что такое улучшение стали

Улучшение стали

Улучшение стали – комплекс операций по проведению термической обработки, в который включены закалка и высокий отпуск. У обработанных деталей повышаются:

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение стали

Сущность процесса улучшения

Процессу улучшения подвергаются конструкционные улучшаемые стали трех категорий:

При закалке деталь подвергается нагреву до температуры на 30°С ниже чем в точке Ас1. На данном этапе необходимо обеспечить сквозную прокаливаемость. В детали преобладает внутренняя структура – мартенсит.

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение стали

Структура улучшаемой стали

Высокий отпуск производится при температуре от 550°С до 650°С. За счет чего структура металла переходит в сорбит и получается однородной и мелкозернистой.

Максимального эффекта можно добиться если во время проведения закалки не образуется феррит и бейнит.

Термическое улучшение металлов позволяет менять такие показатели как:

Технология проведения улучшения

При закалке, упрочнении, температура нагрева подбирается исходя из состава металла. Если для конструкционных среднеуглеродистых сталей ее можно подобрать согласно диаграммы железо-углерод, то для получения аустенита в металле содержащем легирующие элементы (хром, молибден, ванадий, никель и прочие) необходимо увеличить температуру нагрева.

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение стали

Интенсивное охлаждение производится в двух средах: воде и масле. Охлаждению в воде подлежат углеродистые металлы, а в масле — легированные, так как водная среда может провоцировать образование внутренних трещин и деформаций.

Внутреннюю структуру мартенсит можно преобразовать средним или высоким отпуском. Температура проведения отпуска в значительной мере зависит от процентного содержания легирующих элементов.

Применение улучшения

После улучшения из углеродистых сталей производятся детали, на которые, которые требуют увеличенной прочности. Это детали типа вал, втулка, шестерня, зубчатое колесо, втулка. Использование углеродистых сталей обусловлено дешевизной изготовления и технологичностью.

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение стали

Улучшение стали применяется при изготовлении червячного вала

Материалы с высоким содержанием углерода (60, 65) после улучшения используются для изготовления пружинных и рессорных изделий.

Введенные легирующие элементы позволяют изготавливать из этих сталей ответственные детали большего диаметра испытывающие более сильные нагрузки. После проведения термообработки у них сохраняется вязкость и пластичность с повышением прочности и твердости, а также понижается порог хладноломкости.

Прокаливаемость

Механические свойства элементов конструкции зависят от однородности структуры металла, которая напрямую зависит от сквозной прокаливаемости, минимального диаметра. Данный параметр характеризует образование более половины мартенсита. Так в таблице приведены некоторые показатели, при которых выдерживается критический диаметр.

Марка сталиПроведение закалки при температуре, °СКритический диаметр, мм
Среда интенсивного охлаждения
водамасло
45840…850до 9до 25
45Г2840…850до 18до 34
40ХН2МА840…850до 110до 142
38Х2МФА930до 72до 86

Как показывает практика, на прокаливаемость большое влияние оказывают легирующие элементы. Особенно это заметно при наличии никеля. Его присутствие позволяет закаливать детали большого диаметра. Так из стали 40ХН2МА можно выточить и подвергнуть термообработке ответственную деталь диаметром свыше 100 мм с сохранением приданных свойств по всему объему.

Хладноломкость

Отрицательные температуры способствуют переходу в хрупкое состояние, что сказывается на показателях пластичности и ударной вязкости. При воздействии динамических нагрузок низких температур детали разрушаются. При подборе материала, из которого будут изготовлены детали, работающие в экстремальных условиях, в первую очередь пользуются таким параметром, как хладноломкость.

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение стали

Порог хладноломкости в зависимости от содержания никеля

График характеризует, что повышенное наличие никеля увеличивает порог хладноломкости. Также на это значение оказывает влияние молибден.

Мелкозернистая структура, получаемая при высоком отпуске способствует увеличению показателя хладноломкости.

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение стали

Зависимость порога хладноломкости от размера зерна

График показывает зависимость от размера зерна:

1 – размер зерна 0,002-0,01 мм;

2 – размер зерна 0,05-0,1 мм.

Наличие серы и фосфора отрицательно влияют на формирование мелкозернистой структуры.

Неправильный выбор материала для изготовления изделий, работающих в условиях крайнего севера и заполярья не раз приводил к катастрофическим последствиям. Например, вал, изготовленный из ст. 40 и прошедший улучшение в умеренном климате, работает не один год. А на Чукотке при морозе больше 50°С он сломается в первые месяцы эксплуатации.

Механические свойства после улучшения

У улучшаемых углеродистых сталей невысокая прокаливаемость. Поэтому стали с 30 по 50 используются для изготовления деталей диаметром не больше 10 мм. После улучшения для них характерны следующие параметры:

Если элементу по условиям эксплуатации требуется большая поверхностная прочность, то его подвергают закалке токами высокой частоты (ТВЧ).

Для изделий диаметром более 30 мм для придания качеств, полученных улучшением применяются легированные металлы. При высокой скорости закаливания, большего критического диаметра наряду с мелким зерном, у них наблюдаются малые остаточные напряжения после ТО и высокая стойкость к отпуску.

Так, сплав железа, имеющий в своем составе хром и никель, после улучшения имеет следующие параметры:

Кроме широко используемых легирующих элементов для измельчения зерна используют титан, ниобий и цирконий. Для повышения прокаливаемости применяют бор.

Улучшение стали при изготовлении деталей

Для примера можно рассмотреть маршрут изготовления детали шестерня из стали 40ХН. Для данного типа деталей требуются высокие значения твердости рабочей поверхности, а также хорошая пластичность и вязкость.

Технологический процесс выглядит так:

Выбирая режимы термической обработки при улучшении следует учитывать следующие факторы:

Улучшаемые стали

Улучшаемые стали — это конструкционные материалы:

Легированные стали можно поделить на несколько категорий:

Особо стоит отметь плохую свариваемость улучшаемых металлов. Она производится при соблюдении некоторых мер, сохраняющих требуемые характеристики.

Источник

Улучшение стали — процесс, технология, улучшаемые стали

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение стали

Улучшение стали – комплексная термообработка стали, заключающаяся в закалке детали с последующим высоким отпуском стали, обеспечивающая хорошие показатели прочности и пластичности.

Сущность процесса улучшения стали

После закалки стали в ней преобладают структуры мартенсита. Высокий отпуск стали заключается в нагреве, как минимум, на 20-40°C ниже точки Ac1 (см. Диаграмму железо-углерод), но не ниже 500°C, выдержке и контролируемом охлаждении детали.

Улучшение сталей на диаграмме железо-углерод

На втором этапе улучшения сталей – процессе высокого отпуска стали – происходит диффузионный распад мартенсита до образования сорбита отпуска (см. Элементы теории термической обработки). Сорбит отпуска имеет однородную и дисперсную структуру.

Хромистые стали

Для средненагруженных деталей небольших размеров применяют хромистые стали марок 30Х, 38Х, 40Х, 50Х. С увеличением содержания углерода возрастает прочность, но снижается пластичность и вязкость.

