что значит dx в интегралах
Интегралы – что это, как решать, примеры решений и объяснение для чайников
За 4 минуты вы узнаете, что такое интегрирование. Как интеграл связан с производными. Чем отличается определенный интеграл от неопределенного. 5 примеров вычисления интегралов
Почему вы не знаете, как решать интегралы
А для чего нужны интегралы? Попробуйте сами себе ответить на этот вопрос.
Объясняя тему интегралов, учителя перечисляют малополезные школьным умам области применения. Среди них:
Связать все эти процессы не всегда получается, поэтому многие ученики путаются, даже при наличии всех базовых знаний для понимания интеграла.
Главная причина незнания – отсутствие понимания практической значимости интегралов.
Нужна помощь в написании работы?
Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.
Интеграл – что это?
Предпосылки. Потребность в интегрировании возникла в Древней Греции. В то время Архимед начал применять для нахождения площади окружности методы, похожие по сути на современные интегральные исчисления. Основным подходом для определения площади неровных фигур тогда был «Метод исчерпывания», который достаточно лёгок для понимания.
Суть метода. В данную фигуру вписывается монотонная последовательность других фигур, а затем вычисляется предел последовательности их площадей. Этот предел и принимался за площадь данной фигуры.
Метод исчерпывания для определения площади круга
В этом методе легко прослеживается идея интегрального исчисления, которая заключается в нахождении предела бесконечной суммы. В дальнейшем эта идея применялась учёными для решения прикладных задач астронавтики, экономики, механики и др.
Современный интеграл. Классическая теория интегрирования была сформулирована в общем виде Ньютоном и Лейбницем. Она опиралась на существовавшие тогда законы дифференциального исчисления. Для её понимания, необходимо иметь некоторые базовые знания, которые помогут математическим языком описать визуальные и интуитивные представления об интегралах.
Объясняем понятие «Интеграл»
Процесс нахождения производной называется дифференцированием, а нахождение первообразной – интегрированием.
Интеграл математическим языком – это первообразная функции (то, что было до производной) + константа «C».
Интеграл простыми словами – это площадь криволинейной фигуры. Неопределенный интеграл – вся площадь. Определенный интеграл – площадь в заданном участке.
Интеграл записывается так:
Каждая подынтегральная функция умножается на компонент «dx». Он показывает, по какой переменной осуществляется интегрирование. «dx» – это приращение аргумента. Вместо X может быть любой другой аргумент, например t (время).
Неопределённый интеграл
Неопределенный интеграл не имеет границ интегрирования.
Для решения неопределённых интегралов достаточно найти первообразную подынтегральной функции и прибавить к ней «C».
Определённый интеграл
В определенном интеграле на знаке интегрирования пишут ограничения «a» и «b». Они указаны на оси X в графике ниже.
Точки A и B на оси X – есть ограничение зоны определения интеграла
Для вычисления определенного интеграла необходимо найти первообразную, подставить в неё значения «a» и «b» и найти разность. В математике это называется формулой Ньютона-Лейбница:
Таблица интегралов для студентов (основные формулы)
Скачайте формулы интегралов, они вам еще пригодятся
Как вычислять интеграл правильно
Существует несколько простейших операций для преобразования интегралов. Вот основные из них:
Вынесение константы из-под знака интеграла
Разложение интеграла суммы на сумму интегралов
Если поменять местами a и b, знак изменится
Можно разбить интеграл на промежутки следующим образом
Это простейшие свойства, на основе которых потом будут формулироваться более сложные теоремы и методы исчисления.
Примеры вычисления интегралов
Решение неопределенного интеграла
Решение определенного интеграла
Базовые понятия для понимания темы
Чтобы вы поняли суть интегрирования и не закрыли страницу от непонимания, мы объясним ряд базовых понятий. Что такое функция, производная, предел и первообразная.
Функция – правило, по которому все элементы из одного множества соотносятся со всеми элементами из другого.
Производная – функция, описывающая скорость изменения другой функции в каждой конкретной точке. Если говорить строгим языком, – это предел отношения приращения функции к приращению аргумента. Он вычисляется вручную, но проще использовать таблицу производных, в которой собрано большинство стандартных функций.
Приращение – количественное изменение функции при некотором изменении аргумента.
Предел – величина, к которой стремиться значение функции, при стремлении аргумента к определённому значению.
