к какому семейству относится ртуть
Ртуть, свойства атома, химические и физические свойства
Ртуть, свойства атома, химические и физические свойства.
200,592(3) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 2
Ртуть — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 80. Расположен в 12-й группе (по старой классификации — побочной подгруппе второй группы), шестом периоде периодической системы.
Атом и молекула ртути. Формула ртути. Строение атома ртути:
Ртуть – металл. Относится к группе переходных металлов. Относится к тяжёлым и цветным металлам.
Ртуть обозначается символом Hg.
Как простое вещество ртуть при нормальных условиях представляет собой тяжёлый, жидкий металл серебристо-белого цвета (тяжёлую серебристо-белую жидкость), пары которой чрезвычайно ядовиты. Ртуть – один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй такой элемент – бром). Ртуть становится летучей уже при комнатной температуре. В газообразном состоянии ртуть бесцветна.
Молекула ртути одноатомна.
Химическая формула ртути Hg.
Строение атома ртути. Атом ртути состоит из положительно заряженного ядра (+80), вокруг которого по шести оболочкам движется 80 электронов. При этом 78 электронов находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку ртуть расположен в шестом периоде, оболочек всего шесть. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлены s- и р-орбиталями. Третья и пятая – внутренние оболочки представлены s-, р- и d-орбиталями. Четвертая – внутренняя оболочка представлены s-, р-, d- и f-орбиталями. Шестая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома ртути на 6s-орбитали находятся два спаренных электрона. В свою очередь ядро атома ртути состоит из 80 протонов и 121 нейтрона. Ртуть относится к элементам d-семейства.
Радиус атома ртути (вычисленный) составляет 171 пм.
Атомная масса атома ртути составляет 200,592(3) а. е. м.
Ртуть – малоактивный металл.
Изотопы и модификации ртути:
Свойства ртути (таблица): температура, плотность, давление и пр.:
100 | Общие сведения | |
101 | Название | Ртуть |
102 | Прежнее название | |
103 | Латинское название | Hydrargyrum |
104 | Английское название | Mercury |
105 | Символ | Hg |
106 | Атомный номер (номер в таблице) | 80 |
107 | Тип | Металл |
108 | Группа | Переходный, тяжелый, цветной металл |
109 | Открыт | Известна с древних времен |
110 | Год открытия | до 1500 года до н. э. |
111 | Внешний вид и пр. | Тяжёлый жидкий металл серебристо-белого цвета, летучий уже при комнатной температуре. В газообразном состоянии бесцветный |
112 | Происхождение | Природный материал |
113 | Модификации | |
114 | Аллотропные модификации | 3 аллотропные модификации: |
204 | Радиус атома (вычисленный) | 171 пм |
205 | Эмпирический радиус атома* | 150 пм |
206 | Ковалентный радиус* | 136 пм |
207 | Радиус иона (кристаллический) | Hg + (в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле) |
208 | Радиус Ван-дер-Ваальса | 155 пм |
209 | Электроны, Протоны, Нейтроны | 80 электронов, 80 протонов, 121 нейтрон |
210 | Семейство (блок) | элемент d-семейства |
211 | Период в периодической таблице | 6 |
212 | Группа в периодической таблице | 12-ая группа (по старой классификации – побочная подгруппа 2-ой группы) |
213 | Эмиссионный спектр излучения | |
300 | Химические свойства | |
301 | Степени окисления | -2, +1, +2 |
302 | Валентность | I, II |
303 | Электроотрицательность | 2,0 (шкала Полинга) |
304 | Энергия ионизации (первый электрон) | 1007,07 кДж/моль (10,437504(6) эВ) |
305 | Электродный потенциал | Hg2 2+ + 2e – → 2Hg, E o = +0,788 В, Hg 2+ + 2e – → Hg, E o = +0,850 В, 13,5954 г/см 3 (при 0 °C и иных стандартных условиях , состояние вещества – жидкость), 13,534 г/см 3 (при 20 °C и иных стандартных условиях , состояние вещества – жидкость), 8,3 Вт/(м·К) (при 300 K) |
500 | Кристаллическая решётка | |
511 | Кристаллическая решётка #1 | α-ртуть |
512 | Структура решётки | Ромбоэдрическая (тригональная) |
513 | Параметры решётки | a = 2,990 Å, α = 70,317° |
514 | Отношение c/a | |
515 | Температура Дебая | 100 K |
516 | Название пространственной группы симметрии | R_ 3m |
517 | Номер пространственной группы симметрии | 166 |
900 | Дополнительные сведения | |
901 | Номер CAS | 7439-97-6 |
205* Эмпирический радиус атома ртути согласно [1] и [3] составляет 151 пм и 157 пм соответственно.
