что такое уровень коммутатора l1 l2 l3 l4
Отличия коммутаторов 1, 2 и 3 уровня
Уровень сетевого коммутатора — это его положение в сетевой модели OSI, определяющее степень интеллектуальности и функциональности устройства, а также, что важно для покупателей, его цену.
Что такое уровень коммутатора?
Говоря простыми словами, это — способность устройства более или менее интеллектуально обрабатывать данные, которые на него поступают. Если рассматривать модель OSI в целом, мы увидим в ней 7 уровней. Применительно к коммутаторам нас интересует «нижние этажи» модели — уровни с 1 по 3.
Особенности коммутатора первого уровня (L1)
Такое устройство работает на физическом уровне. Это означает, что оно способно обрабатывать лишь электрические сигналы, не выделяя и не анализируя их информационную составляющую. В группу коммутаторов уровня L1 входят концентраторы, которые широко использовались в прошлом, репитеры, некоторые другие подобные устройства. Их плюс — дешевизна, минус — минимальная функциональность.
Особенности коммутатора второго уровня (L2)
Он работает на канальном уровне. Коммутатор уровня 2 способен обрабатывать не просто электрические сигналы, но кадры информации (так называемые фреймы). В нём реализована логика физической адресации на основе MAC-адресов передающих и принимающих устройств.
Особенности коммутатора третьего уровня (L3)
Такое устройство работает на сетевом уровне. В сравнении коммутаторов level 2 и уровня 3 последний выигрывает — он способен оперировать IP-адресами отправителей и получателей информации и строить оптимальные маршруты передачи данных. Именно поэтому коммутатор уровня 3 имеет альтернативное название — маршрутизатор.
Отличие коммутаторов layer 1, layer 2 и layer 3
Обобщим сказанное выше:
коммутаторы layer 1 не способны на интеллектуальную обработку данных — они лишь передают электрические сигналы. В настоящее время эти устройства почти не используются — их вытеснила более совершенная аппаратура;
коммутаторы layer 2 идентифицируют устройства по MAC-адресам и передают кадры информации между строго определёнными отправителями и получателями;
коммутаторы layer 3 работают с IP-адресами и не просто идентифицируют отправителей и получателей, но строят оптимальные маршруты передачи данных.
© ООО «ГАЛТ СИСТЕМС». Все права защищены
Заказать обратный звонок
Введите Ваше имя и телефон. Наш специалист свяжется с вами, чтобы ответить на все ваши вопросы.
Нашли дешевле?
Получите скидку
Мы делаем всё, чтобы предоставить вам качественный товар по минимальным ценам. Но если Вы нашли аналогичный товар дешевле – пришлите нам информацию об этом, и мы сделаем вам скидку 3000 ₽!
Акция распространяется только на товары Б/У
Как это работает?
Пришлите информацию о товаре с более низкой ценой (коммерческое предложение, скриншот сайта с конфигурацией товара, ценой и адресом сайта) через данную форму или на адрес sales@galtsystems.com
В течение часа мы проверим информацию и свяжемся с Вами, если заявка будет отправлена с 9 до 18 часов в будние дни. В случае отправки заявки в другое время менеджер перезвонит вам в рабочие часы.
Сети для самых маленьких. Часть нулевая. Планирование
Это первая статья из серии «Сети для самых маленьких». Мы с товарищем thegluck долго думали с чего начать: маршрутизация, VLAN’ы, настройка оборудования.
В итоге решили начать с вещи фундаментальной и, можно сказать, самой важной: планирование. Поскольку цикл рассчитан на совсем новичков, то и пройдём весь путь от начала до конца.
Предполагается, что вы, как минимум читали о эталонной модели OSI (то же на англ.), о стеке протоколов TCP/IP (англ.), знаете о типах существующих VLAN’ов (эту статью я настоятельно рекомендую к прочтению), о наиболее популярном сейчас port-based VLAN и о IP адресах (более подробно). Мы понимаем, что для новичков «OSI» и «TCP/IP» — это страшные слова. Но не переживайте, не для того, чтобы запугать вас, мы их используем. Это то, с чем вам придётся встречаться каждый день, поэтому в течение этого цикла мы постараемся раскрыть их смысл и отношение к реальности.