Пример предела: допустим при X равном 1, Y будет равно 2. Но что, если X не равен 1, а стремится к 1, то есть никогда её не достигает? В этом случае y никогда не достигнет 2, а будет только стремиться к этой величине. На математическом языке это записывается так: limY(X), при X –> 1 = 2. Читается: предел функции Y(X), при x стремящемся к 1, равен 2.
Как уже было сказано, производная – это функция, описывающая другую функцию. Изначальная функция может быть производной для какой-либо другой функции. Эта другая функция называется первообразной.
Заключение
Найти интегралы не трудно. Если вы не поняли, как это делать, прочитайте статью еще раз. Со второго раза становится понятнее. Запомните! Решение интегралов сводится к простым преобразованиям подынтегральной функции и поиска её в таблице интегралов.
Если текстовое объяснение вам не заходит, посмотрите видео о смысле интеграла и производной:
Сегодня вы поймёте, что такое интеграл в математике
(и в программировании)
Недавно мы разобрали, что такое знаки Σ и П в математике — это операции, которые, по сути, похожи на циклы в программировании. В одном случае мы складывали много чисел по определённому принципу, а в другом — умножали.
Сегодня посмотрим на интеграл ∫ — что это такое и какой цикл можно сделать из него.
Но сначала: что такое функция
Интегралы в математике всегда связаны с функциями, поэтому сначала поговорим про них.
Функцию можно представить как «коробку с математикой». У тебя есть какая-то масса математических операций, ты их «запаковываешь» в функцию. Теперь ты можешь эту массу операций вызывать в своих математических выражениях одним действием.
У функции есть один или несколько аргументов — это те числа, к которым нужно применить массу математических операций. Можно представим, что мы засунули это число в коробку с математикой, потрясли и получили на выходе другое число.
Если посчитать f(x) для одного числа, получится другое число. Если посчитать f(x) от 100 чисел, получится 100 других чисел. А если непрерывно считать f(x) для бесконечного количества чисел, то получится бесконечное количество других чисел.
Что такое интеграл
Итак, у нас есть некая функция, у неё есть числа на входе и числа на выходе. Эти пары чисел можно использовать для построения графика функции.
Теперь берём этот график функции и проводим две линии, которые ограничивают график. Получается фигура, которая сверху зависит от нашей функции, а с остальных сторон ограничена прямыми линиями и осью:
А теперь то, ради чего всё это затевалось:
✅ Площадь этой фигуры и есть интеграл функции f(x) = sin(x) + cos(x) на отрезке от a до b
В нашем случае мы считаем интеграл от нуля до числа пи — 3,1415926.
Это называется определённый интеграл. Определённый — это когда у нас определены начало и конец фигуры — в математике это называют пределами интегрирования. Записывается этот интеграл так:
В математике есть ещё неопределённые интегралы, у которых нет пределов интегрирования. Ими мы заниматься не будем, потому что ответом к неопределённому интегралу будет не конкретное число, а формула.
Зачем нужны интегралы в народном хозяйстве
Вы удивитесь, но в первую очередь интегралы нужны, чтобы находить площади и объёмы. В буквальном смысле: вот фигура, вот её описание в виде функции, проинтегрировали — узнали площадь. Будете, например, заливать бетоном красивую кривую дорожку — узнаете, сколько вам нужно бетона.
Интегралы нужны в математике и физике, это один из инструментов вычислений.
Если вы астрофизик, интеграл поможет вам рассчитать какие-нибудь свойства звёзд с течением времени. А математики говорят, что в интегралах не нужно искать практический смысл; их нужно любить, как мать, и почитать, как отца.
Как посчитать интеграл (то есть найти площадь)
Если бы у нас был прямоугольник, то всё просто: перемножаем высоту на ширину. Если бы была трапеция, тоже ещё как-то что-то можно. Но сверху у нас кривая, поэтому так сделать не получится. Решение придумали такое:
Минус такого подхода в том, что, как бы мы ни старались, прямоугольники не могут повторить все изгибы, и появится погрешность. С другой стороны, чем тоньше будут эти прямоугольники, тем точнее будет ответ. Получается, что наша задача — нарезать фигуру как можно тоньше.
Теперь задача становится намного проще: мы просто считаем площадь каждого прямоугольника и складываем их вместе. В таком виде задачу уже можно решить простым алгоритмом.
Пишем код
Раз нам нужно разбить интервал на много частей а потом с каждой из них сделать одно и то же, то это точно задача для цикла. Для этого нам понадобится шаг цикла — какой ширины будут наши прямоугольники, чтобы бы могли их одинаково перебирать.
Чтобы посчитать шаг, находим расстояние между конечной и начальной точкой и делим на желаемое количество прямоугольников (это будет нашей точностью интегрирования).
Общая логика работы будет такая:
На картинке — все исходные данные, а ниже — код, который считает интеграл. Смотрите на картинку и читайте комментарии: так будет ещё проще разобраться в коде:
Что дальше
Теперь этот код можно изменить так, чтобы он считал интеграл в любых пределах у любой функции. С точки зрения математики это не самый точный результат, но всё зависит от того, сколько точных знаков после запятой нам нужно.
В следующей серии продолжим разбираться со страшной математикой. Если есть пожелания для разбора — напишите в комментариях.
Содержание
История
Предисчисление интегрирования
Лейбниц и Ньютон
Формализация
Историческая запись
Первое использование термина
Этот термин используется в легком для понимания абзаце из Гийома де л’Опиталя в 1696 году:
Приложения
Интегралы широко используются во многих областях математики, а также во многих других областях, основанных на математике.
Например, в теории вероятностей интегралы используются для определения вероятности попадания некоторой случайной величины в определенный диапазон. Более того, интеграл от всей функции плотности вероятности должен быть равен 1, что обеспечивает проверку того, может ли функция без отрицательных значений быть функцией плотности или нет.
Интегралы могут использоваться для вычисления площади двумерной области с изогнутой границей, а также для вычисления объема трехмерного объекта с изогнутой границей. Площадь двумерной области можно вычислить с помощью указанного выше определенного интеграла.
Терминология и обозначения
Стандарт
Если интеграл идет от конечного значения a до верхнего предела бесконечности, интеграл выражает предел интеграла от a до значения b, когда b стремится к бесконечности. Если значение интеграла становится все ближе и ближе к конечному значению, говорят, что интеграл сходится к этому значению. В противном случае говорят, что интеграл расходится.
Когда пределы опущены, как в
интеграл называется неопределенным интегралом, который представляет собой класс функций ( первообразную ), производная которых является подынтегральной функцией. Фундаментальная теорема исчисления связывает оценку определенных интегралов к неопределенным интегралам. Иногда пределы интегрирования опускаются для определенных интегралов, когда одни и те же пределы повторяются повторно в конкретном контексте. Обычно автор разъясняет это соглашение в начале соответствующего текста.
Существует несколько расширений обозначения интегралов для охвата интегрирования в неограниченных областях и / или в нескольких измерениях (см. Последующие разделы этой статьи).
Значение символа dx
Исторически символ dx использовался для обозначения бесконечно малого «кусочка» независимой переменной x, который нужно умножить на подынтегральное выражение и суммировать в бесконечном смысле. Хотя это понятие все еще является эвристически полезным, более поздние математики сочли бесконечно малые величины несостоятельными с точки зрения действительной системы счисления. Поэтому во вводном исчислении выражению dx не придается самостоятельного значения; вместо этого он рассматривается как часть символа интеграции и служит его разделителем в правой части интегрируемого выражения.
Варианты
Некоторые авторы, особенно европейского происхождения, используют вертикальную букву «d» для обозначения переменной интеграции (т. Е. D x вместо dx ), поскольку, собственно говоря, «d» не является переменной.
В первом выражении дифференциал рассматривается как бесконечно малый «мультипликативный» множитель, формально следующий за «коммутативным свойством» при «умножении» на выражение 3 / ( x 2 +1). Во втором выражении, показывающем дифференциалы, сначала выделяются и разъясняются переменные, которые интегрируются по отношению к практике, особенно популярной среди физиков.
Интерпретации интеграла
Интегралы появляются во многих практических ситуациях. Если бассейн прямоугольной формы с плоским дном, то по его длине, ширине и глубине мы можем легко определить объем воды, который он может содержать (чтобы заполнить его), площадь его поверхности (чтобы покрыть его) и длина его края (чтобы закрепить его). Но если она овальная с закругленным дном, все эти величины требуют интегралов. Для таких тривиальных примеров может быть достаточно практических приближений, но точная инженерия (любой дисциплины) требует точных и строгих значений для этих элементов.
Для начала рассмотрим кривую y = f ( x ) между x = 0 и x = 1 с f ( x ) = √ x (см. Рисунок). Мы просим:
Какова площадь под функцией f в интервале от 0 до 1?
относится к взвешенной сумме, в которой значения функции разделены, при этом μ измеряет вес, который должен быть присвоен каждому значению. Здесь A обозначает область интеграции.
Формальные определения
Интеграл Римана
Интеграл Лебега
Как в теории, так и в приложениях часто представляет интерес возможность предельного перехода под интегралом. Например, часто можно построить последовательность функций, которые в подходящем смысле аппроксимируют решение проблемы. Тогда интеграл от функции решения должен быть пределом интегралов приближений. Однако многие функции, которые могут быть получены как пределы, не интегрируемы по Риману, и поэтому такие предельные теоремы не верны с интегралом Римана. Поэтому очень важно иметь определение интеграла, которое позволяет интегрировать более широкий класс функций ( Рудин, 1987 ).
Таким интегралом является интеграл Лебега, который использует следующий факт для расширения класса интегрируемых функций: если значения функции переставляются по области, интеграл функции должен оставаться прежним. Таким образом, Анри Лебег ввел интеграл, носящий его имя, объясняя этот интеграл в письме к Полю Монтелю :
Я должен заплатить определенную сумму, которую накопил в кармане. Я вынимаю из кармана банкноты и монеты и отдаю их кредитору в том порядке, в котором я их нахожу, пока не наберу общую сумму. Это интеграл Римана. Но я могу поступить иначе. После того, как я вынул все деньги из кармана, я заказываю банкноты и монеты по идентичной стоимости, а затем я плачу несколько куч один за другим кредитору. Это мой интеграл.
Общая измеримая функция f является интегрируемой по Лебегу, если сумма абсолютных значений площадей областей между графиком f и осью x конечна:
В этом случае интеграл, как и в римановом случае, представляет собой разность между площадью выше оси x и площадью ниже оси x :
Другие интегралы
Хотя интегралы Римана и Лебега являются наиболее широко используемыми определениями интеграла, существует ряд других, в том числе:
Свойства
Линейность
является линейным функционалом на этом векторном пространстве, так что
Неравенства
Конвенции
Это при a = b означает:
Согласно первому соглашению результирующее соотношение
Основная теорема исчисления
Формулировки теорем
Основная теорема исчисления
Вторая основная теорема исчисления
Вычисление интегралов
Вторая основная теорема позволяет явно вычислить многие интегралы. Например, чтобы вычислить интеграл
Расширения
Несобственные интегралы
«Собственный» интеграл Римана предполагает, что подынтегральная функция определена и конечна на замкнутом и ограниченном интервале, заключенном в скобки пределами интегрирования. Несобственный интеграл возникает, когда одно или несколько из этих условий не выполняются. В некоторых случаях такие интегралы могут быть определены с учетом ограничения в виде последовательности надлежащих интегралов Римана на прогрессивно больших интервалах.
Если интервал неограничен, например, на его верхнем конце, то неправильный интеграл является пределом, поскольку эта конечная точка уходит в бесконечность.
Множественная интеграция
Это сводит проблему вычисления двойного интеграла к вычислению одномерных интегралов. По этой причине в другом обозначении интеграла по R используется знак двойного интеграла:
Линейные интегралы
Поверхностные интегралы
Контурные интегралы
Интегралы дифференциальных форм
Итоги
Вычисление
Аналитический
Интеграл на самом деле не является первообразной, но основная теорема предоставляет способ использовать первообразные для вычисления определенных интегралов.
Символический
Эта теория также позволяет вычислить определенный интеграл от D- функции как сумму ряда, заданного первыми коэффициентами, и предоставляет алгоритм для вычисления любого коэффициента.
Числовой
Рассмотрим, например, интеграл
Икс | −2,00 | -1,50 | −1,00 | -0,50 | 0,00 | 0,50 | 1,00 | 1,50 | 2,00 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
f ( x ) | 2,22800 | 2,45663 | 2,67200 | 2,32475 | 0,64400 | -0,92575 | −0,94000 | -0,16963 | 0,83600 | |||||||||
Икс | −1,75 | −1,25 | -0,75 | -0,25 | 0,25 | 0,75 | 1,25 | 1,75 | ||||||||||
f ( x ) | 2,33041 | 2,58562 | 2,62934 | 1,64019 | -0,32444 | -1,09159 | −0,60387 | 0,31734 |
Механический
Геометрический
Интегралы для чайников: как решать, правила вычисления, объяснение
Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Изучаем понятие « интеграл »
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x).
Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:
Точки а и b называются пределами интегрирования.
Бари Алибасов и группа
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
Свойства определенного интеграла
Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.