206* Ковалентный радиус ртути согласно [1] и [3] составляет 132±5 пм и 149 пм соответственно.
401* Плотность ртути согласно [3] и [4] составляет 13,546 г/см 3 (при 20 °C и иных стандартных условиях , состояние вещества – жидкость) и 13,5461 г/см 3 (при 20 °C и иных стандартных условиях , состояние вещества – жидкость) соответственно.
403* Температура кипения ртути согласно [4] составляет 356,66 °C (629,81 К, 673,99 °F).
407* Удельная теплота плавления (энтальпия плавления ΔHпл) ртути согласно [3] составляет 2,295 кДж/моль.
408* Удельная теплота испарения (энтальпия кипения ΔHкип) ртути согласно [3] и [4] составляет 58,5 кДж/моль и 59,22 кДж/моль соответственно.
410* Молярная теплоёмкость ртути согласно [3] составляет 27,98 Дж/(K·моль).
Ртуть
(молярная масса)
(первый электрон)
Содержание
История
Ртуть известна с древних времён. Нередко её находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природной киновари. Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и её соединений, в частности сулемы. Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твёрдость при помощи серы или мышьяка, то получится золото. Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 году. Для представления элемента как у алхимиков, так и в настоящее время используется символ планеты Меркурий. Но принадлежность ртути к металлам была доказана только трудами Ломоносова и Брауна, которые в декабре 1759 года смогли заморозить ртуть и установить её металлические свойства в твёрдом состоянии: ковкость, электропроводность и др.
Происхождение названия
Нахождение в природе
Ртуть — относительно редкий элемент в земной коре со средней концентрацией 83 мг/т. Однако ввиду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе — рассеянная, и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути — 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.
Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути — тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).
Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.
В обычных условиях киноварь и металлическая ртуть не растворимы в воде, но в присутствии некоторых веществ (Fe2(SO4)3, озон, пероксид водорода) растворимость в воде этих минералов достигает десятков мг/л. Особенно хорошо растворяется ртуть в сульфидах щелочных металлов с образованием, например, комплекса HgS•nNa2S. Ртуть легко сорбируется глинами, гидроксидами железа и марганца, глинистыми сланцами и углями.
В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2 % Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда — шватцит (до 17 % Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb4S7. В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся, прежде всего, самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg2Cl2. На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения — терлингуаит Hg2ClO, эглестонит Hg4Cl.
Месторождения
Ртуть считается редким металлом.
Одно из крупнейших в мире ртутных месторождений находится в Испании (Альмаден). Известны месторождения ртути на Кавказе (Дагестан, Армения), в Таджикистане, Словении, Киргизии (Хайдаркан — Айдаркен), Донбассе (Горловка, Никитовский ртутный комбинат).
В России находятся 23 месторождения ртути, промышленные запасы составляют 15,6 тыс. тонн (на 2002 год), из них крупнейшие разведаны на Чукотке — Западно-Палянское и Тамватнейское.
