуется разностью двух величин, полученных через два фильтра, один из которых пропускает преимущественно синие лучи («В»), а другой имеет кривую спектральной чувствительности, сходную с человеческим глазом («V»). Техника измерений цвета звезд настолько высока, что по измеренному значению B-V можно определить спектральный класс звезды с точностью до подкласса. Для слабых звезд анализ цветов – единственная возможность их спектральной классификации.

Гарвардская спектральная классификация основана на наличии или отсутствии, а также относительной интенсивности определенных спектральных линий. Кроме перечисленных в таблице основных спектральных классов, для относительно холодных звезд имеются еще классы N и R (полосы поглощения молекул углерода C2, циана CN и окиси углерода CO), класс S (полосы окисей титана TiO и циркония ZrO), а также для самых холодных звезд – класс L (полоса гидрида хрома CrH, линии рубидия, цезия, калия и натрия). Для объектов субзвездного типа – «коричневых карликов», промежуточных по массе между звездами и планетами, недавно введен специальный спектральный класс T (полосы поглощения воды, метана и молекулярного водорода).

Спектральные классы О, В, А часто называют горячими или ранними, классы F и G – солнечными, а классы К и М – холодными или поздними спектральными классами.

Так как одному гарвардскому спектральному классу могут соответствовать звёзды с одинаковой температурой фотосферы, но различных классов светимости (то есть отличающимися на порядки светимостями), то с учётом светимости была разработана йеркская спектральная классификация (называемая ещё МКК – по инициалам её авторов У. Моргана, Ф. Кинана и Э. Келмана).

В соответствии с этой классификацией звезде приписывают гарвардский спектральный класс и класс светимости.

Различают следующие классы светимости

КлассНазваниеАбс. звёздные
величины MV
0Гипергиганты
Ia+Ярчайшие сверхгиганты−10
IaЯркие сверхгиганты−7,5
IbНормальные сверхгиганты−4,7
IIЯркие гиганты−2,2
IIIНормальные гиганты+1,2
IVСубгиганты+2,7
VКарлики главной последовательности+4
VIСубкарлики+5-6
VIIБелые карлики+13-15

Таким образом, если гарвардская классификация определяет абсциссу диаграммы Герцшпрунга – Рассела, то йеркская – положение звезды на этой диаграмме. Дополнительным преимуществом йеркской классификации является возможность по виду спектра звезды оценить её светимость и, соответственно, по видимой величине – расстояние (метод спектрального параллакса).

Солнце, будучи жёлтым карликом, имеет йеркский спектральный класс G2V.

Звёзды одинаковых (или близких) классов светимости образуют на диаграмме Герцшпрунга – Рассела последовательности (ветви), например, ветвь красных гигантов или белых карликов.

Диаграмма Герцшпрунга-Рассела
(в разных представлениях)

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

Диаграмма была предложена астрономами Эйнаром Герцшпрунгом и Генри Расселом независимо друг от друга примерно в 1910 году.

Используя диаграмму, астрономы способны проследить жизненный цикл звезд, от молодых горячих протозвезд, через основные фазы развития, вплоть до фазы умирающего красного гиганта. Диаграмма также показывает зависимость температуры и цвета звезд от различных этапов их жизненного цикла.

На диаграмме Герцшпрунга-Рассела можно увидеть диагональную линию, ведущую с левого верхнего угла вправо вниз. Она известна как Главная Последовательность и большинство звезд проходят именно эти этапы в своем развитии. В целом, когда температура звезды уменьшается, падает и светимость звезды. На диаграмме также можно увидеть ответвление, которое находится выше 100 ед. светимости. Это красные гиганты, которые находятся в конце своего жизненного цикла. Они могут быть одновременно яркими и относительно холодными, поскольку они очень большие. Обычно эта стадия длится несколько миллионов лет.

Наклонные пунктирные линии на нижней диаграмме определяют размеры звезд в радиусах Солнца.

Источник

Классификация звёзд. Часть 1 – спектральные классы.

