известно что a b c некомпланарные векторы определите при каких значениях
Онлайн калькулятор. Компланарность векторов.
Этот онлайн калькулятор позволит вам очень просто проверить являются ли три вектора компланарными.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на проверку компланарности трех векторов и закрепить пройденый материал.
Калькулятор для проверки компланарности векторов
Ввод данных в калькулятор для проверки компланарности векторов
Из имеющихся у вас данных введите значения трех векторов которые будут проверяться на компланарность. После нажатия кнопки «Проверить компланарны ли три вектора» вы получите детальное решение задачи.
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для проверки компланарности векторов
Теория. Компланарность векторов
Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Компланарность векторов. Условия компланарности векторов.
рис. 1 |
Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.
Условия компланарности векторов
Примеры задач на компланарность векторов
Решение: найдем смешанное произведение векторов
Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.
Решение: найдем смешанное произведение векторов
Ответ: вектора компланарны так, как их смешанное произведение равно нулю.
Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования
1 | 1 | 1 | ||
1 | 2 | 0 | ||
0 | -1 | 1 | ||
3 | 3 | 3 |
из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3
к 3-тей строке добавим 2-рую
Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.
Ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора.
Геометрия. 10 класс
Компланарные векторы
Подчеркните верное утверждение:
1) Любые два вектора компланарны.
2) Любые три вектора компланарны.
3) Если три вектора компланарны, то один из них нулевой.
4) Если векторы компланарны, то они коллинеарны.
Компланарные и некомпланарные векторы
компланарные
некомпланарные
Компланарные векторы
Компланарные и некомпланарные векторы
Укажите вывод, который следует из данных утверждений
1) Точки А, В и С не лежат на одной прямой, а точка O не лежит в плоскости (АВС). Тогда векторы
$\overrightarrow
Компланарные векторы. Векторный метод решения задач
Решите задачу и введите правильный ответ:
Разложение векторов
Выберите верное утверждение и выделите его цветом:
Доказательство теоремы
Восстановите последовательность в доказательстве:
Выбираем точку А и отложим от неё векторы
Компланарные векторы. Векторный метод решения задач
Выберите правильный вариант ответа:
Компланарные векторы. Векторный метод решения задач
Выберите правильный вариант ответа:
Компланарные векторы. Векторный метод решения задач
Восстановите последовательность элементов в доказательстве утверждения поставьте правильную последовательность этапов:
Тест по теме «Векторы» 10 класс
1. Какое из следующих утверждений неверно?
а) длиной ненулевого вектора называется длина отрезка АВ;
б) нулевой вектор считается сонаправленным любому вектору;
г) разностью векторов а и b называется такой вектор. сумма которого с вектором b равна вектору а;
д) векторы называются равными, если равны их длины.
2. Упростите выражение:
3. Какое из следующих утверждений верно?
а) векторы называются компланарными, если при откладывании их от одной и той же точки они не будут лежать в одной плоскости;
б) если вектор с можно разложить по векторам а и b, т.е. представить в виде с=ха+yb, где х, y- некоторые числа, то векторы а, b, c компланарны;
в) для сложения трёх некомпланарных векторов используют правило параллелограмма;
г) любые два вектора коллинеарны;
д) любые три вектора некомпланарны.
4. Векторы p, a, b некомпланарны, если:
а) при откладывании из одной точки они не лежат в одной плоскости;
б) два из данных векторов коллинеарны; в) один из данных векторов нулевой;
1) Какое из следующих утверждений верно?
а) сумма нескольких векторов зависит от того, в каком порядке они складываются;
б) противоположные векторы равны;
в) для нахождения разности векторов необходимо, чтобы они выходили из одной точки;
г) произведение вектора на число является число;
д) для любых векторов а и b не выполняется равенство а+b=b+a.
а) параллельны; б) пересекаются; в) скрещиваются; г) совпадают;
д) выполняются все условия пунктов а-г.
а) некомпланарными; б) сонаправленными; в) коллинеарными;
г) нулевыми; д) компланарными.
а) нулевые; б) равные; в) противоположные; г) компланарные; д) некомпланарные.
6) Д N =-b+1/2a MA=-3/4b+a NM=-1/2a+3/4b
6) АУ=-а+1/2в ХА=-1/3с+а ХУ=-1/3с+1/2в
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Тест содержит подборку вопросов для повторения теоретического материала по теме: «Векторы в пространстве». Материал может быть использован перед контрольной работой по данной теме, при итоговом повторении материала 10 класс или при изучении темы в условиях дистанционного обучения. Тест дан с ответами.
Номер материала: ДБ-1270746
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Минобрнауки предложило вузам перевести студентов на удаленку
Время чтения: 1 минута
Рособрнадзор оставил за регионами решение о дополнительных школьных каникулах
Время чтения: 1 минута
В России объявлены нерабочие дни с 30 октября по 7 ноября
Время чтения: 2 минуты
В школе в Пермском крае произошла стрельба
Время чтения: 1 минута
Самым возрастным участником ЕГЭ в 2021 году стал 72-летний учитель математики
Время чтения: 1 минута
В московском метро появились наклейки для потерявшихся детей
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.