В окружающей среде
До индустриальной революции осаждение ртути из атмосферы составляло около 4 нанограммов на 1 кубический дециметр льда. Природные источники, такие, как вулканы, составляют примерно половину всех выбросов атмосферной ртути. Причиной появления остальной половины является деятельность человека. В ней основную долю составляют выбросы в результате сгорания угля (главным образом в тепловых электростанциях) — 65 %, добыча золота — 11 %, выплавка цветных металлов — 6,8 %, производство цемента — 6,4 %, утилизация мусора — 3 %, производство соды — 3 %, чугуна и стали — 1,4 %, ртути (в основном для батареек) — 1,1 %, остальное — 2 %.
Одно из тяжелейших загрязнений ртутью в истории случилось в японском городе Минамата в 1956 году, что привело к более чем трём тысячам жертв, которые либо умерли, либо сильно пострадали от болезни Минамата.
Изотопы
Природная ртуть состоит из смеси 7 стабильных изотопов: 196 Hg (распространённость 0,155 %), 198 Hg (10,04 %), 199 Hg (16,94 %), 200 Hg (23,14 %), 201 Hg (13,17 %), 202 Hg (29,74 %), 204 Hg (6,82 %). Искусственным путём получены радиоактивные изотопы ртути с массовыми числами 171—210.
Получение
Ртуть получают обжигом киновари (сульфида ртути II) или металлотермическим методом:
HgS + O2 ⟶ Hg + SO2↑ HgS + Fe ⟶ FeS↓ + Hg
Пары ртути конденсируют и собирают. Этот способ применяли ещё алхимики древности.
На протяжении многих столетий в Европе основным и единственным месторождением ртути был Альмаден в Испании. В Новое время с ним стала конкурировать Идрия во владениях Габсбургов (современная Словения). Там же появилась первая лечебница для поражённых отравлением парами ртути рудокопов. В 2012 г. ЮНЕСКО объявило промышленную инфраструктуру Альмадена и Идрии памятником Всемирного наследия человечества.
В надписях во дворце древнеперсидских царей Ахеменидов (VI—IV века до н. э.) в Сузах упоминается, что ртутную киноварь доставляли сюда с Зеравшанских гор и использовали в качестве краски.
Введение
История
Ртуть известна с древних времен. Нередко её находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природной киновари. Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и её соединений, в частности сулемы. Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твердость при помощи серы или мышьяка, то получится золото. Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 г. Для представления элемента как у алхимиков, так и в нынешнее время используется символ планеты Меркурий. Но принадлежность ртути к металлам была доказана только трудами Ломоносова и Брауна, которые в декабре 1759 года смогли заморозить ртуть и установить её металлические свойства: ковкость, электропроводность и др.
Ртуть – вещество первого класса опасности. Является переходным металлом, представляющим собой серебристо-белую жидкость с тяжелой массой, пары которой очень ядовиты (в условиях привычной температуры жилых помещений).
Химические свойства
Для ртути характерны две степени окисления: +1 и +2. В степени окисления +1 ртуть представляет собой двухъядерный катион Hg 22+ со связью металл-металл. Ртуть – один из немногих металлов, способных формировать такие катионы, и у ртути они – самые устойчивые.
В степени окисления +1 ртуть склонна к диспропорционированию. Оно протекает при нагревании и под щ елачивании.
добавлении лигандов, стабилизирующих степень окисления ртути +2.
Из-за диспропорционирования и гидролиза гидроксид ртути ( I ) получить не удаётся.
На холоде ртуть +2 и металлическая ртуть, наоборот, сопропорционируют. Поэтому, в частности, при реакции нитрата ртути ( II ) со ртутью получается нитрат ртути ( I ).
В очень концентрированной щелочи оксид ртути частично растворяется с образованием гидроксокомплекса
Ртуть в степени окисления +2 образует уникально прочные комплексы со многими лигандами, причём как жёсткими, так и мягкими по теории ЖМКО. С йодом (-1), серой (-2) и углеродом она образует очень прочные ковалентные связи. По устойчивости связей металл-углерод ртути нет равных среди других металлов, поэтому получено огромное количество ртутьорганических соединений.