Согласно этой модели, сеть разбивается на три логических уровня: ядро сети (Core layer: высокопроизводительные устройства, главное назначение — быстрый транспорт), уровень распространения (Distribution layer: обеспечивает применение политик безопасности, QoS, агрегацию и маршрутизацию в VLAN, определяет широковещательные домены), и уровень доступа (Access-layer: как правило, L2 свичи, назначение: подключение конечных устройств, маркирование трафика для QoS, защита от колец в сети (STP) и широковещательных штормов, обеспечение питания для PoE устройств).
В таких масштабах, как наш, роль каждого устройства размывается, однако логически разделить сеть можно.
Составим приблизительную схему:
На представленной схеме ядром (Core) будет маршрутизатор 2811, коммутатор 2960 отнесём к уровню распространения (Distribution), поскольку на нём агрегируются все VLAN в общий транк. Коммутаторы 2950 будут устройствами доступа (Access). К ним будут подключаться конечные пользователи, офисная техника, сервера.
Именовать устройства будем следующим образом: сокращённое название города (msk) — географическое расположение (улица, здание) (arbat) — роль устройства в сети + порядковый номер.
Соответственно их ролям и месту расположения выбираем hostname:
Маршрутизатор 2811: msk-arbat-gw1 (gw=GateWay=шлюз)
Коммутатор 2960: msk-arbat-dsw1 (dsw=Distribution switch)
Коммутаторы 2950: msk-arbat-aswN, msk-rubl-asw1 (asw=Access switch)
Документация сети
Вся сеть должна быть строго документирована: от принципиальной схемы, до имени интерфейса.
Прежде, чем приступить к настройке, я бы хотел привести список необходимых документов и действий:
• Схемы сети L1, L2, L3 в соответствии с уровнями модели OSI (Физический, канальный, сетевой)
• План IP-адресации = IP-план.
• Список VLAN
• Подписи (description) интерфейсов
• Список устройств (для каждого следует указать: модель железки, установленная версия IOS, объем RAM\NVRAM, список интерфейсов)
• Метки на кабелях (откуда и куда идёт), в том числе на кабелях питания и заземления и устройствах
• Единый регламент, определяющий все вышеприведённые параметры и другие.
Жирным выделено то, за чем мы будем следить в рамках программы-симулятора. Разумеется, все изменения сети нужно вносить в документацию и конфигурацию, чтобы они были в актуальном состоянии.
Говоря о метках/наклейках на кабели, мы имеем ввиду это:
На этой фотографии отлично видно, что промаркирован каждый кабель, значение каждого автомата на щитке в стойке, а также каждое устройство.
Подготовим нужные нам документы:
Список VLAN
№ VLAN | VLAN name | Примечание |
---|---|---|
1 | default | Не используется |
2 | Management | Для управления устройствами |
3 | Servers | Для серверной фермы |
4-100 | Зарезервировано | |
101 | PTO | Для пользователей ПТО |
102 | FEO | Для пользователей ФЭО |
103 | Accounting | Для пользователей Бухгалтерии |
104 | Other | Для других пользователей |
Каждая группа будет выделена в отдельный влан. Таким образом мы ограничим широковещательные домены. Также введём специальный VLAN для управления устройствами.
Номера VLAN c 4 по 100 зарезервированы для будущих нужд.
