к каким спектральным классам относятся желтые карлики
Звезды карлики, их типы и отличия
Собственно говоря, звезды карлики это небольшие светила со слабым свечением. Хотя они являются довольно массивными.
Типы карликовых светил
Стоит отметить, что все объекты класса обладают небольшим размером, но могут отличаться другими характеристиками. Поэтому звезды карлики поделили на типы и разновидности.
Звезды белые карлики
Между прочим, белый карлик это потухшая и остывающая звезда. Другими словами, тело, находящееся на конечном этапе эволюции. Несмотря на то, что по размеру они похожи с нашей планетой, масса примерно такая же, как солнечная. Причем данный тип относится к спектральному классу А.
Как вы считаете, какая звезда превращается в белый карлик и чем отличаются белые карлики от обычных звезд?
По сути, звёздное тело малой и средней величины может превращаться в данный тип. Но только на завершающей стадии своего жизненного цикла. Это, так называемые вырожденные звёзды. В них давление вырожденного газа оказывает сопротивление гравитации.
Кстати, именно поэтому структура белых карликов отличается от остальных светил. Высокое давление оказывает прямое воздействие на атомы. Можно сказать, что при таких условиях возникает гравитационный коллапс. В результате формируется сильно сжатая и плотная структура из атомного ядра и электронов.
Правда, давление вырожденного газа не позволяет коллапсу продолжаться. И таким образом происходит превращение объекта в белое карликовое светило. Но при условии, что его масса не более солнечной в 1,4 раза. Если же она больше, то образуется нейтронная звезда.
Какие звезды называют желтыми карликами?
На самом деле, желтый карлик представляет собой тип звёздных тел главной последовательности, которые относятся к спектральному классу G. По оценке учёных, их масса может быть от 0,8 до 1,2 солнечных масс.
После того, как в них сгорает весь водород, жёлтая карликовая звезда расширяется и превращается в красный гигант.
Солнце (жёлтый карлик)
Оранжевые карликовые светила
Еще один тип главной последовательности звёзд малого размера и спектрального класса К. Их масса колеблется от 0,5 до 0,8 массы Солнца, а длительность жизни выше нашего главного светила.
Можно сказать, что оранжевые представители находятся где-то между жёлтыми и красными собратьями.
Красные карлики
Итак, звезда красный карлик представляет собой небольшое тело с невысоким значением массы. В результате для таких космических объектов характерны низкая температура и слабый уровень светимости. Собственно говоря, по этой причине они не видны с Земли без применения специальных приборов.
На диаграмме Герцшпрунга-Рассела находятся в самом низу. Главным образом, они относятся к позднему спектральному классу, чаще всего к классу М.
Наша галактика Млечный Путь богата именно на красных карликовых звёзд. По оценке астрономов, на их долю приходится до 80% всех астрономических тел в пределах нашей галактической системы.
Проксима Центавра (красный карлик)
Коричневые представители
И наконец, коричневый карлик — звезда со слабой яркостью (класс Т). Поскольку при их формировании начальная масса небольшая. Из-за чего внутри них нет ядерных реакций. Они попросту не могут возникнуть. Как оказалось, коричневые светила являются очень холодными объектами.
В них протекают термоядерные реакции синтеза лёгких элементов. К примеру, лития, бора, бериллия. Однако тепловыделение небольшое, поэтому ядерные процессы заканчиваются. А само космическое тело довольно скоро остывает и превращается в объекты, похожие на планеты.
Какие звезды карлики носят названия чёрные или мёртвые
В действительности, черный карлик — небольшое холодное светило, внутри которого отсутствуют какие-либо ядерные реакции. Либо потому что массы не хватило для возникновения этих процессов, либо в ядре сгорело всё топливо и они просто погасли. Во втором случае, их называют умершими или мёртвыми звёздными телами.
Вдобавок, выделяют субкоричневые или коричневые субкарлики. По массе они уступают коричневым карликам. Более того, это совершенно холодные космические объекты. Чаще всего их относят к планетам.
Примеры карликовых звёзд
Так как их огромное множество, то перечислять все не имеет смысла. Но отметим некоторые наиболее известные среди них.
Например, к белым карликам относится звезда Процион (компонент В), а к оранжевым — Альфа Центавра В или Арктур.
Самым простым и известным для нас жёлтым карликом выступает наше Солнце.
Помимо этого, Проксима Центавра (самая ближайшая к Земле) и Антарес являются красными карликами. А вот коричневый представитель класса, к примеру, Глизе 229В.