Прокаливаемость сталей невелика и для ее увеличения легируется бором (0,002…0,005%). Критический диаметр стали 35ХР при закалке в воде составляет 30…45 мм, а в масле 20…30 мм.

Введение 0,1…0,2 % ванадия (40ХФА) повышает механические свойства хромистых сталей, главным образом вязкость, вследствие лучшего раскисления и измельчения зерна без увеличения прокаливаемости. Эти стали применяют для изделий, работающих при повышенных динамических нагрузках. Значение механических свойств некоторых улучшаемых сталей после термообработки приведены в таблице 10.

Улучшаемая сталь

Примеры улучшаемых сталей:

Углеродистые улучшаемые стали: сталь 30, сталь 35, сталь 40, сталь 45, сталь 50.

Легированные улучшаемые стали: 40Х, 45Х, 40ХР, 40ХН, 40ХНА, 40ХНМА, 30Х2Н4МА, 38ХН3МА, 38Х2НМА, 30ХГСА, 30ХГС-Ш.

Некоторые улучшаемые стали пригодны для поверхностной закалки (плазменной и индукционной), в частности — сталь 45.

Основным свойством улучшаемых сталей является прокаливаемость, которая зависит от химического состава стали. Изделие должно полностью прокаливаться насквозь (сквозное улучшение). Стали с малой способностью к сквозному улучшению пригодны для изделий с небольшим поперечным сечением. Другое важное свойство улучшаемых сталей — предел текучести (после улучшения стали), требования к которому предъявляются в зависимости от марки стали и диаметра изделия.

После улучшения гарантируются следующие свойства сталей: временное сопротивление σВ от 55 до 150 кгс*мм-2, удлинение δ5 от 6 до 50%, поперечное сужение ψ=30-60% (по данным ). Изменение значений этих свойств в зависимости от температуры отпуска иллюстрируется «диаграммами улучшения» (пример на рисунке).

Термическая обработка. Улучшаемые стали поставляются потребителю в горячекатанном или нормализованном состоянии. После механической обработки до окончательных размеров и получения деталей проводятся улучшение сталей или поверхностная закалка.

Улучшение стали 45

Углеродистая улучшаемая сталь 45 имеет низкую прокаливаемость и после термического улучшения предназначается для изготовления деталей небольшого сечения (до 15 мм). Режим термообработки, в частности, термического улучшения, стали 45 подбирается в зависимости от размеров, вида изделия (прокат, поковки..) и его назначения. Режимы термообработки — закалки и отпуска при улучшения стали 45 для различных сечений приводятся в стандарте ГОСТ 1050-88. Сталь качественная и высококачественная…

Автор: Корниенко А.Э. (ИЦМ)

Хромомарганцевые стали

Совместное легирование сталей хромом (0,9…1,2 %) и марганцем (0,9…1,2 %) позволяет получить достаточно высокую прочность и прокаливаемость (например, 40ХГ), однако они имеют пониженную вязкость, пониженный порог хладноломкости (от 20 0С до минус 60 0С). Введение титана снижает склонность к перегреву, а добавление бора увеличивает прокаливаемость.

Таблица 10 — Механические свойства некоторых легированных улучшаемых сталей

Марка
стали
Прокаливается диаметр, ммsigmaв,
МПа
sigma0,2,
МПа
d,
%
y,
%
KCU,
МДж/м2
30X
40X
40XФА
40ХГТР
30ХГС
40ХН
30ХН3А
40ХН2МА
36Х2Н2МФА
38ХН3МФА
25-35
25-35
25-35
50-75
50-75
50-75
75-100
75-100
более 100
более100
900
1000
900
1000
1100
1000
1000
1100
1200
1200
700
800
750
800
850
800
800
950
1100
1100
12
10
10
11
10
11
10
12
12
12
45
45
50
45
45
45
50
50
50
50
0,7
0,6
0,9
0,8
0,4
0,7
0,8
0,8
0,8
0,8

Улучшение сталей в ООО КВАДРО

Мы производим по чертежам Заказчика или режимам термической обработки термообработку сталей (в т.ч. нержавеющих, инструментальных и т.п.), а так же иных металлов и сплавов (алюминиевых и титановых, латуней и бронз, и т.д.).

Кроме улучшения стали мы производим и иные виды термической обработкиметаллов на заказ, например:

Хромокремнемарганцевые стали

Обладают высокой прокаливаемостью, прочностью, хорошей вязкостью. Применяются для изготовления крупных изделий сложной конфигурации, работающих при вибрационных и динамических нагрузках. Никель, особенно в сочетании с молибденом, сильно снижает порог хладноломкости. Чем выше содержание никеля, тем ниже допустимая температура применения стали и выше ее сопротивления хрупкому разрушению. Рекомендуется вводить до 3 % Ni. При большем содержании получается много остаточного аустенита. Для тяжелонагруженных деталей с диаметром сечения до 70 мм используют стали марок 40ХН, 45ХН, 50ХН.

Хромоникелемолибденованадиевые стали

Кроме молибдена, добавляют ванадий, который способствует получению мелкозернистой структуры. Стали марок 38ХН3МФ и 36Х2Н2МФА применяют для деталей больших сечений (1000…1500 мм и более). В сердцевине после закалки образуется бейнит, а после отпуска — сорбит. Стали обладают высокой прочностью, пластичностью и вязкостью, низким порогом хладноломкости. Молибден, присутствующий в стали, повышает ее теплостойкость. Эти стали можно использовать при температурах 400…450 0С при изготовлении наиболее ответственных деталей турбин, компрессоров, для которых требуется материал особой прочности в крупных сечениях (поковки валов и цельнокованных роторов турбин, валы высоконапряженных турбовоздуходувных машин, детали редукторов и т.д.).

Источник

Улучшение стали

Смотреть что такое «Улучшение стали» в других словарях:

УЛУЧШЕНИЕ СТАЛИ — двойная термическая обработка закалка на мартенсит с последующим высоким отпуском для получения однородной дисперсной структуры сорбита, обеспечивающей хорошее сочетание прочности, пластичности, ударной вязкости и критической температуры перехода … Большой Энциклопедический словарь

Улучшение стали — [quenching and tempering] вид термической обработки стали, заключающийся в закалке и последующем высоком отпуске (при 550 650 °С). В результате улучшения стали достигается однородная и дисперсная структура сорбита, обеспечивающая хорошее… … Энциклопедический словарь по металлургии

улучшение стали — двойная термическая обработка закалка на мартенсит с последующим высоким отпуском для получения однородной дисперсной структуры сорбита, обеспечивающей хорошее сочетание прочности, пластичности, ударной вязкости и критической температуры… … Энциклопедический словарь

Улучшение стали — Улучшение термообработка стали, состоящая из закалки и высокого отпуска. Стали, которые можно подвергать улучшению, называются улучшаемыми (0.3 0.6% С). Структура, получаемая в результате улучшения: сорбит … Википедия

Улучшение — термообработка стали, состоящая из закалки и высокого отпуска. Стали, которые можно подвергать улучшению, называются улучшаемыми (0.3 0.6% С). Структура, получаемая в результате улучшения: сорбит … Википедия

улучшение — Вид термической обработки стали, состоящий из закалки с последующим высокотемпературным отпуском. В результате улучшения достигается наиболее оптимальное сочетание всех механических характеристик: повышаются предел прочности и предел текучести,… … Справочник технического переводчика