Из элементов II Б группы именно у ртути появляется возможность разрушения очень устойчивой 6 d 10 – электронной оболочки, что приводит к возможности существования соединений ртути( IV ), но они крайне малоустойчивы, поэтому эту степень окисления скорее можно отнести к курьёзной, чем к характерной. В частности, при взаимодействии атомов ртути и смеси неона и фтора при температуре 4К получен HgF 4.
Физические свойства
Плотность ртути при нормальных условиях – 13 500 кг/м3.
Таблица 1 – Зависимость плотности от температуры
Получение
Ртуть получают путём восстановления из её наиболее распространённого минерала – киновари.
Пары ртути конденсируют и собирают. Этот способ применяли ещё алхимики древности.
На протяжении многих столетий в Европе основным и единственным месторождением ртути был Альмаден в Испании. В Новое время с ним стала конкурировать Идрия вовладениях Габсбургов (современная Словения). Там же появилась первая лечебница для поражённых отравлением парами ртути рудокопов. В 2012 г. ЮНЕСКО объявило промышленную инфраструктуру Альмдена и Идрии памятником Всемирного наследия человечества.
В надписях во дворце древнеперсидских царей Ахеменидов ( VI – IV века до н. э.) в Сузах упоминается, что ртутную киноварь доставляли сюда с Зеравшанских гор и использовали в качестве краски.
Нахождение в природе
Ртуть – относительно редкий элемент в земной коре со средней концентрацией 83 мг/т. Однако ввиду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе – рассеянная, и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути – 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.
Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути – тиманит ( HgSe ) и онофрит (смесь тиманита и сфалерита).
Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.
Применение ртути и её соединений
Медицина
В связи с высокой токсичностью ртуть почти полностью вытеснена из медицинских препаратов. Её соединения (в частности, мертиолят) иногда используются в малых количествах как консервант для вакцин. Сама ртуть сохраняется в ртутных медицинских термометрах (один медицинский термометр содержит до 2 г ртути).
Однако вплоть до 1970-х годов соединения ртути использовались в медицине очень активно:
● хлорид ртути ( I ) (каломель) – слабительное;
● меркузал и промеран – сильные мочегонные;
● хлорид ртути ( II ), цианид ртути ( II ), амидохлорид ртути и жёлтый оксид ртути( II ) – антисептики (в том числе в составе мазей).
Известны случаи, когда при завороте кишок больному вливали в желудок стакан ртути. По мнению древних врачевателей, предлагавших такой метод лечения, ртуть благодаря своей тяжести и подвижности должна была пройти по кишечнику и под своим весом расправить его перекрутившиеся части.
Амальгаму серебра применяли в стоматологии в качестве материала зубных пломб до появления светоотверждаемых материалов.
Ртуть-203 ( T 1/2 = 53 сек) используется в радиофармакологии.
Техника
● Ртуть используется как рабочее тело в ртутных термометрах (особенно высокоточных), так как (а) обладает довольно широким диапазоном, в котором находится в жидком состоянии, (б) её коэффициент термического расширения почти не зависит от температуры и (в) обладает сравнительно малой теплоёмкостью. Сплав ртути с таллием используется для низкотемпературных термометров.
● Парами ртути заполняют люминесцентные лампы, поскольку пары светятся в тлеющем разряде. В спектре испускания паров ртути много ультрафиолетового света и, чтобы преобразовать его в видимый, стекло люминесцентных ламп изнутри покрывают люминофором. Без люминофора ртутные лампы являются источником жесткого ультрафиолета (254 нм), в каковом качестве и используются. Такие лампы делают из кварцевого стекла, пропускающего ультрафиолет, поэтому они называются кварцевыми.
● Ртутные электрические вентили (игнитроны) в мощных выпрямительных устройствах, электроприводах, электросварочных устройствах, тяговых и выпрямительных подстанциях и т. п. [18] со средней силой тока в сотни ампер и выпрямленным напряжением до 5 кВ.
● Ртуть и сплавы на её основе используются в герметичных выключателях, включающихся при определённом положении.
● Ртуть используется в датчиках положения.