К каким спектральным классам относятся желтые карлики
Спектры звезд – это их паспорта с описанием всех звездных особенностей. Звезды состоят из тех же химических элементов, которые известны на Земле, но в процентном отношении в них преобладают легкие элементы: водород и гелий.
Спектры звезд – это их паспорта с описанием всех звездных особенностей.
По спектру звезды можно узнать ее светимость, расстояние до звезды, температуру, размер, химический состав ее атмосферы, скорость вращения вокруг оси, особенности движения вокруг общего центра тяжести.
Спектральный аппарат, устанавливаемый на телескопе, раскладывает свет звезды по длинам волн в полоску спектра. По спектру можно узнать, какая энергия приходит от звезды на различных длинах волн и оценить очень точно ее температуру. Цвет и спектр звезд связан с их температурой. В холодных звездах с температурой фотосферы 3000 К преобладает излучение в красной области спектра. В спектрах таких звездах много линий металлов и молекул. В горячих голубых звездах с температурой свыше 10000–15000 К большая часть атомов ионизована. Полностью ионизованные атомы не дают спектральных линий, поэтому в спектрах таких звездах линий мало.
На основе многочисленных снимков спектров звезд, полученных в США на Гарвардской обсерватории, в начале XX в. была разработана детальная классификация звездных спектров, которая легла в основу современной спектральной классификации.
В Гарвардской классификации спектральные типы (классы) обозначены буквами латинского алфавита: О, В, A, F, G, К и М. Поскольку в эпоху разработки этой классификации связь между видом спектра и температурой не была еще известна, то после установления соответствующей зависимости пришлось изменить порядок спектральных классов, который первоначально совпадал с алфавитным расположением букв.
Основная (гарвардская) спектральная классификация звёзд
Внутри класса звёзды делятся на подклассы от 0 (самые горячие) до 9 (самые холодные). В классе О подклассы начинаются с О5. Последовательность спектральных классов отражает непрерывное падение температуры звезд по мере перехода к все более поздним спектральным классам.
Подавляющее большинство звезд относится к последовательности от О до М. Эта последовательность непрерывна: характеристики звезд плавно изменяются при переходе от одного класса к другому.
Спектр. класс | Цвет | Темпер., K | Особенности спектра | Типичные звезды |
О | Голубой | 40000 | Интенсивные линии ионизированного гелия, линий металлов нет | Минтака |
В | Голубовато-белый | 20000 | Линии нейтрального гелия. Слабые линии Н и К ионизованного кальция | Спика |
А | Белый | 10000 | Линии водорода достигают наибольшей интенсивности. Видны линии Н и К ионизованного кальция, слабые линии металлов | Сириус, Вега |
F | Желтоватый | 7000 | Ионизированные металлы. Линии водорода ослабевают | Процион, Канопус |
G | Желтый | 6000 | Нейтральные металлы, интенсивные линии ионизованного кальция Н и К | Солнце, Капелла |
К | Оранжевый | 4500 | Линий водорода почти нет. Присутствуют слабые полосы окиси титана. Многочисленные линии металлов | Арктур, Альдебаран |
М | Красный | 3000 | Сильные полосы окиси титана и других молекулярных соединений | Антарес, Бетельгейзе |
Характерной особенностью звездных спектров также является наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд. Химический состав наружных слоев звезд, откуда к нам непосредственно приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а количество остальных элементов достаточно невелико. Приблизительно на каждые десять тысяч атомов водорода приходится тысяча атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Примеси остальных элементов совершенно ничтожны. Без преувеличения можно сказать, что звезды состоят из водорода и гелия с небольшой примесью более тяжелых элементов.
Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с нашим Солнцем (спектральный класс которого G2), представляются желтыми, звезды же спектральных классов К и М – красные. В астрофизике имеется тщательно разработанная и вполне объективная система цветов. Она основана на сравнении наблюдаемых звездных величин, полученных через различные строго эталонированные светофильтры. Количественно цвет звезд характеризуется разностью двух величин, полученных через два фильтра, один из которых пропускает преимущественно синие лучи («В»), а другой имеет кривую спектральной чувствительности, сходную с человеческим глазом («V»). Техника измерений цвета звезд настолько высока, что по измеренному значению B-V можно определить спектральный класс звезды с точностью до подкласса. Для слабых звезд анализ цветов – единственная возможность их спектральной классификации.