Улучшение (термообработка) — Улучшение комплексная термическая обработка металлов, включающая в себя закалку и последующий высокий отпуск. Описание В результате закалки сталей чаще всего получают структуру мартенсита с некоторым количеством остаточного аустенита,… … Википедия

УЛУЧШЕНИЕ — в металлообработке термич. обработка стали, заключающаяся в закалке на мартенсит с последующим высоким отпуском(550 650 °С). В результате У. сталь приобретает структуру, обладающую достаточной прочностью, высокой пластичностью и ударной вязкостью … Большой энциклопедический политехнический словарь

Кострукционные стали — Конструкционная сталь Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ железе с гранецентрированной кубической решеткой)… … Википедия

quenching and tempering — Смотри Улучшение стали … Энциклопедический словарь по металлургии

Источник

Улучшение стали: процесс, технология, улучшаемые стали

Улучшение стали – комплексная термообработка стали, заключающаяся в закалке детали с последующим высоким отпуском стали, обеспечивающая хорошие показатели прочности и пластичности.

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение стали

Сущность процесса улучшения стали

После закалки стали в ней преобладают структуры мартенсита. Высокий отпуск стали заключается в нагреве, как минимум, на 20-40°C ниже точки Ac1 (см. Диаграмму железо-углерод), но не ниже 500°C, выдержке и контролируемом охлаждении детали.

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение сталиУлучшение сталей на диаграмме железо-углерод

На втором этапе улучшения сталей – процессе высокого отпуска стали – происходит диффузионный распад мартенсита до образования сорбита отпуска (см. Элементы теории термической обработки). Сорбит отпуска имеет однородную и дисперсную структуру.

Применение улучшения сталей

Именно структура сорбита отпуска обеспечивает великолепное сочетание ударной вязкости, пластичности и прочности при понижении твердости в деталях, прошедших процесс улучшения стали.

Процессу улучшению сталей подвергают детали из углеродистых и легированных сталей с содержанием углерода 0,30-0,55%. Например, сталь 45, 40Х, 30ХГСА, 38Х2МЮА.

При необходимости более высокой поверхностной твердости эти детали подвергают после процедуры улучшения стали другим методам обработки: закалке ТВЧ или азотированию.

В случае отсутствия высоких требований к пластичности и ударной вязкости вместо улучшения сталей может применяться нормализация стали, как более экономичный процесс.

Улучшение сталей в ООО КВАДРО

Наше предприятие уже почти четверть века производит термообработку металлов на заказ в Санкт-Петербурге, в том числе улучшение сталей.

Мы производим по чертежам Заказчика или режимам термической обработки термообработку сталей (в т.ч. нержавеющих, инструментальных и т.п.), а так же иных металлов и сплавов (алюминиевых и титановых, латуней и бронз, и т.д.).

Кроме улучшения стали мы производим и иные виды термической обработкиметаллов на заказ, например:

Материаловед

Улучшить качество металла можно уменьшением в нём вредных примесей, газов, неметаллических включений. Для повышения качества металла используют: обработку синтетическим шлаком, вакуумную дегазацию металла, электрошлаковый переплав (ЭШП), вакуумно-дуговой переплав (ВДП), переплав металла в электронно-дуговых и плазменных печах и т. д.

Вакуумная дегазация проводится для уменьшения содержания в металле газов вследствие снижения их растворимости в жидкой стали при пониженном давлении и неметаллических включений.

Вакуумирование стали проводят в ковше, при переливе из ковша в ковш, при заливке в изложницу.

Для вакуумирования в ковше ковш с жидкой сталью помещают в камеру, закрывающуюся герметичной крышкой. Вакуумными насосами создают разрежение до остаточного давления 0,267…0,667 кПа.

При понижении давления из жидкой стали выделяются водород и азот. Всплывающие пузырьки газов захватывают неметаллические включения, в результате чего содержание их в стали снижается.

Улучшаются прочность и пластичность стали.

Вакуумирование в ковше эффективно проводить до раскисления сильными раскислителями – кремнием и алюминием. Углерод металла реагирует с кислородом, окись углерода откачивается, а с ней откачиваются азот и водород. В результате металл раскисляется без образования неметаллических включений и дегазируется.

При вакуумировании струи металла при переливе из ковша в ковш пустой ковш устанавливают в вакуумной камере, откачивают воздух. Подают к камере второй ковш с металлом.

Металл из верхнего ковша через воронку переливают в нижний, при этом вакуум в камере не нарушается. Попадая в разреженное пространство, струя распадается на мелкие капли.

Дегазация в вакууме раздробленной струи более эффективна по сравнению с вакуумированием металла в ковше.

Для высококачественных и некоторых высоколегированных сталей применяют отливку слитков в вакууме. Используют камеру, состоящую из двух частей. В нижнюю помещают просушенную изложницу, в верхней части на плиту герметично устанавливают промежуточный ковш. Откачивают из камеры воздух, в промежуточный ковш наливают металл и начинают разливку.

Степень дегазации зависит от остаточного давления. Газы удаляются не только из слитка, но и из струи металла, протекающей в вакууме. Значительное снижение содержания водорода (до 60…70 %) обеспечивает получение стали, нечувствительной к флокенам, что упрощает процесс производства крупных поковок.

Слитки, полученные таким способом, характеризуются повышенными механическими свойствами, но стоимость их значительно повышается.

Электрошлаковый переплав (ЭШП) применяют для выплавки высококачественных сталей для подшипников, жаропрочных сталей.

Схема электрошлакового переплава представлена на рис. 9.

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение стали

Схема электрошлакового переплава

Рис. 9. Схема электрошлакового переплава

Переплаву подвергается выплавленный в дуговой печи и прокатанный на пруток металл. Источником теплоты является шлаковая ванна, нагреваемая электрическим током. Электрический ток подводится к переплавляемому электроду 1, погруженному в шлаковую ванну 2, и к поддону 9, установленному в слегка конусном водоохлаждаемом кристаллизаторе 7, в котором находится затравка 8.

Выделяющаяся теплота нагревает ванну 2 до температуры свыше 1700 ºC и вызывает оплавление конца электрода. Капли жидкого металла 3 проходят через шлак и образуют под шлаковым слоем металлическую ванну 4. Перенос капель металла через основной шлак способствует удалению из металла серы, неметаллических включений и газов.

Металлическая ванна пополняется путём расплавления электрода, и под воздействием кристаллизатора она постепенно формируется в слиток 6. По мере формирования слитка либо опускают поддон, либо поднимают электрод. Содержание кислорода уменьшается в 1,5…2 раза, серы в 2…3 раза.

Слиток отличается плотностью, однородностью, хорошим качеством поверхности, высокими механическими и эксплуатационными свойствами. Слитки получают круглого, квадратного и прямоугольного сечения массой до 110 т.

Вакуумно-дуговой переплав (ВДП) применяют в целях удаления из металла газов и неметаллических включений.

Процесс осуществляется в вакуумно-дуговых печах с расходуемым электродом. Катод изготовляют механической обработкой слитка, выплавляемого в электропечах или установках ЭШП.