IP-план
IP-адрес | Примечание | VLAN |
---|---|---|
172.16.0.0/16 | ||
172.16.0.0/24 | Серверная ферма | 3 |
172.16.0.1 | Шлюз | |
172.16.0.2 | Web | |
172.16.0.3 | File | |
172.16.0.4 | ||
172.16.0.5 — 172.16.0.254 | Зарезервировано | |
172.16.1.0/24 | Управление | 2 |
172.16.1.1 | Шлюз | |
172.16.1.2 | msk-arbat-dswl | |
172.16.1.3 | msk-arbat-aswl | |
172.16.1.4 | msk-arbat-asw2 | |
172.16.1.5 | msk-arbat-asw3 | |
172.16.1.6 | msk-rubl-aswl | |
172.16.1.6 — 172.16.1.254 | Зарезервировано | |
172.16.2.0/24 | Сеть Point-to-Point | |
172.16.2.1 | Шлюз | |
172.16.2.2 — 172.16.2.254 | Зарезервировано | |
172.16.3.0/24 | ПТО | 101 |
172.16.3.1 | Шлюз | |
172.16.3.2 — 172.16.3.254 | Пул для пользователей | |
172.16.4.0/24 | ФЭО | 102 |
172.16.4.1 | Шлюз | |
172.16.4.2 — 172.16.4.254 | Пул для пользователей | |
172.16.5.0/24 | Бухгалтерия | 103 |
172.16.5.1 | Шлюз | |
172.16.5.2 — 172.16.5.254 | Пул для пользователей | |
172.16.6.0/24 | Другие пользователи | 104 |
172.16.6.1 | Шлюз | |
172.16.6.2 — 172.16.6.254 | Пул для пользователей |
Выделение подсетей в общем-то произвольное, соответствующее только числу узлов в этой локальной сети с учётом возможного роста. В данном примере все подсети имеют стандартную маску /24 (/24=255.255.255.0) — зачастую такие и используются в локальных сетях, но далеко не всегда. Советуем почитать о классах сетей. В дальнейшем мы обратимся и к бесклассовой адресации (cisco). Мы понимаем, что ссылки на технические статьи в википедии — это моветон, однако они дают хорошее определение, а мы попробуем в свою очередь перенести это на картину реального мира.
Под сетью Point-to-Point подразумеваем подключение одного маршрутизатора к другому в режиме точка-точка. Обычно берутся адреса с маской 30 (возвращаясь к теме бесклассовых сетей), то есть содержащие два адреса узла. Позже станет понятно, о чём идёт речь.
План подключения оборудования по портам
Разумеется, сейчас есть коммутаторы с кучей портов 1Gb Ethernet, есть коммутаторы с 10G, на продвинутых операторских железках, стоящих немалые тысячи долларов есть 40Gb, в разработке находится 100Gb (а по слухам уже даже есть такие платы, вышедшие в промышленное производство). Соответственно, вы можете выбирать в реальном мире коммутаторы и маршрутизаторы согласно вашим потребностям, не забывая про бюджет. В частности гигабитный свич сейчас можно купить незадорого (20-30 тысяч) и это с запасом на будущее (если вы не провайдер, конечно). Маршрутизатор с гигабитными портами стоит уже ощутимо дороже, чем со 100Mbps портами, однако оно того стоит, потому что FE-модели (100Mbps FastEthernet), устарели и их пропускная способность очень невысока.
Но в программах эмуляторах/симуляторах, которые мы будем использовать, к сожалению, есть только простенькие модели оборудования, поэтому при моделировании сети будем отталкиваться от того, что имеем: маршрутизатор cisco2811, коммутаторы cisco2960 и 2950.
Имя устройства | Порт | Название | VLAN | |
---|---|---|---|---|
Access | Trunk | |||
msk-arbat-gw1 | FE0/1 | UpLink | ||
FE0/0 | msk-arbat-dsw1 | 2,3,101,102,103,104 | ||
msk-arbat-dsw1 | FE0/24 | msk-arbat-gw1 | 2,3,101,102,103,104 | |
GE1/1 | msk-arbat-asw1 | 2,3 | ||
GE1/2 | msk-arbat-asw3 | 2,101,102,103,104 | ||
FE0/1 | msk-rubl-asw1 | 2,101,104 | ||
msk-arbat-asw1 | GE1/1 | msk-arbat-dsw1 | 2,3 | |
GE1/2 | msk-arbat-asw2 | 2,3 | ||
FE0/1 | Web-server | 3 | ||
FE0/2 | File-server | 3 | ||
msk-arbat-asw2 | GE1/1 | msk-arbat-asw1 | 2,3 | |
FE0/1 | Mail-Server | 3 | ||
msk-arbat-asw3 | GE1/1 | msk-arbat-dsw1 | 2,101,102,103,104 | |
FE0/1-FE0/5 | PTO | 101 | ||
FE0/6-FE0/10 | FEO | 102 | ||
FE0/11-FE0/15 | Accounting | 103 | ||
FE0/16-FE0/24 | Other | 104 | ||
msk-rubl-asw1 | FE0/24 | msk-arbat-dsw1 | 2,101,104 | |
FE0/1-FE0/15 | PTO | 101 | ||
FE0/20 | administrator | 104 |
Почему именно так распределены VLAN’ы, мы объясним в следующих частях.