Гарвардская спектральная классификация основана на наличии или отсутствии, а также относительной интенсивности определенных спектральных линий. Кроме перечисленных в таблице основных спектральных классов, для относительно холодных звезд имеются еще классы N и R (полосы поглощения молекул углерода C2, циана CN и окиси углерода CO), класс S (полосы окисей титана TiO и циркония ZrO), а также для самых холодных звезд – класс L (полоса гидрида хрома CrH, линии рубидия, цезия, калия и натрия). Для объектов субзвездного типа – «коричневых карликов», промежуточных по массе между звездами и планетами, недавно введен специальный спектральный класс T (полосы поглощения воды, метана и молекулярного водорода).
Спектральные классы О, В, А часто называют горячими или ранними, классы F и G – солнечными, а классы К и М – холодными или поздними спектральными классами.
Так как одному гарвардскому спектральному классу могут соответствовать звёзды с одинаковой температурой фотосферы, но различных классов светимости (то есть отличающимися на порядки светимостями), то с учётом светимости была разработана йеркская спектральная классификация (называемая ещё МКК – по инициалам её авторов У. Моргана, Ф. Кинана и Э. Келмана).
В соответствии с этой классификацией звезде приписывают гарвардский спектральный класс и класс светимости.
Различают следующие классы светимости
Класс | Название | Абс. звёздные величины MV |
0 | Гипергиганты | |
Ia+ | Ярчайшие сверхгиганты | −10 |
Ia | Яркие сверхгиганты | −7,5 |
Ib | Нормальные сверхгиганты | −4,7 |
II | Яркие гиганты | −2,2 |
III | Нормальные гиганты | +1,2 |
IV | Субгиганты | +2,7 |
V | Карлики главной последовательности | +4 |
VI | Субкарлики | +5-6 |
VII | Белые карлики | +13-15 |
Таким образом, если гарвардская классификация определяет абсциссу диаграммы Герцшпрунга – Рассела, то йеркская – положение звезды на этой диаграмме. Дополнительным преимуществом йеркской классификации является возможность по виду спектра звезды оценить её светимость и, соответственно, по видимой величине – расстояние (метод спектрального параллакса).
Солнце, будучи жёлтым карликом, имеет йеркский спектральный класс G2V.
Звёзды одинаковых (или близких) классов светимости образуют на диаграмме Герцшпрунга – Рассела последовательности (ветви), например, ветвь красных гигантов или белых карликов.
Диаграмма Герцшпрунга-Рассела
(в разных представлениях)
Диаграмма была предложена астрономами Эйнаром Герцшпрунгом и Генри Расселом независимо друг от друга примерно в 1910 году.
Используя диаграмму, астрономы способны проследить жизненный цикл звезд, от молодых горячих протозвезд, через основные фазы развития, вплоть до фазы умирающего красного гиганта. Диаграмма также показывает зависимость температуры и цвета звезд от различных этапов их жизненного цикла.
На диаграмме Герцшпрунга-Рассела можно увидеть диагональную линию, ведущую с левого верхнего угла вправо вниз. Она известна как Главная Последовательность и большинство звезд проходят именно эти этапы в своем развитии. В целом, когда температура звезды уменьшается, падает и светимость звезды. На диаграмме также можно увидеть ответвление, которое находится выше 100 ед. светимости. Это красные гиганты, которые находятся в конце своего жизненного цикла. Они могут быть одновременно яркими и относительно холодными, поскольку они очень большие. Обычно эта стадия длится несколько миллионов лет.
Наклонные пунктирные линии на нижней диаграмме определяют размеры звезд в радиусах Солнца.
Жёлтый карлик
Температура поверхности жёлтых карликов составляет 5000—6000 K, их спектральные классы G0V—G9V. Характеристика спектра: линии H и K кальция интенсивны; линия 4226 Ǻ и линия железа довольно интенсивны; многочисленные линии металлов; линии водорода слабеют к классу K; интенсивна полоса G.
Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет. После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. Примером такого типа звёзд может служить Альдебаран. Красный гигант выбрасывает внешние слои газа, образуя тем самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.
Связанные понятия
Кори́чневые ка́рлики, или бу́рые ка́рлики («субзвёзды», или «химические звёзды»), — субзвёздные объекты (с массами в диапазоне от 0,012 до 0,0767 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера). Как и в звёздах, в них идут термоядерные реакции ядерного синтеза на ядрах лёгких элементов (дейтерия, лития, бериллия, бора), но, в отличие от звёзд главной последовательности, вклад в тепловыделение таких звёзд ядерной реакции слияния ядер водорода (протонов) незначителен, и после исчерпания.