Схема вакуумно-дугового переплава представлена на рис. 10.

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение стали

Схема вакуумно-дугового переплава

Рис. 10. Схема вакуумно-дугового переплава

Расходуемый электрод 3 закрепляют на водоохлаждаемом штоке 2 и помещают в корпус печи 1 и далее в медную водоохлаждаемую изложницу 6. Из корпуса печи откачивают воздух до остаточного давления 0,00133 кПа. При подаче напряжения между расходуемым электродом 3 (катодом) и затравкой 8 (анодом) возникает дуга.

Выделяющаяся теплота расплавляет конец электрода. Капли жидкого металла 4, проходя зону дугового разряда, дегазируются, заполняют изложницу и затвердевают, образуя слиток 7. Дуга горит между электродом и жидким металлом 5 в верхней части слитка на протяжении всей плавки.

Охлаждение слитка и разогрев жидкого металла создают условия для направленного затвердевания слитка. Следовательно, неметаллические включения сосредоточиваются в верхней части слитка, усадочная раковина мала. Слиток характеризуется высокой равномерностью химического состава, повышенными механическими свойствами.

Применяется для изготовления деталей турбин, двигателей, авиационных конструкций. Масса слитков достигает 50 т.

Улучшаемые стали

что такое улучшение стали. Смотреть фото что такое улучшение стали. Смотреть картинку что такое улучшение стали. Картинка про что такое улучшение стали. Фото что такое улучшение стали

Улучшаемыми сталями называют среднеуглеродистые конструкционные стали, содержащие (0,3…0,5) % С, подвергаемые закалке от температуры 820…880 0С и последующему высокотемпературному отпуску при 550…680 0С. После такой термической обработки стали приобретают структуру сорбита, хорошо воспринимающую ударные нагрузки.

Хромистые стали

Для средненагруженных деталей небольших размеров применяют хромистые стали марок 30Х, 38Х, 40Х, 50Х. С увеличением содержания углерода возрастает прочность, но снижается пластичность и вязкость.

Прокаливаемость сталей невелика и для ее увеличения легируется бором (0,002…0,005%). Критический диаметр стали 35ХР при закалке в воде составляет 30…45 мм, а в масле 20…30 мм.

Введение 0,1…0,2 % ванадия (40ХФА) повышает механические свойства хромистых сталей, главным образом вязкость, вследствие лучшего раскисления и измельчения зерна без увеличения прокаливаемости. Эти стали применяют для изделий, работающих при повышенных динамических нагрузках. Значение механических свойств некоторых улучшаемых сталей после термообработки приведены в таблице 10.

Хромомарганцевые стали

Совместное легирование сталей хромом (0,9…1,2 %) и марганцем (0,9…1,2 %) позволяет получить достаточно высокую прочность и прокаливаемость (например, 40ХГ), однако они имеют пониженную вязкость, пониженный порог хладноломкости (от 20 0С до минус 60 0С). Введение титана снижает склонность к перегреву, а добавление бора увеличивает прокаливаемость.

Таблица 10 — Механические свойства некоторых легированных улучшаемых сталей

Марка
стали
Прокаливается диаметр, ммsigmaв,
МПа
sigma0,2,
МПа
d,
%
y,
%
KCU,
МДж/м2
30X
40X
40XФА
40ХГТР
30ХГС
40ХН
30ХН3А
40ХН2МА
36Х2Н2МФА
38ХН3МФА
25-35
25-35
25-35
50-75
50-75
50-75
75-100
75-100
более 100
более100
900
1000
900
1000
1100
1000
1000
1100
1200
1200
700
800
750
800
850
800
800
950
1100
1100
12
10
10
11
10
11
10
12
12
12
45
45
50
45
45
45
50
50
50
50
0,7
0,6
0,9
0,8
0,4
0,7
0,8
0,8
0,8
0,8

Хромокремнемарганцевые стали

Они обладают высокой прокаливаемостью и механическими свойствами. К ним относятся стали марок 20ХГС, 25ХГС, 30ХГС. Стали хромансил применяют в виде листов и труб для ответственных сварных конструкций. При введении дополнительно никеля 1,4…1,8 % (30ХГНА) прочность стали повышается: sigmaв =1650 МПа, sigma0,2 = 1400 МПа.

Хромоникелевые стали

Обладают высокой прокаливаемостью, прочностью, хорошей вязкостью. Применяются для изготовления крупных изделий сложной конфигурации, работающих при вибрационных и динамических нагрузках. Никель, особенно в сочетании с молибденом, сильно снижает порог хладноломкости.

Чем выше содержание никеля, тем ниже допустимая температура применения стали и выше ее сопротивления хрупкому разрушению. Рекомендуется вводить до 3 % Ni. При большем содержании получается много остаточного аустенита.

Для тяжелонагруженных деталей с диаметром сечения до 70 мм используют стали марок 40ХН, 45ХН, 50ХН.

Хромоникелемолибденованадиевые стали

Кроме молибдена, добавляют ванадий, который способствует получению мелкозернистой структуры. Стали марок 38ХН3МФ и 36Х2Н2МФА применяют для деталей больших сечений (1000…1500 мм и более). В сердцевине после закалки образуется бейнит, а после отпуска — сорбит. Стали обладают высокой прочностью, пластичностью и вязкостью, низким порогом хладноломкости.

Молибден, присутствующий в стали, повышает ее теплостойкость.

Эти стали можно использовать при температурах 400…450 0С при изготовлении наиболее ответственных деталей турбин, компрессоров, для которых требуется материал особой прочности в крупных сечениях (поковки валов и цельнокованных роторов турбин, валы высоконапряженных турбовоздуходувных машин, детали редукторов и т.д.).

Пружинно — рессорные стали >
Дальше >

Статья на тему: «Термообработка сталей и сплавов. Нормализация и улучшение.»

Термообработка сталей и сплавов. Нормализация и улучшение.

Термическая обработка металлов, процесс обработки изделий из металлов и сплавов путём теплового воздействия с целью изменения их структуры и свойств в заданном направлении. Это воздействие может сочетаться также с химическим, деформационным, магнитным и др.

Отжиг. Это процесс термической обработки, состоящий в нагреве стали до определенной температуры, выдержке при ней и последующем медленном охлаждении с целью получения более равновесной структуры. Особенностью отжига является медленное охлаждение.

Диффузионный отжиг (гомогенизирующий) применяют для уменьшения химической неоднородности стальных слитков и фасонных отливок. Слитки (отливки), особенно из

легированной стали, имеют неоднородное строение. Неоднородность строения обусловлена карбидной ликвациями, так как в местах образования карбидов или в средней части дендритов возникают скопления легирующих элементов.

Для выравнивания химического состава слиток или отливку нагревают до высокой температуры, при которой атомы элементов приобретают большую подвижность. Благодаря этому происходит перемещение атомов из мест с большей концентрацией химических элементов в места с меньшей концентрацией.

В результате такой диффузии обеспечивается выравнивание химического состава слитка или отливки по объему.

Для обеспечения необходимой скорости диффузии атомов отжиг стали проводят при высокой температуре (1100-1200°С) с выдержкой 10-20 ч.