Схемы сети
На основании этих данных можно составить все три схемы сети на этом этапе. Для этого можно воспользоваться Microsoft Visio, каким-либо бесплатным приложением, но с привязкой к своему формату, или редакторами графики (можно и от руки, но это будет сложно держать в актуальном состоянии :)).
Не пропаганды опен сорса для, а разнообразия средств ради, воспользуемся Dia. Я считаю его одним из лучших приложений для работы со схемами под Linux. Есть версия для Виндоус, но, к сожалению, совместимости в визио никакой.
То есть на схеме L1 мы отражаем физические устройства сети с номерами портов: что куда подключено.
На схеме L2 мы указываем наши VLAN’ы
В нашем примере схема третьего уровня получилась довольно бесполезная и не очень наглядная, из-за наличия только одного маршрутизирующего устройства. Но со временем она обрастёт подробностями.
Dia-файлы со схемами сети: L1, L2, L3
Как видите, информация в документах избыточна. Например, номера VLAN повторяются и на схеме и в плане по портам. Тут как бы кто на что горазд. Как вам удобнее, так и делайте. Такая избыточность затрудняет обновление в случае изменения конфигурации, потому что нужно исправиться сразу в нескольких местах, но с другой стороны, облегчает понимание.
Уровни коммутаторов 1, 2, 3, 4: значение и отличие
Типы взаимодействия систем по сетевой модели OSI
Начнем, пожалуй, с самых основ, чтобы разобраться, откуда вообще возникло понятие уровня сетевого устройства.
В системе OSI присутствует 7 градаций обработки информации.
Расшифруем, что это значит, применительно к различного рода системам и приложениям.
Функционал устройств коммутации также организован в соответствии с этой моделью. Об этом поговорим ниже.
Что означают уровни коммутаторов L1, L2, L3, L4 и так далее…
Фактически, классические коммутаторы не поднимаются выше третьего уровня — L3. И то, эти устройства можно назвать полноценными маршрутизаторами с поправкой на функционал. Но мы пойдем по классической иерархии и обсудим подробно, как работает сетевое оборудование в соответствии с моделью OSI.
Сетевое оборудование 1 уровня (L1)
Устройства L1 работают на физической ступени. Иными словами, способны обрабатывать различные электрические сигналы от хоста к конечному потребителю и преобразовывать импульсы в логические нули и единицы. Исходя из этого, можно сказать, что обозначение «коммутатор первого уровня» не вполне корректно. К сетевому оборудованию из категории L1 относятся почти почившие ныне концентраторы, репитеры и повторители. Максимально дешевые в эксплуатации изделия с нулевой защитой трафика и такой же функциональностью. В чем отличие этих устройств от свитчей вы можете прочесть в этой статье.
Коммутаторы 2 уровня (L2)
На этом этапе к физическому подключается канальный, т.е. адресный уровень. При этом вся информация, как упоминалось выше, распространяется по сети с помощью кадров (фреймов). Все данные разбиваются на логические блоки определенного размера, чтобы коммутирующему устройству было проще распределить поток. Для адресации используется привязка МАС-адреса подключаемого оборудования к конкретному порту. Это упрощает отправку пакетов и делает канал защищенным.
Коммутаторы 3 уровня (L3)
На этом этапе возможности сетевого оборудования типа L2 дополняются функцией IP-маршрутизации. В сочетании с MAC-адресами, передача пакетов по оптимальной траектории становится еще быстрее, безопаснее и удобнее. Коммутатор просчитывает путь отправки пакета с данными, как GPS-навигатор — маршрут автомобиля перед поездкой. Именно поэтому этот функционал устройства называют маршрутизацией.