В списке приведены самые маломассивные звёзды, известные на сей день. По современным представлениям, граница между самыми лёгкими звёздами Главной последовательности и тяжёлыми коричневыми карликами проходит на уровне 80,35 масс Юпитера (или 0,0767 массы Солнца). Эта граница не является точной, так как начало протон-протонной реакции зависит от содержания в веществе звезды элементов тяжелее гелия (углерод, кислород, неон являются катализаторами протон-протонной реакции). Температура поверхности тоже.
Голубые карлики — гипотетический класс звёзд, эволюционирующий из красных карликов, звёзд по массе меньших, чем Солнце (менее 0,5 масс Солнца и вплоть до минимального порога масс звёзд).
Упоминания в литературе
Связанные понятия (продолжение)
Бе́лые ка́рлики — проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара (максимальная масса, при которой звезда может существовать как белый карлик), лишённые собственных источников термоядерной энергии.
Гига́нт — тип звёзд со значительно бо́льшим радиусом и высокой светимостью, чем у звёзд главной последовательности, имеющих такую же температуру поверхности. Обычно звёзды-гиганты имеют радиусы от 10 до 100 солнечных радиусов и светимости от 10 до 1000 светимостей Солнца. Звёзды со светимостью большей, чем у гигантов, называются сверхгиганты и гипергиганты. Горячие и яркие звёзды главной последовательности также могут быть отнесены к белым гигантам. Помимо этого, из-за своего большого радиуса и высокой.
Пульсирующие белые карлики — один из типов пульсирующих переменных звёзд. Светимость этих белых карликов меняется из-за их нерадиальных пульсаций, вызванных волнами гравитации (gravity wave) (не гравитационными волнами!). У этих звёзд наблюдаются небольшие (1 % — 30 %) изменения светимости, которые получаются в результате наложения нескольких колебаний с периодами от сотен до тысяч секунд. Эти пульсации представляют интерес для астросейсмологии и дают информацию о внутреннем устройстве белых карликов.
103—106 раз (в среднем увеличение светимости — в
12 звёздных величин).
Чёрные ка́рлики — остывшие и вследствие этого не излучающие (или слабоизлучающие) в видимом диапазоне белые карлики. Представляют собой конечную стадию эволюции белых карликов в отсутствие аккреции.
Мириды — класс пульсирующих переменных звёзд, названный по имени звезды Мира из созвездия Кита. К этому классу относятся звезды поздних спектральных классов с изменениями блеска более чем на 2,5 звёздной величины в видимом диапазоне. Период их пульсации может составлять от 80 до 1000 дней. Мириды — гиганты, находящиеся на конечных этапах звёздной эволюции, которые в течение нескольких миллионов лет сбрасывают свою внешнюю оболочку и превращаются в белых карликов.
Карликовые новые или звезды типа U Близнецов (U Gem, UG) являются одним из видов катаклизмических переменных звёзд — тесной двойной звёздной системой, в которой один из компонентов — белый карлик, на который аккрецируется вещество со спутника. Они похожи на классические новые звёзды в том плане, что белый карлик участвует в периодических вспышках, но механизмы вспышек разные: в классических новых звёздах вспышка — результат термоядерной реакции и детонации аккрецировавшего водорода, в то время как.
Яркие голубые переменные (ЯГП; англ. Luminous blue variables, LBV), также известные как переменные типа S Золотой Рыбы (англ. S Doradus variables, SDOR) — очень яркие голубые пульсирующие гипергиганты, названные по звезде S Золотой Рыбы (S Dor) в Большом Магеллановом Облаке. Они показывают неправильные (иногда циклические) изменения блеска с амплитудой от 1m до 7m. Обычно, это самые яркие голубые звезды галактик, в которых они наблюдаются. Как правило, связаны с диффузными туманностями и окружены.
В списке приведены самые массивные звёзды, известные на сей день. Список упорядочен в порядке убывания массы звезды. За единицу измерения взята масса Солнца.
Планéта-океа́н — разновидность планет, состоящих преимущественно изо льда, скалистых пород и металлов (приблизительно в равных пропорциях по массе для упрощения модели). В зависимости от расстояния до родительской звезды могут быть целиком покрыты океаном жидкой воды глубиной до 100 км (точное значение зависит от радиуса планеты), на большей глубине давление становится столь велико, что вода не может более существовать в жидком состоянии и затвердевает, образуя такие модификации льда, как Лёд V.