Полный отжиг применяют для стали в основном после горячей обработки поковок давлением и отливок с целью измельчения зерна и снятия внутренних напряжений. Это достигается нагревом стали на 30-50°С выше верхней критической точки Ас3 и медленным охлаждением.

При нагреве стали выше температуры Ас3 перлит превращается в аустенит. Это происходит путем образования в начальной стадии мельчайших зародышей кристалликов аустенита и постепенного их роста по мере повышения температуры.

При небольшом превышении температуры Ас3 (на 30-50°С) образовавшиеся кристаллики аустенита остаются еще мелкими. В дальнейшем, при охлаждении ниже температуры Ас1 образуется однородная мелкозернистая структура ферритно-перлитного типа.

При этом в пределах одного аустенитного зерна возникает несколько перлитных зерен, которые значительно мельче, чем аустенитное зерно, из которого они образовались.

Температуру нагрева деталей, изготовленных из углеродистых сталей, определяют по диаграмме состояния, а для легированных сталей — по положению их критической точки Ас3, имеющейся в справочных таблицах.

Время выдержки при отжиге складывается из времени, необходимого для полного прогрева детали, и времени, нужного для окончания структурных превращений.

Изотермический отжиг заключается в том, что сталь нагревают до температуры на 30-50°С выше точки Ас3 (конструкционные стали) и выше точки Ас1 на 50-100°С (инструментальные стали). После выдержки сталь медленно охлаждают в расплавленной соли до температуры несколько ниже точки Аг1 (680-700°С).

При этой температуре сталь подвергают изотермической выдержке до полного превращения аустенита в перлит, а затем охлаждают на спокойном воздухе.

Изотермический отжиг сокращает продолжительность термической обработки небольших по размерам изделий из легированных сталей в 2-3 раза по сравнению с полным отжигом.

Для крупных изделий такого выигрыша по времени не получается, так как требуется большое время для выравнивания температуры по объему изделия. Изотермический отжиг является лучшим способом снижения твердости и улучшения обрабатываемости резанием сложнолегированных сталей, например 18Х2НЧВА.

Сфероидизирующий отжиг обеспечивает превращение пластинчатого перлита в зернистый, сфероидизированный. Это улучшает обрабатываемость сталей резанием.

Отжиг на зернистый перлит производят по режиму: нагрев стали немного выше точки Ас1 с последующим охлаждением сначала до 700°С, затем до 550-600°С и далее на воздухе.

Сфероидизирующий отжиг применяют для сталей, содержащих более 0,65% углерода, например шарикоподшипниковые стали типа ШХ15.

Рекристаллизационный отжиг применяют для снятия наклепа, вызванного пластической деформацией металла при холодной прокатке, волочении или штамповке.

Наклепом называют упрочнение металла, появляющееся в результате холодной пластической деформации металла. При холодной прокатке, штамповке, волочении зерна металла деформируются, дробятся.

Это повышает твердость металла, снижает его пластичность и вызывает хрупкость. В этом и заключается сущность наклепа.

Рекристаллизационный отжиг выполняют путем нагрева до температуры ниже Ас1 (650-700°С), выдержки и последующего замедленного охлаждения. При нагреве металла до 650-700°С (рекристаллизационный отжиг) возрастает диффузионная подвижность атомов и в твердом состоянии происходят вторичное кристаллизационные процессы (рекристаллизация).

На границах деформированных зерен возникают новые центры кристаллизации, вокруг которых заново строится решетка. Вместо старых деформированных зерен вырастают новые равноосные зерна и деформированная структура полностью исчезает.

При этом восстанавливаются первоначальная структура и свойства металла.

Нормализация. Термическую операцию, при которой сталь нагревают до температуры на 30-50°С выше верхних критических точек Ас3 и Аcm, затем выдерживают при этой температуре и охлаждают на спокойном воздухе, называют нормализацией.

При нормализации уменьшаются внутренние напряжения, происходит перекристаллизация стали, измельчающая крупнозернистую структуру металла сварных швов, отливок или поковок.

Нормализация стали по сравнению с отжигом является более коротким процессом термической обработки, а, следовательно, и более производительным. Поэтому углеродистые и низколегированные стали подвергают, как правило, не отжигу, а нормализации.

С повышением содержания углерода в. Стали увеличивается различие в свойствах между отожженной и нормализованной сталью. Для сталей, содержащих до 0,2% углерода, предпочтительнее нормализация. Для сталей, содержащих 0,3-0,4% углерода, при нормализации по сравнению с отжигом существенно увеличивается твердость, что необходимо учитывать. Поэтому нормализация не всегда может заменить отжиг.

Сплавы после нормализации приобретают мелкозернистую структуру и несколько большую прочность и твердость, чем при отжиге. Нормализацию применяют для исправления крупнозернистой структуры, улучшения обрабатываемости стали резанием, улучшения структуры перед закалкой. В заэвтектоидной стали нормализация устраняет сетку вторичного цементита.

Стали, подвергаемые термическому улучшению, широко применяют для изготовления различных деталей, работающих в сложных напряженных условиях (при действии разнообразных нагрузок, в том числе переменных и динамических).

Стали приобретают структуру сорбита, хорошо воспринимающую ударные нагрузки. Важное значение имеет сопротивление хрупкому разрушению.

Улучшению подвергаются среднеуглеродистые стали с содержанием углерода 0,30-0,50%.

Улучшаемые углеродистые стали 35, 40, 45 дешевы, из них изготавливают детали, испытывающие небольшие напряжения (сталь 35), и детали, требующие повышенной прочности (стали 40, 45). Но термическое улучшение этих сталей обеспечивает высокий комплекс механических свойств только в деталях небольшого сечения. Стали этой группы можно использовать и в нормализованном состоянии.

Детали, требующие высокой поверхностной твердости при вязкой сердцевине (зубчатые колеса, валы, оси, втулки), подвергаются поверхностной закалке токами высокой частоты. Для снятия напряжений проводят низкий отпуск.

Улучшаемые легированные стали.

Улучшаемые легированные стали применяют для более крупных и более нагруженных ответственных деталей. Стали обладают лучшим комплексом механических свойств: выше прочность при сохранении достаточной вязкости и пластичности, ниже порог ломкости.

Хромистые стали 30Х, 40Х, 50Х используются для изготовления небольших средненагруженных деталей. Эти стали склонны к отпускной хрупкости, поэтому после высокого отпуска охлаждение должно быть быстрым.

Повышение прокаливаемости достигается микролегированием бором (35ХР). Введение в сталь ванадия значительно увеличивает вязкость (40ХФА).

Хромокремнистые (33ХС) и хромансил (25ХГСА) стали обладают высокой прочностью и умеренной вязкостью. Стали хромансилы обладают высокой свариваемостью, из них изготавливают стыковочные сварные узлы, кронштейны, крепежные и другие детали. Широко применяются в автомобилестроении и авиации.

Хромоникелевые стали 45ХН, 30ХН3А отличаются хорошей прокаливаемостью, прочностью и вязкостью, но чувствительны к обратимой отпускной хрупкости. Для уменьшения чувствительности вводят молибден или вольфрам. Ванадий способствует измельчению зерна.