Коммутаторы 4 уровня (L4)
На этой ступени к функционалу L2 и L3 добавляется виртуализация (Virtual IP, VIP). VIP-адрес автоматически или вручную конфигурируется для отдельного сервера или группы серверов. Такой адрес также регистрируется через DNS-системы, как и обычный «физический» IP. Каждый коммутатор, ориентированный на 4-й тип обработки информации, поддерживает еще одну таблицу значений, где связаны исходный IP, исходный TCP и выбранный сервер. Подобным образом внутри крупной компании решают проблему с превышением нагрузки на отдельные сервера и перенаправлением трафика.
Отличия коммутаторов 2 и 3 уровня
Как было сказано выше, физическая отправка трафика происходит на первых трех ступенях. Первую отбрасываем по причине морального устаревания и остаются две — второй и третий, разница между которыми состоят в следующем:
Таким образом, главное, чем отличаются коммутаторы второго и третьего уровня — наличие функции маршрутизации, которая обеспечивает связь внутри VLAN — виртуальной локальной вычислительной сети — с направлением пакетов по оптимальному маршруту без потерь и задержек с учетом нагрузки на сеть.
Ничего удивительного в том, что модели коммутаторов третьего уровня стоят дороже, чем их предшественники, поскольку за счет функции маршрутизации делают передачу данных значительно быстрее, безопаснее и эффективнее. Из сопутствующих полезных функций можно также назвать:
Помимо всего прочего управляемые маршрутизирующие коммутаторы уровня L3 обладают большей мощностью и высокой пропускной способностью, так как зачастую используются в качестве коммутаторов агрегации и ядра, что требует улучшенных характеристик. Однако далеко не всем бывает нужен расширенный функционал, за который требуется платить достаточно высокую цену. Тем, кого не устраивает перспектива переплачивать за L3, но возможностей L2 недостаточно, рынок сетевого оборудования предлагает компромиссный вариант — L2+
Разница между L2 и L2+
Layer 2+ (3 Lite) — это коммутационное оборудование второй ступени с расширенным функционалом. В качестве опций в устройствах L2+ могут присутствовать некоторые функции layer 3.
Иными словами, когда коммутирующее оборудование поддерживает лишь на статическую маршрутизацию, его относят к категории L2+ иначе называемое L3 Lite. Зачастую такого выбора оказывается достаточно для адекватного функционирования сети по критериям безопасности, эффективности и надежности. Коммутаторы L2+ оптимальны для компромиссного решения задач и позволяют поддержать хороший баланс цены и возможностей.
Заключение
Выбор коммутирующего оборудования зависит от многих параметров: его доступного функционала, характеристик и параметров сети. Уровни коммутатора в данном контексте можно рассматривать как один из критериев, по которому может осуществляться такой выбор, поскольку описывает возможности всей группы устройств в целом. Если у вас еще остались вопросы, вы можете задать их нашим специалистам, которые помогут подобрать сетевое оборудование в зависимости от ваших потребностей.
Уровни коммутаторов 1, 2, 3, 4: значение и отличие
Коммутаторы L2, L2+ и L3 — что, когда, куда, откуда, как, зачем и почему?
«Но это же в любом учебнике по сетям написано!» — возмутится нетерпеливый читатель.
Однако, не нужно спешить с выводами. Написано по этому поводу много, но, к сожалению, далеко не всегда понятным языком. Вот и рождаются вредные мифы.
Поэтому не всегда в точности понятно, когда и куда какое устройство приспособить. Представьте, звонит сисадмину начальник ИТ отдела и требует быстро подобрать в запас «очень бюджетный коммутатор, и чтобы все основные функции закрывал, пока деньги не перехватили и настроение у директора хорошее».
И начинает наш герой ломать голову: взять L3, чтобы «на все случаи жизни», но он дорогой или взять подешевле — L2, а вдруг прогадаешь… Да ещё этот L2+ непонятно что за промежуточный уровень.
Подобные сомнения иногда обуревают даже опытных специалистов, когда встаёт вопрос выбора устройств при жёстком лимите бюджета.
Для начала опровергнем основные мифы
Коммутатор L3 имеет большую пропускную способность чем L2?