к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Смотреть картинку к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Картинка про к какому спектральному классу относятся звезды с самой высокой температурой поверхности. Фото к какому спектральному классу относятся звезды с самой высокой температурой поверхности

В настоящий момент основной способ изучения свойств далёких звёзд заключается в исследовании приходящего от них электромагнитного излучения, которое при помощи спектральных аппаратов представляется в виде спектра. Он в свою очередь различается в зависимости от характеристик той или иной звезды. По виду спектра и можно установить эти самые характеристики. В данной статье упор будет сделан непосредственно на характеристики, от которых зависит вид спектра. Углубляться в изучение самого спектра (почему спектральные линии конкретных элементов преобладают в тех или иных звёздах, почему ширина у них такая-то и количество такое-то) мы не будем, дабы слишком не уходить в сторону физики.

Собственно основной вопрос – «Чем обусловлен различный вид спектров»? Тут можно выделить три характеристики звезды, которые определяют вид спектра – это химический состав атмосферы, плотность атмосферы и её температура. Тем не менее, наибольшее различие в спектрах звёзд обусловлено именно различной температурой их атмосфер, потому что химический состав большинства звёзд практически одинаков (водород, гелий и очень небольшая доля тяжёлых элементов), соответственно он не оказывает такого влияния на вид спектра, как температура, которая меняется в весьма значительных пределах (от 2500 до 100000 и более кельвинов). Конечно, есть отдельные группы звёзд с некоторыми аномалиями в химическом составе, но они также и имеют свою отдельную классификацию.

Основная современная (или гарвардская, поскольку разработана была в Гарвардской обсерватории) спектральная классификация звёзд – это температурная классификация, также её дополняет классификация по светимости (которая как раз таки и учитывает влияние на вид спектра различных плотностей звёздных атмосфер), но о классах светимости будет рассказано во второй части. А здесь рассмотрим именно основные спектральные классы температурной классификации и вкратце пройдёмся по дополнительным классам.

Основные спектральные классы

Существует 7 основных спектральных классов, которые отражают температуру звёзд: O, B, A, F, G, K, M. Однако такая шкала всё же довольно груба, поэтому для более точного указания температуры эти классы дополняются подклассами от 0(наиболее горячие) до 9(наиболее холодные) и всё идёт в следующей последовательности от более холодных к более горячим: …G2, G1, G0, F9, F8… и т.д., в некоторых случаях подкласс может быть записан десятичной дробью. Классы O, B, A также называют ранними или горячими, F и G – солнечными, а K и М – поздними или холодными.

Класс O

Самые горячие звёзды, с температурой фотосферы (видимой поверхности) более 30000 K, имеют голубой цвет. Эти звёзды редки, поскольку для такой температуры на поверхности звезда должна производить много энергии у себя в ядре, а это возможно только при достаточно большой массе, так что для образования такой звезды нужно много вещества, а оно есть только в очень плотных молекулярных облаках. Собственно звёзды класса O и встречаются в тех местах, где есть массивные газопылевые туманности – это комплексы звёздообразования в созвездии Ориона и Киля, а также туманность Тарантул в Большом Магеллановом Облаке. Примеры звёзд, относящихся к классу O − звёзды из Трапеции Ориона; Дзета Кормы. В виду значительной массы, продолжительность жизни таких звёзд весьма невелика (миллионы, десятки миллионов лет).

Класс B

Менее горячие звёзды, с температурой фотосферы от 10000 до 30000 K, также имеют голубоватый оттенок, но не такой насыщенный. Более распространены в Галактике, несколько из них имеется даже в радиусе 100 световых лет от Солнца (Регул и один из компонентов системы Алголь). Возникают также преимущественно в самых плотных газопылевых облаках, однако изначально при образовании эти звёзды получают меньшую массу, чем звёзды класса O, так что их срок жизни может составлять уже более 100 миллионов лет, и они могут улететь на значительное расстояние от места своего образования. Помимо Регула и главного компонента Алголя, к классу B также относятся самые яркие звёзды из скопления Плеяды; Беллатрикс; Спика; Ригель и др.

Класс A

Звёзды с температурой фотосферы в пределах от 7500 до 10000 K, видимый цвет у них – белый с лёгким голубоватым оттенком. Встречаются они относительно часто. Срок жизни звёзд изначального этого класса составляет порядка миллиарда лет. Примеры: Сириус A; Альтаир; Вега; все звёзды из ковша Большой Медведицы (кроме Дубхе и Алькаида).