Стали 36Х2Н2МФА, 38ХН3ВА др. обладают лучшими свойствами, относятся к мартенситному классу, слабо упрочняются при нагреве до 300-400oС. из них изготавливаются валы и роторы турбин, тяжело нагруженные детали редукторов и компрессоров.

1.Что такое термообработка сталей? Для каких целей проводят термообработку? Как изменяется структура и свойства сталей и сплавов после термообработки?

2. Какие виды термообработки вы знаете?

3.Что такое нормализация, улучшение стали при термообработке? Какие стали подвергают таким методам термообработки?

Структура и механические свойства улучшаемых легированных сталей

Свойства улучшаемой стали зависят от прокаливаемости, т.е. от структуры по сечению изделия после закалки.

При полной (сквозной) прокаливаемости структура по всему сечению — мартенсит. При неполной (несквозной) прокаливаемости наряду с мартенситом образуются немартенситные продукты распада аустенита (верхний и нижний бейнит, феррито – перлитная смесь).

Наиболее высокие механические свойства достигаются после высокого отпуска исходной структуры мартенсита. Если сталь имеет другие структуры, то некоторые свойства могут ухудшаться, например, температура порога хладноломкости и сопротивление вязкому разрушению (работа развития трещины).

На рисунке 1 для хромомолибденовой стали с содержанием от 0,18 до 0,30 %С приведены значения температуры перехода после высокого отпуска разных исходных структур. Подбором температуры отпуска временное сопртивление стали при всех исходных структурах было достигнуто одинаковым (sв

При этом наиболее низкий порог хладноломкости имела сталь, закаленная на мартенсит (а); сталь со структурой бейнита (верхнего) после отпуска имеет порог хладноломкости на 50 оС выше, а со структурой перлита – еще на 100 оС выше.

При всех исходных структурах повышение содержания углерода приводит также к повышению Тпр.

Сравнивая свойства отпущенного мартенсита и отпущенного бейнита, следует разделять влияние верхнего и нижнего бейнита.

В таблице № 1 приведены данные о влиянии исходной структуры (смеси структур) на механические свойства высокоотпущенной стали 18Х2Н4МФА.

Структура стали после закалкиsВ, МПаsТ, МПаd, %Y, %Т50, оСKCT, МДж/м2
100 % М850740177-851,9
75%М+25%Бн8407201673-1051,8
50%М+50Бн8607201671-1151,8
100%Бв+н8907601565+400,3
90%Бв+н+10%ФП7805201451+500,7
25%Бв+н+75%ФП7204701345+550,85

Испытания на растяжение с определением sв, sТ, d и Y не выявляют влияния бейнитных составляющих структуры в смеси с мартенситом. При этом указанные свойства практически не меняются. Появление феррито – перлитной смеси понижает прочность и пластичность стали. Значительно более сильную структурную чувствительность имеют характеристики сопротивления разрушению (Т50 и KCT).

Нижний бейнит (до 50%) в смеси с мартенситом повышает сопротивление хрупкому разрушению – порог хладноломкости снижается на 30 оС. Это обусловлено однородным распределением карбидов и мелкоигольчатой структурой нижнего бейнита, в результате чего создаются препятствия при распространении трещины скола.

Нижний бейнит в таких количествах не ухудшает сопротивление стали вязкому разрушению.

Существенное снижение характеристик сопротивления разрушению вызывает верхний бейнит и продукты распада аустенита в перлитной области. При такой структуре существенно повышается порог хладноломкости и резко падает работа распространения трещины.

Это связано с тем, что высокотемпературные продукты распада аустенита – верхний бейнит и перлит – имеют после отпуска в структуре грубые неоднородно распределенные карбидные включения, в результате чего скол может непрерывно распространяться на значительные расстояния, составляющие несколько зерен.

Влияние остаточного аустенита на свойства стали после отпуска может быть двояким. Если остаточный аустенит распадается при отпуске на феррит и карбид, то это вызывает охрупчивание стали. Стабилизированный остаточный аустенит, не разлагающийся при отпуске, расположенный между пластинами мартенсита в виде тонких прослоек сильно повышает вязкость разрушения (KIC) высокопрочных сталей.

Таким образом, если после закалки в изделиях получается структура мартенсита в смеси с нижним бейнитом (до 50 %), то свойства стали не ухудшаются. Появление же наряду с мартенситом или нижним бейнитом высокотемпературных продуктов распада – верхнего бейнита и феррито – перлитной смеси – снижает значения сопротивления стали хрупкому и вязкому разрушению.

Марки сталей и их свойства

В зависимости от требований по прокаливаемости и необходимого уровня механических свойств в машиностроении используют большое количество различно легированных сталей.

Марки легированных конструкционных сталей определяются ГОСТ 4543 – 2016, ряд сталей изготавливается также по техническим условиям. Основными легирующими элементами в улучшаемых сталях являются: Cr, Mn, Ni, Mo, B, V и др.

Содержание углерода в них обычно находится в пределах 0,06 – 0,54 %.

В таблице № 2 приведен химический состав и гарантируемы механические свойства наиболее широко распространенных улучшаемых машиностроительных сталей. Приведенные механические свойства нормированы как контрольные послеуказанной термической обработки для заготовок с размером сечения 25 мм (круг или квадрат). Для каждой стали свойства будут зависеть от температуры отпуска.

Марка сталиСодержание элементов, %Режим контрольной термообработкиМеханические свойства
CMnCrNiДр. элементыtзак oCtотп oCsв, МПаs0,2 МПаd %y %KCU МДж/м2
40Х0,36-0,440,50-0,800,80-1,10£0,386050098078510450,6
40ХФА0,34-0,440,50-0,800,80-1,10£0,30,10-0,18V88065088073510500,9
40Г20,26-0,351,4-1,8£0,3£0,38806006003501545
30Г20,36-0,441,4-1,8£0,3£0,38606506703901240
40ХГТР0,38-0,450,80-1,000,80-1,10£0,30,03-0,09Ti84055098078511450,8
38ХС0,34-0,420,30-0,601,30-1,60£0,31,0-1,4Si90063093073512500,7
30ХГСА0,28-0,340,80-1,100,80-1,10£0,30,9-1,2Si880540108083510450,5
30ХМА0,26-0,330,40-0,700,80-1,10£0,30,15-0,25Mo88054093073512500,9
30Х3МФ0,27-0,340,30-0,602,30-2,70£0,30,2–0,3Mo 0,06-0,12V87062098083512561,0
40ХН0,36-0,440,50-0,800,45-0,751,00-1,4082053098078510450,7
30ХН3А0,27-0,330,30-0,600,60-0,902,75-3,15820530100080010500,8
30ХН2МА0,27-0,340,30-0,600,60-0,901,25-1,650,2-0,3Mo86053098078510450,8
40ХН2МА0,37-0,440,50-0,800,60-0,901,25-1,650,15-0,20Mo850620110095012500,8
18Х2Н4МА0,14-0,200,25-0,551,35-1,654,00-4,400,3-0,4Mo860550105080012501,2

Легированным конструкционным улучшаемым сталям свойственна повышенная анизотропия свойств, т.е. различие свойств в зависимости от направления деформации при ковке или прокатке.

Уменьшение анизотропии достигается металлургическими способами: уменьшением в стали сульфидов и других неметаллических включений, изменением условий горячей пластической деформации и др.