Такой взаимосвязи нет. Всё зависит от аппаратного и программного обеспечения (firmware), размещённых портов (интерфейсов), поддержки соответствующих стандартов.
Разумеется, связь с использованием коммутатора уровня L3 через сетевой интерфейс 1Gb/s будет медленнее, чем с использованием коммутатора L2 через 10 Gb/s.
Возможно, этот миф связан с тем, что коммутаторы L3 поддерживают больше функций, что находит отражение в аппаратном обеспечении: быстрее процессор, больше памяти, нежели чем у коммутаторов L2 того же поколения. Но, во-первых, иногда коммутаторы L2 тоже выпускаются на базе мощных контроллеров, позволяющих быстро обрабатывать служебные данные и пересылать кадры Ethernet, во-вторых, даже усиленному «железу» коммутатора L3 есть чем заняться: управлять VLAN, анализировать ACL на основе IP и так далее. Поэтому если судить по загрузке, однозначно ответить на вопрос: «Какой коммутатор «мощнее»?» — не получится.
Коммутаторы L3 — более современные, а L2 — уже вчерашний день?
Это вовсе не так. На сегодняшний день выпускаются как коммутаторы L2, так и коммутаторы L3. Коммутаторов уровня L2 выпускается достаточно много, потому что работать им приходится чаще всего на уровне доступа (пользователей), где и портов, и коммутаторов требуется значительно больше.
Немного теории в вопросах и ответах
Откуда взялись эти названия L2, L3?
Из 7 уровней модели OSI.
Коммутатор L2 работает на втором, канальном уровне.
Коммутатор L3 работает как на втором, так и на третьем уровне.
Примечание. Сетевая модель OSI (The Open Systems Interconnection model) определяет различные уровни взаимодействия систем. При таком разбиении каждому уровню отводится своя роль и назначены определённые функции для взаимодействия по сети.
Таблица 1. Уровни модели OSI ISO
Уровень | Тип обрабатываемых данных | Функции |
---|---|---|
7. Приложений | Данные пользователей прикладного ПО | Программы и сервисы обмена данными |
6. Представлений | Закодированные данные пользователей | Общий формат представления данных, сжатие, шифрование |
5. Сеансовый | Сессии | Установление сессий между приложениями |
4. Транспортный | Сегменты | Адресация процессов, сегментация/повторная сборка данных, управляемые потоки, надёжная доставка |
3. Сетевой | Дейтаграммы/пакеты | Передача сообщений между удалёнными устройствами, выбор наилучшего маршрута, логическая адресация |
2. Канальный | Кадры | Доступ к среде передачи и физическая адресация |
1. Физический | Биты | Передача электрических сигналов между устройствами |
А просто, понятно и в двух словах?
В самом простом случае коммутатор служит для связи нескольких устройств локальной сети (LAN). Этими устройствами могут быть, например, отдельные компьютеры или другие коммутаторы.
Именно так работает коммутатор L2 — на уровне Ethernet: анализирует аппаратные MAC адреса, заносит их в таблицу коммутации и согласно этой таблице перераспределяет трафик.
Коммутатор L3 тоже может анализировать пакеты по MAC адресам и перенаправлять кадры между подключёнными устройствами, но, помимо пересылки Ethernet кадров, он умеет перенаправлять трафик, основываясь на анализе IP адресов и выполнять функции внутреннего маршрутизатора.
А подробней?
Коммутатор L2 обрабатывает и регистрирует MAC адреса фреймов, осуществляет физическую адресацию и управления потоком данных. Некоторые дополнительные функции: VLAN, QoS поддерживаются только на уровне, необходимом для передачи параметров или для участия в общей схеме сети. Например, на коммутаторе L2 можно прописать несколько VLAN, но нельзя настроить полноценную маршрутизацию между ними, для этого уже нужен коммутатор L3. Проще говоря, коммутатор уровня L2 обеспечивает некоторые дополнительные функции, но не управляет ими в масштабе сети.