Желтые карлики — звезды солнечного типа (видео)
Желтые карлики – это, как правило, звезды средней массы, светимости и температуры поверхности.
Они являются звездами основной последовательности, располагаясь примерно в середине на диаграмме Герцшпрунга — Рассела и следуя за более холодными и менее массивными красными карликами.
По спектральной классификации Моргана-Кинана желтые карлики соответствуют в основном классу светимости G, однако в переходных вариациях соответствуют иногда классу К (оранжевые карлики) или классу F в случае с желто-белыми карликами.
Масса желтых карликов лежит зачастую в пределах от 0,8 до 1,2 массы Солнца. При этом температура их поверхности составляет в своем большинстве от 5 до 6 тысяч градусов по Кельвину.
Наиболее ярким и известным нам представителем из числа желтых карликов является наше Солнце. Кроме Солнца, среди ближайших к Земле желтых карликов стоит отметить:
Две компоненты в тройной системе Альфа Центавра, среди которых Альфа Центавра А по спектру светимости аналогично Солнцу, а Альфа Центавра В – типичный оранжевый карлик класса К. Расстояние до обеих компонент составляет чуть более 4-х световых лет.
Оранжевый карлик — звезда Ран, она же Эпсилон Эридана, с классом светимости К. Расстояние до Рана астрономы оценили примерно в 10 с половиной световых лет.
Двойная звезда 61 Лебедя, удаленная от Земли на чуть более 11 световых лет. Обе компоненты 61 Лебедя типичные оранжевые карлики класса светимости К.
Солнцеподобная звезда Тау Кита, удаленная от Земли примерно на 12 световых лет, со спектром светимости G и интересной планетной системой, состоящей минимум из 5 экзопланет.
Эволюция желтых карликов весьма интересна. Продолжительность жизни желтого карлика составляет примерно 10 миллиардов лет.
Как и большинства звезд в их недрах протекают интенсивные термоядерные реакции, в которых в основном водород перегорает в гелий.
После начала реакций с участием гелия в ядре звезды водородные реакции перемещаются все больше к поверхности. Это и становится отправной точкой в преобразовании желтого карлика в красный гигант. Результатом подобного преобразования может служить красный гигант Альдебаран.
С течением времени поверхность звезды будет постепенно остывать, а внешние слои начнут расширяться. На конечных стадиях эволюции красный гигант сбрасывает свою оболочку, которая образует планетарную туманность, а его ядро превратится в белый карлик, который далее будет сжиматься и остывать.
Подобное будущее ждет и наше Солнце, которое сейчас находится на средней стадии своего развития. Примерно через 4 миллиарда лет оно начнет свое превращение в красный гигант, фотосфера которого при расширении может поглотить не только Землю и Марс, но даже и Юпитер.
Найдены дубликаты
Исследователи космоса
9.9K поста 38.9K подписчиков
Правила сообщества
Какие тут могут быть правила, кроме правил установленных самим пикабу 🙂
Формула для запоминания классов светимости:
Более того каждый миллиард лет светимость Солнца на 10% увеличивается. Так что через миллиард лет жить на Земле будет достаточно некомфортно.
Жёлтый карлик
Солнце бездарно светит во все стороны, и малюсенькой Земле, расположенной от него на расстоянии 150 миллионов километров, достается лишь одна двухмиллиардная часть (!) солнечной энергии. Этого хватает, чтобы поддерживать жизнь на планете.
Несмотря на довольно большое расстояние от светила, можно сказать, что мы живем внутри него. Потому что у Солнца нет границ. Солнце – газовый пузырь. А какие у газового пузыря могут быть границы? Внутри он плотный, снаружи – плавно переходит в межзвездный газ. В центре Солнца плотность газа в 12 раз превышает плотность свинца. А то, что мы называем поверхностью и воспринимаем как отчетливую границу Солнца – светящийся верхний слой (фотосфера), – на самом деле в тысячи раз разреженнее воздуха. То есть ее и нет почти, поверхности этой. Видимость одна. Дальше фотосферы – солнечная корона. Это газовый слой, простирающийся на миллионы километров. И Земля крутится как раз внутри солнечной короны, и Солнце лижет Землю каждое мгновение.
При этом видимый диаметр светила – всего полтора миллиона километров. Это смешной размер. Такие крохотные звездульки астрономы относят к классу желтых карликов.