Также эти стали чувствительны к флокенам, причем наиболее чувствительны к образованию флокенов доэвтектоидные легированные перлитные и перлито — мартенситные стали.

Хромистые стали (30Х, 35Х, 40Х, 45Х, 50Х, 35Х2АФ, 40Х2АФЕ) являются наименее легированными и обеспечивают прокаливаемость в больших сечениях, чем соответствующие углеродистые стали. Хром не оказывает сильного влияния на разупрочнение при отпуске, однако он увеличивает склонность стали к отпускной хрупкости.

Поэтому изделия из этих сталей после высокого отпуска следует охлаждать в масле или воде, недопустимо охлаждение после отпуска с печью. С целью получения мелкого зерна аустенита в стали данной группы вводят ванадий, который находясь в карбидах, препятствует росту зерна, а при отпуске задерживает разупрочнение.

Значительные преимущества имеют хромистые стали, упрочненные нитридами: 35Х2АФ и 40Х2АФЕ.

Эти стали имеют мелкое зерно, глубокую прокаливаемость, высокие механические свойства как после закалки и низкого отпуска, так и после улучшения.

Такие свойства обусловлены легированием сталей азотом и нитридообразующими элементами – ванадием и алюминием. Для улучшения обрабатываемости резанием стали легируют селеном.

Марганцовистые стали (30Г2, 35Г2, 40Г2, 45Г2, 50Г2) имеют большую прокаливаемость, чем хромистые. Однако марганец усиливает склонность зерна к росту, поэтому эти стали чувствительны к перегреву и могут иметь пониженную ударную вязкость, особенно при отрицательных температурах. Применяются при обработке ТВЧ и для изделий, несущих небольшие ударные нагрузки.

Хромомарганцевые стали (25ХГТ,30ХГТ, 40ХГТ, 35ХГФ и др.) обладают повышенной устойчивостью переохлажденного аустенита и соответственно прокаливаемостью.

С целью получения мелкозернистой структуры в ряд сталей вводят небольшие добавки титана (0,03 – 0,09 %). Легирование ванадием также позволяет получить мелкозернистую структуру и повысить температуру отпуска на заданную твердость.

Применяются для машиностроительных деталей ответственного назначения: валы, шатуны, шестеренки.

Хромокремнистые и хромокремнемарганцовистые стали (33ХС, 38ХС, 25ХГСА, 30ХГСА, 35ХГСА и др.) обладают высокой прочностью и умеренной вязкостью.

В качестве термической обработки применяются закалка и низкий отпуск или улучшение.

Недостатком таких сталей является относительно небольшая прокаливаемость, сильная склонность к отпускной хрупкости I и II рода, склонность к обезуглероживанию.

Хромомолибденовые стали (30ХМ, 35ХМ, 38ХМ, 30Х3МФ, 40ХМФА и др.), обладая хорошей прокаливаемостью, имеют высокий комплекс механических свойств и мало склонны к отпускной хрупкости благодаря молибдену.

Их особенностью является способность сохранять высокие механические свойства при повышенных температурах. Получение мелкого зерна в структуре сталей этой группы достигается за счет введения ванадия.

Хромомолибденовые стали применяются для изготовления наиболее ответственных изделий сечением до 80 – 100 мм: коленчатые валы, тяжелонагруженные оси, баллоны высокого давления и т.д.

Хромоникелевые и хромоникельмолибденовые (вольфрамовые) стали: 20ХН3А, 20Х2НЧА, 40ХН, 30ХН3А, 20ХН2М, 30ХН2М, 38Х2Н2МА, 40Х2МА, 38ХН3МА, 18Х2Н4МА и др.

являются наиболее качественными, их применяют для изготовления самых ответственных крупных изделий (сечением 100 – 1000 мм).

Уникальные свойства хромоникелевых и хромоникельмолибденовых сталей достигаются вследствие их чрезвычайно высокой прокаливаемости и наибольшей вязкости.

Высокая прокаливаемость сталей обусловлена сильным совместным влиянием хрома и никеля или хрома, никеля и молибдена на повышение устойчивости аустенита. Такие стали закаливают в больших сечениях, обеспечивая после закалки в масле получение мартенсита и нижнего бейнита в центре крупных изделий.

Высокая вязкость сталей обусловлена влиянием никеля на параметры, характеризующие склонность к хрупкому и вязкому разрушениям, также никель понижает порог хладноломкости улучшаемых легированных сталей.

Стали с 3 – 4 % Ni имеют наибольший температурный запас вязкости: 20ХН3А, 30ХН3А, 18Х2Н4МА, 38ХН3МА.

Недостатком хромоникелевых сталей является склонность к обратимой отпускной хрупкости. Молибден и вольфрам значительно ослабляют склонность к развитию отпускной хрупкости, поэтому хромоникельмолибденовые (вольфрамовые) стали практически лишены этого недостатка.

Стали с пониженным содержанием никеля менее склонны к обратимой отпускной хрупкости. При рациональном легировании хромоникелевых сталей сохраняется достаточно высокая прокаливаемость, позволяющая использовать их для изделий больших сечений.

Хромоникельмолибденовые (вольфрамовые) стали иногда содержат ванадий (38ХН3МФА, 45ХН2МФА, 30Х2НМФА и др.), что обеспечивает их мелкозернистость и повышает устойчивость против отпуска.

Дата добавления: 2018-06-27; просмотров: 319; ЗАКАЗАТЬ РАБОТУ

ПОИСК

Отпуск, проводимый прн 500—680°С, называется высокотемпературным, или высоким. При этих температурах происходит рост кристаллитов карбида железа — тонкие пластинки его укрупняются и приобретают округлую форму. Высокий отпуск повышает вязкость стали прочность и твердость ее немного снижаются, но остаются все же значительными.

При высоком отпуске создается наилучшее соотношение механических свойств стали. Поэтому закалка с высоким отпуском называется улучшением стали. Улучшение — основной вид термической обработки конструкционных сталей (см. стр. 678). [c.

676] В нефтяной и газовой промышленности для сварных конструкций (резервуаров) применяют стали улучшенного раскисления и низколегированные марганцовистые эти стали имеют высокий порог хладноломкости при температуре около —70° С а кГ м см ).

Хладноломкостью объясняется также введение для сталей сварных конструкций обязательного испытания на ударную вязкость образцов при отрицательных температурах. Вопрос о методах испытаний на хладноломкость продолжает быть дискуссионным. [c.

Продолжаются дальнейшие теоретические и экспериментальные разработки, направленные на повышение жаростойкости, износостойкости и хладостойкости сталей, улучшение их технологических и эксплуатационных свойств и расширение области применения. [c.75]

I — сталь улучшенная — углеродистая сталь с 1,09 /0 0 3 — медистая [c.7]

Преимущество в прочности улучшенной стали Х5М перед отожженной устойчиво сохраняется и при повышенных температурах. У отожженной стали заметное снижение прочности наблюдается при температурах выше 400—450° С, у стали улучшенной — при температурах выше 475—500° С (табл. 66). Длительная прочность [c.87]

Сосуды для хранения и перевозки жидкого водорода, разработанные в НБС, отличаются прочностью, небольшим весом и имеют весьма малые потери на испарение.