В отличие от своих более простых собратьев, коммутаторы L3 могут брать на себя функции маршрутизаторов, в том числе проверку логической адресации и выбор пути (маршрута) доставки данных. Благодаря повсеместному внедрению стека протоколов TCP/IP, коммутаторы уровня L3 являются важной частью сети, так как могут выполнять пересылку пакетов не только на основе анализа MAC адресов, но и «поднимаясь на этаж выше», то есть на основе IP адресов и соответствующих протоколов маршрутизации
Разумеется, никому в голову не придёт строить внешнюю разветвлённую сеть с BGP маршрутизацией на базе коммутаторов. Однако для внутренней маршрутизации в пределах локальной сети такой вариант вполне подходит. Мало того, это позволяет экономить на приобретении дополнительных устройств (маршрутизаторов), использовать универсальный подход к организации сети.
Из-за поддержки многих функций коммутатор уровня L3 имеют более сложную внутреннюю конфигурацию и, соответственно, стоят дороже. Иногда пользователь встаёт перед выбором: купить более простой и бюджетный вариант с Layer 2 или более дорогой и «продвинутый» Layer 3.
А что за «дополнительные» уровни: «доступа», «агрегации», «ядра»?
Помимо уровней модели OSI: Layer 2, Layer 3, в литературе часто упоминаются «уровень доступа», «уровень агрегации», «уровень ядра сети».
Если описать кратко:
Рисунок 1. Уровни построения локальной сети.
Коммутаторы, которые служат для объединения других коммутаторов в единую сеть, называют коммутаторы уровня агрегации (или коммутаторы уровня распределения).
Если же говорить про уровень ядра сети, то для него существуют свои мощные коммутаторы, основная задача которых максимально быстро передавать трафик. Функции управления при этом довольно часто делегируется на уровень агрегации.
Есть ли связь между понятиями уровней L2 и L3 с уровнем доступа и уровнем агрегации? Традиционно считается, что для уровня доступа лучше подходят коммутаторы L2 (в первую очередь из-за более низкой цены, а для уровня агрегации лучше выбирать L3 ради повышенной функциональности.
Чем хорош такой подход? Устанавливать более функциональные и дорогие коммутаторы уровня L3 на уровне доступа может быть неоправданным шагом, если их функции маршрутизации и контроля не будут востребованы. А этих же функций будет недоставать более простым коммутаторам L2 на уровне агрегации (распределения).
Теория — это отлично, но начальник требует побыстрее подобрать подходящий коммутатор.
Если есть сомнения какой уровень коммутатора выбрать: уровня 2 или уровня 3, во главу угла нужно ставить вопрос, где его предполагается использовать. Если в наличии только небольшая сеть, позволяющая всем работать в единственном широковещательном домене, можно остановить свой выбор на одном или двух коммутаторах L2.
Второй случай, где коммутаторы второго уровня хорошо себя чувствуют — уровень доступа, то есть там, где компьютеры пользователей подключаются к локальной сети.
Если необходим коммутатор для объединения (агрегирования) нескольких простых коммутаторов доступа пользователей — для этой роли лучше подходит коммутатор уровня 3. Помимо объединения в сеть, он может выполнять маршрутизацию между VLAN, управлять прохождением трафика при помощи ACL (Access Control List), обеспечивать заданный уровень ширины пропускания (QoS) и так далее.
Ещё одна область, где коммутаторы L3 часто бывают востребованы — если необходимо обеспечить повышенные требования к безопасности, например, более гибкое разграничение доступа. Некоторые функции, доступные для этого уровня, например, управление трафиком на уровне IP адресов, будут неосуществимы стандартными средства уровня L2.
Чем отличаются коммутаторы L2 и L2+
L2+ — это коммутатор второго уровня с добавленными функциями. Например, может быть добавлена поддержка статической маршрутизации, физического объединения в стек нескольких коммутаторов для отказоустойчивости, дополнительные функции безопасности и так далее.
Примечание. В сравнительной таблице, приводимой в конце статьи, можно видеть, что уровни L2 и L2+ могут различаться на одну-две функции. Однако даже такая небольшая деталь может оказаться критичной, например, для вопросов отказоустойчивости или безопасности.
От слова к делу! Сравним разные коммутаторы на примере
Для наглядности выберем три модели примерно одного уровня. Понятно, что коммутаторы L2, L2+ и L3 здорово отличаются по функциям. Поэтому приходится использовать общие признаки. Например, сравнивать коммутаторы на 5 и 50 портов (включая Uplink) будет некорректно.
В итоге мы выбрали три коммутатора:
Обратите внимание, что внешне устройств довольно похожи, чего не скажешь об их возможностях и предполагаемых ролях. Для наглядности ниже приводим небольшой фрагмент сравнительной таблицы функций.
А функций у этих моделей коммутаторов очень много. Чтобы не пытаться объять необъятное, мы выбрали наиболее очевидные функциональные области: управление трафиком, безопасность и маршрутизация. Другие группы опций тоже отличаются, но не так очевидно.
Zyxel XGS4600-32 — коммутатор Layer 3
Рисунок 2. Коммутатор Zyxel XGS4600-32 — коммутатор Layer 3.
Zyxel XGS2210 — коммутатор Layer 2+
Одно из предназначений — создание сети для передачи трафика VoIP, видеоконференций, IPTV и IP-камер видеонаблюдения наблюдения и управление трафиком современных конвергентных приложений.
Поддерживает объединение в физический стек с помощью двух портов 10-Gigabit SFP+.
Поддерживает PoE (стандарты IEEE 802.3af PoE и 802.3at PoE Plus) до 30Ватт на порт для питания устройств с большей потребляемой мощностью, например, это могут быть точки доступа 802.11ac и IP-видеотелефоны.
В данной модели присутствуют дополнительные средства поддержки безопасности, например, IP source guard, DHCP snooping и ARP inspection, механизмы фильтрации L2, L3 и L4, функцию MAC freeze, изоляцию портов и создание гостевой VLAN.
Добавлены элементы статической маршрутизации IPv4/v6 и назначение DHCP relay с конкретным IP интерфейсом отправителя.
Рисунок 3. Zyxel XGS2210 — коммутатор Layer 2+
Zyxel GS2220 — коммутатор Layer 2
Интересно, что серия GS2220 — это гибридные коммутаторы с доступными вариантами управления: через облако Zyxel Nebula, через локальное подключение, плюс поддержка SNMP.
Из интересных функций можно выделить L2 multicast, IGMP snooping, Multicast VLAN Registration (MVR).
Данная модель неплохо подходит и для обеспечения сетевой среды VoIP, видеоконференций и IPTV.
Рисунок 4. Zyxel GS2220 — коммутатор Layer 2.
Это интересно
Компания Zyxel Networks сообщила о поддержке своих коммутаторов в специализированном режиме Networked AV (созданного совместно с компанией ATEN), позволяющего облегчить внедрение AV-систем на базе коммутаторов и повысить эффективность их использования.
Стоит отметить специальную программу — мастер настройки. Она специально разработана для удобного управления функциями, которые часто используются при настройке сетей потоковой передачи аудио/видео.
Также появилась новая консоль Networked AV dashboard для контроля основных параметров: данные о портах, расход электроэнергии, и другая информация, благодаря которой можно сразу проверить текущее состояние сети и настроить коммутатор.
Для гигабитных управляемых коммутаторов второго уровня серии GS2220 режим Networked AV доступен с сентября 2020 года (нужно обновить микропрограмму до версии v4.70 или более поздней). Для коммутаторов серии XGS2210 доступ ожидается до конца 2020 года.
Таблица 2. Сравнение коммутаторов XGS4600-32 (L3), XGS2210-28 (L2+) и GS2220-28 (L2).
* Функции, доступные также в облачном режиме управления.
Небольшие итоги
Каждая вещь хороша на своём месте (спасибо, капитан Очевидность).
Нет смысла переплачивать за более высокий уровень коммутатора только потому, что он кажется круче. В то же время скупой платит дважды, и нехватка критической функции может потребовать дополнительных расходов в виде замены коммутатора.
В некоторых случаях выручают коммутаторы L2+ как компромиссный вариант. Функции, которых нет в L2, но есть в L2+ — могут быть весьма полезны и способны вывести сетевую инфраструктуру на новый уровень отказоустойчивости и безопасности