● В некоторых химических источниках тока (например, ртутно-цинковых), в эталонных источниках напряжения (Нормальный элемент Вестона).
● Ртуть также иногда применяется в качестве рабочего тела в тяжелонагруженных гидродинамических подшипниках.
● Ртуть ранее входила в состав некоторых биоцидных красок для предотвращения обрастания корпуса судов в морской воде. Сейчас запрещается использовать такого типа покрытия.
● Иодид ртути( I ) используется как полупроводниковый детектор радиоактивного излучения.
● Фульминат ртути( II ) («гремучая ртуть») издавна применяется в качестве инициирующего ВВ (Детонаторы).
● Бромид ртути( I ) применяется при термохимическом разложении воды на водород и кислород (атомно-водородная энергетика).
● Перспективно использование ртути в сплавах с цезием в качестве высокоэффективного рабочего тела в ионных двигателях.
● До середины 20 века ртуть широко применялась в барометрах и манометрах.
● Ртутные вакуумные насосы были основными источниками вакуума в 19 и начале 20 веков.
● Ранее ртуть использовали для золочения поверхностей методом амальгамирования, однако в настоящее время от этого метода отказались из-за токсичности ртути.
● Соединения ртути использовались в шляпном производстве для выделки фетра.
Металлургия
● Металлическая ртуть применяется для получения целого ряда важнейших сплавов.
● Ранее различные амальгамы металлов, особенно золота и серебра, широко использовались в ювелирном деле, в производстве зеркал.
● Металлическая ртуть служит катодом для электролитического получения ряда активных металлов, хлора и щелочей. Сейчас вместо ртутных катодов используют электролиз с диафрагмой.
● Ртуть используется для переработки вторичного алюминия (см. амальгамация)
● Ртуть хорошо смачивает золото, поэтому ей обрабатывают золотоносные глины для выделения из них этого металла. Эта технология распространена, в частности, в Амазонии.
Химическая промышленность
● Соли ртути использовали в качестве катализатора промышленного получения ацетальдегида из ацетилена (реакция Кучерова), однако в настоящее время ацетальдегид получают прямым каталитическим окислением этана или этена.
● Реактив Несслера используется для количественного определения аммиака.
Сельское хозяйство
Высокотоксичные соединения ртути – каломель, сулему, мертиолят и другие – используют для протравливания семенного зерна и в качестве пестицидов.
Заключение
Запрет использования ртутьсодержащей продукции
С 2020 года международная конвенция, названная в честь массового отравления ртутью и подписанная многими странами, запретит производство, экспорт и импорт нескольких различных видов ртутьсодержащих продукции применяемой в быту, в том числе электрических батарей, электрических выключателей и реле, некоторых видов компактных люминесцентных ламп (КЛЛ), люминесцентных ламп с холодным катодом или с внешним электродом, ртутных термометров и приборов измерения давлении. Конвенция вводит регулирование использования ртути и ограничивает ряд промышленных процессов и отраслей, в том числе горнодобывающую (особенно непромышленную добычу золота), производство цемента.
Демеркуризация
Очистка помещений и предметов от загрязнений металлической ртутью и источников ртутных паров называется демеркуризацией. В быту широко применяется демеркуризация с помощью серы и хлорного железа FeCl 3.
Гигиеническое нормирование концентраций ртути
Предельно допустимые уровни загрязнённости металлической ртутью и её парами:
● ПДК в населённых пунктах (среднесуточная) – 0,0003 мг / м³
● ПДК в жилых помещениях (среднесуточная) – 0,0003 мг/м³
● ПДК воздуха в рабочей зоне (макс. разовая) – 0,01 мг/м³
● ПДК воздуха в рабочей зоне (среднесменная) – 0,005 мг/м³
● ПДК сточных вод (для неорганических соединений в пересчёте на двухвалентную ртуть) – 0,005 мг/ л
● ПДК водных объектов хозяйственно-питьевого и культурного водопользования, в воде водоёмов – 0,0005 мг/л