Класс F

Звёзды с температурой фотосферы 6000 – 7500 K, видимый цвет – белый, но по результатам фотометрических измерений их настоящий цвет − желтоватый. К этому классу относятся такие звёзды как: Процион А, Поррима, Полярная, Канопус.

Класс G

Класс K

Звёзды с температурой фотосферы порядка 4000 – 5000 K. Видимый цвет – светло-оранжевый, настоящий цвет – оранжевый. В отличие от звёзд более ранних классов, составляют уже довольно заметную долю в общем звёздном населении Галактики. К этому классу относятся – Альфа Центавра В; Эпсилон Эридана; Арктур; Альдебаран.

Класс M

Самые холодные звёзды, с температурой фотосферы порядка 2500 – 3500 K, визуально имеют насыщенный оранжевый оттенок, по результатам фотометрических исследований считаются звёздами красного цвета. Карликовые звёзды этого класса – самые распространённые во Вселенной, для их образования нужно меньше всего вещества, а в виду небольшой массы, срок жизни таких звёзд невообразимо громадный и составляет десятки, а то может и сотни миллиардов лет, так что по сути все звёзды, изначально образовавшиеся как карлики класса М, до сих пор ещё не исчерпали запасы своего «топлива». По сравнению с их долей в общем звёздном населении, доля звёзд остальных классов невелика и та приходится в основном на класс K. Основное звёздное население в окрестностях Солнца представлено звёздами-карликами спектрального класса М, но в виду очень низкой светимости мы не можем увидеть ни одну из этих звёзд невооружённым глазом, хотя их в действительности очень много. Примеры звёзд этого класса – Проксима Центавра; Звезда Барнарда; Бетельгейзе; Мира А.

Дополнительные спектральные классы

Пройдёмся по дополнительным спектральным классам, которые введены для характеристик отдельных групп звёзд, которые из-за особенностей своего спектра нельзя отнести к одному из вышеперечисленных основных классов.

Классы R и N

Углеродные звёзды. Это звёзды по температуре и цвету схожие со звёздами спектральных классов K и М, но с повышенным содержанием углерода в атмосфере.

Класс S

Циркониевые звёзды, Это звёзды-гиганты схожие по температуре и цвету со звёздами классов K и М, но в их спектре выражены линии оксида циркония.

Класс W

также WR и подклассы WN, WC

Звёзды Вольфа-Райе. Очень редкие звёзды в Галактике. Считается, что звезда Вольфа-Райе − это поздняя стадия эволюции очень массивной звезды. Для них характерна сильнейшая активность, так что такие звёзды бывают часто окружены туманностями. Температура звёзд Вольфа-Райе выше, чем температура звёзд класса O. Рекордное количество этих звёзд найдено в туманности Тарантула в Большом Магеллановом Облаке.

Класс D

и подклассы DA, DW и т.д.

Белые карлики. Белые карлики – ядра уже проэволюционировавших звёзд малой и умеренной массы, отличаются малым размером (порядка размеров небольших планет, вроде Земли) и как следствие – низкой светимостью. Однако при этом у них довольно высокая температура (десятки тысяч градусов) и масса порядка половины солнечной, а иногда и больше солнечной, что указывает на чудовищную среднюю плотность.

Классы L, T, Y

Эти классы используются для обозначения коричневых карликов различной температуры. Коричневые карлики – объекты с массой, промежуточной между массами звёзд (которые начинаются в районе 0,1 массы Солнца) и массами больших планет (верхний предел которой установлен на отметке 13-ти масс Юпитера). Наблюдать такие объекты довольно непросто, поскольку они практически ничего не излучают в видимом диапазоне.

Добавить комментарий Отменить ответ

Добро пожаловать к нам!

Этот сайт посвящен публикации результатов командной работы нескольких любителей астрономии. Мы описываем практическую часть мира космоса, ведем собственные наблюдения и съемки, пишем статьи, создаем свой собственный контент и делимся им с читателями. На нашем сайте вы можете увидеть результаты всех наших работ.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *