Что такое ядерно магнитный резонанс
Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод
Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!
Общие сведения
Явление ядерно-магнитного резонанса (ЯМР) было обнаружено в 1938 г. Раби Исааком. В основе явления лежит наличие у ядер атомов магнитных свойств. И только в 2003 году был изобретен способ использования этого явления в диагностических целях в медицине. За изобретение его авторы получили Нобелевскую премию. При спектроскопии изучаемое тело (то есть тело пациента) помещается в электромагнитное поле и облучается радиоволнами. Это совершенно безопасный метод (в отличие, например, от компьютерной томографии), который обладает очень высокой степенью разрешающей способности и чувствительностью.
Применение в экономике и науке
Суть метода
Метод ядерно-магнитного резонанса основан на том, что в момент, когда тело находится в особо настроенном очень сильном магнитном поле (в 10000 раз сильнее, чем магнитное поле нашей планеты), молекулы воды, присутствующие во всех клетках организма, формируют цепочки, расположенные параллельно направлению магнитного поля.
Если же внезапно изменить направление поля, молекула воды выделяет частичку электричества. Именно эти заряды фиксируются датчиками прибора и анализируются компьютером. По интенсивности концентрации воды в клетках, компьютер создает модель того органа или части тела, которая изучается.
На выходе врач имеет монохромное изображение, на котором можно увидеть тонкие срезы органа в мельчайших подробностях. По степени информативности данный метод значительно превышает компьютерную томографию. Иногда деталей об исследуемом органе выдается даже больше, чем нужно для диагностики.
Виды магнитно-резонансной спектроскопии
Методика магнитно-резонансной перфузии дает возможность проконтролировать движение крови через ткани печени и головного мозга.
На сегодняшний день в медицине более широко используется название МРТ (магнитно-резонансная томография), так как упоминание ядерной реакции в названии пугает пациентов.
Показания
Противопоказания
Абсолютные противопоказания:
1. Кардиостимулятор,
2. Электронные или ферромагнитные протезы среднего уха,
3. Ферромагнитные аппараты Илизарова,
4. Крупные металлические внутренние протезы,
5. Кровоостанавливающие зажимы сосудов головного мозга.
Относительные противопоказания:
1. Стимуляторы нервной системы,
2. Инсулиновые насосы,
3. Другие виды внутренних ушных протезов,
4. Протезы сердечных клапанов,
5. Кровоостанавливающие зажимы на других органах,
6. Беременность (необходимо получить заключение гинеколога),
7. Сердечная недостаточность в стадии декомпенсации,
8. Клаустрофобия (боязнь замкнутого пространства).
Подготовка к исследованию
Специальная подготовка требуется только тем пациентам, которые идут на обследование внутренних органов (мочеполовых и пищеварительного тракта): не следует употреблять пищу за пять часов до процедуры.
Если обследованию подвергается голова, представительницам прекрасного пола рекомендуется снять макияж, так как вещества, входящие в косметику (например, в тени для век), могут повлиять на результат. Все металлические украшения следует с себя снять.
Иногда медицинский персонал проверяет пациента с помощью портативного металлоискателя.
Как проводится исследование?
Перед началом исследования каждый пациент заполняет анкету, помогающую обнаружить противопоказания.
Прибор представляет собой широкую трубу, в которую помещают пациента в горизонтальном положении. Пациент должен сохранять полную неподвижность, иначе изображение не получится достаточно четким. Внутри трубы не темно и есть приточная вентиляция, так что условия для прохождения процедуры достаточно комфортны. Некоторые установки производит ощутимый гул, тогда исследуемому лицу надеваются шумопоглощающие наушники.
Длительность обследования может составлять от 15 минут до 60 минут.
В некоторых медицинских центрах разрешается, чтобы помещении, где проводится исследование, вместе с пациентом находился его родственник или сопровождающий (если у него нет противопоказаний).
В некоторых медицинских центрах анестезиолог проводит введение успокоительных препаратов. Процедура в таком случае переносится намного легче, особенно это касается больных, страдающих клаустрофобией, маленьких детей или пациентов, которым по каким-то причинам тяжело находиться в неподвижном состоянии. Пациент впадает в состояние лечебного сна и выходит из него отдохнувшим и бодрым. Используемые препараты быстро выводятся из организма и безопасны для пациента.
Результат обследования готов уже через 30 минут после окончания процедуры. Результат выдается в виде DVD-диска, заключения врача и снимков.
Использование контрастного вещества при ЯМР
Исследование сосудов (магнитно-резонансная ангиография)
Несмотря на то, что метод дает возможность «увидеть» сосуды и без контрастного вещества, с его использованием изображение получается более наглядным.
Специальные 4-D установки дают возможность практически в реальном времени проследить за движением крови.
Исследование головного мозга
Это исследование головного мозга, не использующее радиоактивные лучи. Метод позволяет увидеть кости черепа, но более детально можно рассмотреть мягкие ткани. Отличный диагностический метод в нейрохирургии, а также неврологии. Дает возможность обнаружить последствия застарелых ушибов и сотрясений, инсультов, а также новообразования.
Назначается обычно при мигренеподобных состояниях непонятной этиологии, нарушении сознания, новообразованиях, гематомах, нарушении координации.
Функциональная ЯМР
Данная диагностика основана на том, что при активизации какого-либо отдела головного мозга, отвечающего за определенную функцию, усиливается кровообращение в этой области.
Обследуемому человеку даются различные задания, и во время их выполнения фиксируется кровообращение в разных частях головного мозга. Полученные в ходе экспериментов данные сравниваются с томограммой, полученной в период покоя.
Исследование позвоночника
Этот метод замечательно подходит для исследования нервных окончаний, мышц, костного мозга и связок, а также межпозвоночных дисков. Но при переломах позвоночника или необходимости исследования костных структур, он несколько уступает компьютерной томографии.
Можно обследовать весь позвоночник, а можно только беспокоящий отдел: шейный, грудной, пояснично-крестцовый, а также отдельно копчик. Так, при обследовании шейного отдела можно обнаружить патологии сосудов и позвонков, которые влияют на кровоснабжение головного мозга.
При обследовании поясничного отдела можно обнаружить межпозвонковые грыжи, костные и хрящевые шипы, а также ущемления нервов.
Исследование спинного мозга
Проводится одновременно с обследованием позвоночника.
Исследование суставов
Данный метод исследования очень эффективен для исследования состояния мягких тканей, входящих в состав сустава.
Исследование височно-нижнечелюстного сустава
Назначается для определения причин нарушения в функции сустава. Данное исследование наиболее полно раскрывает состояние хрящей и мышц, дает возможность обнаружить вывихи. Применяется и перед ортодонтическими или ортопедическими операциями.
Исследование внутренних органов брюшной полости
Исследование при заболеваниях системы воспроизводства
За час до исследования нежелательно мочиться, так как изображение будет более информативным, если мочевой пузырь несколько заполнен.
Исследование в период беременности
Несмотря на то, что этот метод исследования намного более безопасен, чем рентген или компьютерная томография, категорически не разрешается использовать его в первом триместре беременности.
Во втором и третьем триместрах данных метод назначают только по жизненным показаниям. Опасность процедуры для организма беременной женщины заключается в том, что во время процедуры некоторые ткани нагреваются, что может вызвать нежелательные изменения в формировании плода.
А вот использование контрастного вещества во время беременности запрещено категорически на любой стадии вынашивания.
Меры предосторожности
1. Некоторые ЯМР установки созданы по типу закрытой трубы. У людей, страдающих боязнью замкнутого пространства, может начаться приступ. Поэтому лучше заранее поинтересоваться тем, как будет проходить процедура. Существуют установки открытого типа. Они представляют собой помещение, похожее на рентгеновский кабинет, но такие установки встречаются нечасто.
2. В помещение, где находится прибор, запрещено входить с металлическими предметами и электронными приборами (например, часами, украшениями, ключами), так как в мощном электромагнитом поле электронные приборы могут сломаться, а мелкие металлические предметы будут разлетаться. Одновременно с этим будут получены не совсем корректные данные обследования.
Автор: Пашков М.К. Координатор проекта по контенту.
ЯМР: раздвигая границы возможного
Ядерный магнитный резонанс давно превратился в рутинный инструмент для исследований в области химии, биологии, фармакологии и материаловедения. ЯМР спектроскопия широко применяется при исследовании динамических процессов жидкости, включая разнообразные химические и биохимические реакции, для определения состава, структуры и физико-химических превращений твердых материалов, а с помощью магнитно-резонансной томографии можно изучать морфологию живых объектов и протекающие в них сложные процессы.
Однако существуют факторы, которые сдерживают еще более широкое развитие и применение ЯМР в науке и практике, включая высокую стоимость оборудования, необходимость размещения объекта исследования в буквальном смысле внутри прибора и т.п. В результате современные приборы для ЯМР и МРТ практически невозможно использовать, например, в условиях промышленного производства, несмотря на большой потенциал. Наметившаяся в последнее время тенденция к стиранию границ в магнитном резонансе, связанная с перекрестным использованием методик ЯМР жидкости, твердого тела и томографии, приводит к новым открытиям – и новым научным проблемам
Чтобы подчеркнуть полную безопасность исследования для пациентов, ЯМР-томографии пришлось потерять в своем названии букву «Я» и называться «МРТ». За создание метода МРТ Нобелевская премия была присуждена по физиологии/медицине (Пол Лаутербур и сэр Питер Мансфилд, 2003).
Однако существуют факторы, которые сдерживают более широкое развитие и применение ЯМР в науке и практике. К ним относятся высокая стоимость современного оборудования, необходимость размещения объекта исследования в буквальном смысле внутри прибора и ряд других факторов. В результате современные приборы для ЯМР и МРТ практически невозможно использовать, например, в условиях промышленного производства.
Тем не менее потенциал применения ЯМР на производстве весьма велик. Заманчивой является возможность определения химического состава различных смесей с непрерывным отбором проб из реактора или даже непосредственно внутри технологического трубопровода; свойств полимеров и эластомеров в условиях технологической линии; степени гидратации бетонных изделий и т. п. К сожалению, многие материалы технологических линий и процессов делают их несовместимыми с исследованиями методом ЯМР.
В частности, высокочастотное электромагнитное поле почти не проникает внутрь проводников, что не позволяет получать сигнал ЯМР от веществ в металлических контейнерах и трубопроводах. Значительные количества ионов железа в обычном цементе и различных парамагнитных ионов в горных породах негативным образом отражаются на величине регистрируемого сигнала.
Таким образом, лишь условия лаборатории (клиники) являются оптимальными для работы современных ЯМР-спектрометров и томографов, а за их пределами они, на первый взгляд, оказываются практически бесполезными. К счастью, это не так.
Непривычный ЯМР
В последние годы в ЯМР наметился ряд новых тенденций, направленных на преодоление имеющихся ограничений. Примечательно, что порой это приводит к опровержению некоторых «непреложных истин». Так, в традиционном ЯМР дорогостоящий прибор в некотором смысле является «центром вселенной», вокруг которого «вращаются» и которому подчиняются объекты исследования. И если объект или процесс по характеристикам (форме, размеру, составу, температуре, давлению и т. п.) не удается вписать в условия, диктуемые прибором, то его исследование методом ЯМР невозможно.
Создание открытых и мобильных систем для ЯМР и МРТ привело в некотором смысле к смене основной парадигмы, в результате чего в центре оказался объект исследования. Для решения широкого спектра задач за пределами исследовательской лаборатории в большинстве случаев приходится отказаться от использования высокопольных сверхпроводящих магнитов. Использование постоянных магнитов позволяет создавать относительно недорогие специализированные устройства, предназначенные для исследования конкретного объекта и оптимизированные для решения той или иной конкретной задачи. Сегодня достигнут значительный прогресс на пути создания переносных (до 10—20 кг) и мобильных (несколько десятков кг) систем.
Другая важная концепция – «ЯМР наизнанку» – позволяет отказаться от необходимости размещения объекта исследования внутри датчика (магнита). Для этого применяются магниты и радиочастотные катушки, которые создают соответствующую чувствительную область хоть и вблизи устройства, но за его пределами. Отказ от использования сверхвысоких полей, на первый взгляд, противоречит присущему ЯМР стремлению во все более высокие поля для повышения чувствительности и спектрального разрешения, однако преимущества, связанные с мобильностью устройства и отсутствием ограничений на размер и форму исследуемого объекта, могут в ряде случаев оказаться куда важнее.
Двигателем прогресса в области «ЯМР наизнанку» стали нефтедобыча и нефтеразведка. Именно для ЯМР-каротажа нефтяных скважин впервые было создано устройство, опускаемое в буровую скважину на глубину до 10 км для изучения наличия и свойств жидкой фазы (нефти и воды) в породе, характеристик порового пространства стенок скважины и взаимодействия жидкости с поверхностью пор.
На основе этой концепции создан также и ЯМР-эндоскоп, который имеет внешний диаметр 1,7 мм (!) и может вводиться в крупные сосуды человека для диагностики их состояния.
Одной из наиболее успешных разработок мобильного ЯМР стала ЯМР-мышь – портативный датчик, первоначально предназначавшийся для исследования свойств резинотехнических изделий. С его помощью можно определять состояние покрышки автомобиля без демонтажа колеса, степень поперечного сшивания цепей полимера, исследовать процессы вулканизации, старения полимеров и их набухания в растворителе.
ЯМР-мышь характеризуется значительной неоднородностью приложенного постоянного магнитного поля, что в традиционном ЯМР считается большим недостатком. Однако именно большой градиент магнитного поля устройства позволяет исследовать такие нетрадиционные объекты, как армированные стальным кордом покрышки, железобетонные конструкции, конвейерные ленты и т. п. Ведь многие исследования невозможно выполнить с использованием традиционного ЯМР в однородном поле – изучить, скажем, состояние знаменитой Моны Лизы, так как для этого потребуется отделить от объекта исследования небольшой фрагмент. Бесконтактные измерения с помощью устройств типа ЯМР-мышь переводят такие исследования в разряд возможных.
Игра на магнитном поле
Обычно для получения высокого спектрального разрешения в ЯМР-спектроскопии требуется максимально однородное магнитное поле. Таким образом, может показаться, что устройства типа ЯМР-мышь с однородностью поля в десятки и сотни миллионных долей неприменимы для ЯМР-спектроскопии. Но и это препятствие преодолимо, причем как за счет создания устройств с более однородными магнитными полями, так и за счет развития и применения новых методов регистрации сигнала в существенно неоднородных магнитных полях. Поэтому в настоящее время развитие методов спектроскопии ЯМР в неоднородных магнитных полях занимает важное место в магнитном резонансе.
Достижения современного ЯМР способны обеспечить приемлемую чувствительность даже в слабых и сверхслабых магнитных полях, включая ЯМР в магнитном поле Земли (0,00005 Тл). Именно на пути в слабые и сверхслабые магнитные поля специалистов поджидал один из сюрпризов. До недавнего времени считалось, что такие поля бесполезны для спектроскопических приложений ЯМР. Действительно, различия в химических сдвигах ядер в низких полях наблюдать не удается. Но было экспериментально установлено, что спин-спиновые взаимодействия ядер обеспечивают достаточное количество спектральной информации для интерпретации спектров ЯМР, регистрируемых в полях порядка 0,01 Тл.
Развитие приложений в слабых полях позволяет преодолеть и еще одно ограничение ЯМР, казавшееся незыблемым, а именно невозможность регистрации сигнала ЯМР от объекта, заключенного в металлический контейнер.
Спиновые долгожители
При нормальных условиях для протонов в жидкости времена ядерной спиновой релаксации обычно лежат в секундном диапазоне. Это означает, что спиновая система полностью «забывает» о любом внешнем воздействии через несколько секунд. Однако многие современные ЯМР и МРТ эксперименты построены на том, что регистрация сигнала происходит не сразу, а спустя определенное время после исходного возбуждения спиновой системы. Из-за «забывчивости» спиновой системы не удается измерять низкие скорости течения жидкостей и газов, малые коэффициенты диффузии молекул, слабые межспиновые взаимодействия и многое другое. И до недавнего времени казалось, что это серьезное ограничение обойти уж точно невозможно.
Неожиданный, но приятный сюрприз нашелся и здесь. Оказалось, что даже в жидкости при нормальных условиях спиновая система может «помнить» о своей предыстории многократно дольше, чем это диктуется временами релаксации ядерных спинов. Это связано с существованием так называемых «долгоживущих состояний» спиновых систем, времена жизни которых могут превышать времена обычной релаксации на порядок и более.
Надо сказать, что в настоящее время удивление вызывает не сам факт существования таких состояний, а то, каким же образом сообществу специалистов в области ЯМР удавалось не замечать этого на протяжении многих лет. Ведь объяснение природы таких состояний достаточно очевидно: это ядерные спиновые состояния групп эквивалентных атомов с нулевым полным суммарным спином. А если нет спина, то нет и ядерной спиновой релаксации.
В результате время жизни такого состояния может на порядки превышать времена спиновой релаксации, что можно использовать для значительного расширения применимости ЯМР к исследованию медленных физических и химических процессов. Однако не все так просто, поскольку состояние с нулевым спином не регистрируется в ЯМР-эксперименте. Трюк состоит в том, чтобы на время приложения импульсной последовательности и на время регистрации сигнала сделать ядра неэквивалентными, а в промежутке между различными интервалами эволюции спиновой системы эту эквивалентность восстановить.
Такая операция возможна благодаря, например, воздействию постоянного и переменного магнитных полей, обратимых химических превращений и др. Интересные примеры использования долгоживущих состояний включают исследование медленных диффузионных процессов и динамики медленных химических превращений. Однако это лишь первые шаги, и научное сообщество ожидают новые достижения и сюрпризы.
Параводородный усилитель
Такое огромное усиление сигнала значительно расширяет возможности применения ЯМР в гомогенном катализе, позволяя более детально исследовать механизмы гомогенных каталитических процессов, регистрировать методом ЯМР короткоживущие промежуточные состояния и т. п. Более того, усиление сигнала ЯМР на несколько порядков имеет серьезные последствия и для МРТ. Так, в настоящее время ведутся работы по исследованию методами ЯМР/МРТ процессов метаболизма in vivo, когда введенное в живой организм поляризованное вещество претерпевает в организме биохимические превращения, позволяя усиливать сигнал ЯМР продуктов этих превращений. Для этих же целей используются и другие методы гиперполяризации ядерных спинов.
В то же время в гетерогенных каталитических процессах получение ИППЯ до недавнего времени считалось невозможным, поскольку гетерогенным катализаторам промышленного гидрирования присущ совершенно иной механизм реакции, который, казалось, не дает шансов для наблюдения ИППЯ. Однако и на этом направлении у «невозможного» удалось отбить новые территории для научных исследований и практических приложений магнитного резонанса. Оказалось, что для ряда гетерогенных катализаторов гидрирования можно наблюдать усиление сигнала ЯМР продукта при использовании в реакции параводорода.
Этот примечательный факт делает возможным создание новых высокочувствительных методов ЯМР для каталитических исследований, а также создание высокоэффективных процессов для получения гиперполяризованных чистых жидкостей и газов, на основе которых можно развивать новейшие биомедицинские и технические приложения метода ЯМР/МРТ. Развитие методов гиперполяризации ядерных спинов имеет особую актуальность в контексте упомянутых выше исследований и приложений в слабых и сверхслабых магнитных полях, где вопросы чувствительности имеют первоочередное значение, а получаемые коэффициенты усиления сигнала еще выше.
Итак, магнитный резонанс преодолел очередной виток спирали своего развития. В результате мы получили возможность регистрировать в слабых и неоднородных магнитных полях спектры примерно такого же качества, которое в ЯМР высокого разрешения было доступно сорок лет назад. Возникает вопрос: а является ли такое «развитие» движением вперед? Без сомнения, да. Технологии и методики постоянно совершенствуются, и еще через некоторое время качество спектров в низких и неоднородных полях приблизится к тому, которое доступно сегодня при использовании высокопольных спектрометров ЯМР.
Однако наиболее важным аспектом здесь является то, что делается это отнюдь не как альтернатива высокопольной ЯМР-спектроскопии и томографии, а как развитие метода с целью его распространения на огромный круг существенно иных задач, которые по-прежнему не могут быть решены с помощью суперсовременного и супердорогого высокопольного оборудования. В результате такой диверсификации направлений развития метода ЯМР и доступных приложений границы возможного в магнитном резонансе удалось существенно раздвинуть. И это еще далеко не предел.
Blumich B., Perlo J., Casanova F. Mobile single-sided NMR // Progr. NMR Spectr. 2008. 52. P. 197—269.
Blumich B., Anferova S., Kremer K., et al. Unilateral NMR for quality control: The NMR-MOUSE // Spectroscopy. 2003. 18. P. 18—32.
Bluimch B., Casanova F., Appelt S. NMR at low magnetic fields // Chem. Phys. Lett. 2009. 477. P. 231—240.
Blumich B., Casanova F., Dabrowski M., et al. Small-scale instrumentation for nuclear magnetic resonance of porous media // New J. Phys. 2011. 13. 015003.
Kleinberg R. L., Sezginer A., Griffin D. D., Fukuhara M. Novel NMR apparatus for investigating an external sample // J. Magn. Reson., 1992. 97. P. 466—485.
Koptyug I. V., Kovtunov K. V., Burt S. R., Anwar M. S., et al. Para-Hydrogen-induced polarization in heterogeneous hydrogenation reactions // J. Amer. Chem. Soc. 2007. 129. P. 5580—5586.
Kovtunov K. V., Beck I. E., Bukhtiyarov V. I., Koptyug I. V. Observation of parahydrogen-induced polarization in heterogeneous hydrogenation on supported metal catalysts // Angew. Chem. Int. Ed. 2008. 47. P. 1492—1495.
Pileio G., Carravetta M., Hughes E., Levitt M. H. The long-lived nuclear singlet state of 15N-nitrous oxide in solution // J. Amer. Chem. Soc. 2008. 130. P. 12582—12583.
Sarkar R., Vasos P. R., Bodenhausen G. Singlet-state exchange NMR spectroscopy for the study of very slow dynamic processes // J. Amer. Chem. Soc. 2007. 129. P. 328—334.
Warren W. S., Jenista E., Branca R. T., Chen X. Increasing hyperpolarized spin lifetimes through true singlet eigenstates // Science. 2009. 323. P. 1711—1714.
Редакция благодарит к. х. н. Н. И. Сорокина и к. г.-м. н. В. Д. Ермикова за помощь в подготовке материалов статьи