При их изготовлении использовались такие достижения, как сварка алюминия плотным швом, пайка алюминия с нержавеющей сталью, улучшение отражательной способности металлических поверхностей и новые изолирующие опоры.

Дальнейшее развитие способов улучшения отражательной способности поверхностей и применение [c.424]

Стали обыкновенного качества (например, СтЗ) применяют для изготовления аппаратов, работающих под избыточным давлением до 6 МПа при температурах от минус 30 °С до плюс 425 °С. Для более жестких условий применяют углеродистые стали улучшенного качества — марок 15К и 20К. [c.243]

Обычная сталь Улучшенная сталь Эмалировочное железо [c.95]

Никелевая сталь, улучшенная………… [c.431]

Отжиг применяется для снижения твердости стали, улучшения ее обрабатываемости резанием, снятия внутренних напряжений после механической обработки или обработки давлением, для придания стали наилучшей структуры и последующей термической или химико-термической обработки. [c.106]

С о р т С. Стали улучшенного качества повышенной стойкости к надрезам, предназначенные для конструкций или их деталей, подвергающихся опасности хрупкого излома. [c.152]

В связи с вовлечением в переработку сернистых нефтей появились различные способы очистки топливных фракций от соединений серы. Одной из первых проблем при очистке топлив от серы стало улучшение их запаха. С этой целью были разработаны специальные методы очистки топлив, в первую очередь бензинов, от меркаптанов.

В таких процессах стремились либо удалить меркаптаны из топлив, либо превратить пх в другие, менее пахучие соединения (папример, дисульфиды). Многие меркаптаны, содержащиеся в бензинах, имеют слабокислую реа,кцию и могут быть удалены промывкой водными растворами щелочей.

Растворимость меркаптанов в растворах щелочей можно повысить, добавляя органические кислоты и другие соединения. Щелочная промывка оказалась простым и в то же время достаточно эффективным способом очистки топливных фракций.

Для превращения меркаптанов в дисульфиды в промышленности в настоящее время используется процесс меро с (окисление мер1каптанов). [c.23]

ВАКУУМЙРОВАННАЯ СТАЛЬ (от лат. va uum — пустота) — сталь, улучшенная вакуумированием. Используется с 50-х гг. 20 в. Вакууми-рованными могут быть, нанр., конструкционная сталь, жаропрочная сталь, нержавеющая ст-аль, трансформаторная сталь, рельсовая сталь. В. с.

отличается от обычной стали более высокими (в среднем на 10—15%) ударной вязкостью, относительным сужением и удлинением, содержит меньше газов (азота, водорода, кислорода) и неметаллических включений. Хорошо сваривается. При кристаллизации В. с. уменьшается газовая пористость и рыхлость.

В процессе разливки устраняется возможность вторичного окисления стали, образования плен и заворотов, в процессе ковки и прокатки уменьшается количество поверхностных и внутренних трещин и рванин. Незначительное содержание водорода в В. с. уменьшает вероятность образования флокенов. В. с. подвергают такой же горячех мех. обработке давлением, как и нева-куумированные стали.

Термическая обработка В. с. (за исключением отжига после ковки) не отличается от принятой для стали определенной марки. В. с. получают вакуумированием в печи, в ковше, при разливке. [c.167]

Углеродистые стали. Углеродистые стали — один из самых массовых конструкционных материалов химического и нефтехимического машиностроения. Углеродистая сталь обыкновенного качества по ГОСТу 380—60 в зависимости от способа выплавки разделяются на мартеновскую, бессемеровскую или конвертерную. Различают стали кипящие, спокойные и полуспокойные.

При выплавке кипящей стали в ней остается больше вредных примесей, вследствие чего применение ее ограничено. Правилами Госгортехнадзора стальные сварные аппараты допускается изготовлять из кипящей стали при рабочем избыточном давлении до 16 кПсм (1,6 Мн м ) и температурах от — 10 до +350° С. Спокойные стали обыкновенного качества (наиболее распространенная марка — Ст.

3) применяют для корпусов аппаратов, работающих под избыточным давлением до 6 Мн1м (60 кПсм ) при температуре от —30 до +425° С. Для более тяжелых условий применяют углеродистые стали улучшенного качества марок 15К и 20К (по ГОСТу 5520—62 Сталь листовая углеродистая и низколегированная для котлостроения и сосудов, работающих под давлением. Технические требования ).

Эти стали применяют при температуре до 475° С. [c.22]

Особенно внимательно нужно проводить сварку небольшой детали с корпусом, имеющим большую массу. Хороший предварительный нагрев большей детали предупреждает образование слишком ломкой структуры сварного шва.

Лучше сваривается и требует меньшей термической обработки, чем углеродистая сталь, улучшенная хромомолибденовая сталь или сталь хромомолибденовольфрамованадиевая, применяемая для труб высокого давления, работающих при температуре выше 200° С.

[c.288]

Улучшаемые стали. Улучшаемые легированные стали. Улучшаемые конструкционные стали. Термообработка улучшаемых сталей. | мтомд.инфо

Стали, подвергаемые термическому улучшению, широко применяют для изготовления различных деталей, работающих в сложных напряженных условиях ( при действии разнообразных нагрузок, в том числе переменных и динамических). Стали приобретают структуру сорбита, хорошо воспринимающую ударные нагрузки. Важное значение имеет сопротивление хрупкому разрушению.

Улучшению подвергаются среднеуглеродистые стали с содержанием углерода 0,30…0,50 %.

Улучшаемые стали

Улучшаемые углеродистые стали 35, 40, 45 дешевы, из них изготавливают детали, испытывающие небольшие напряжения (сталь 35), и детали, требующие повышенной прочности (стали 40, 45).

Но термическое улучшение этих сталей обеспечивает высокий комплекс механических свойств только в деталях небольшого сечения, так как стали обладают низкой прокаливаемостью.

Стали этой группы можно использовать и в нормализованном состоянии (см. Нормализация стали.).

Детали, требующие высокой поверхностной твердости при вязкой сердцевине (зубчатые колеса, валы, оси, втулки), подвергаются поверхностной закалке токами высокой частоты. Для снятия напряжений проводят низкий отпуск.

Улучшаемые легированные стали применяют для более крупных и более нагруженных ответственных деталей. Стали обладают лучшим комплексом механических свойств: выше прочность при сохранении достаточной вязкости и пластичности, ниже порог хладоломкости.

Хромистые стали 30Х, 40Х, 50Х используются для изготовления небольших средненагруженных деталей. Эти стали склонны к отпускной хрупкости, поэтому после высокого отпуска охлаждение должно быть быстрым. Повышение прокаливаемости достигается микролегированием бором (35ХР). Введение в сталь ванадия значительно увеличивает вязкость (40ХФА).

Хромокремнистые (33ХС) и хромокремниймарганцевые (хромансил) (25ХГСА) стали обладают высокой прочностью и умеренной вязкостью. Стали хромансилы обладают высокой свариваемостью, из них изготавливают стыковочные сварные узлы, кронштейны, крепежные и другие детали. Широко применяются в автомобилестроении и авиации.

Хромоникелевые стали 45ХН, 30ХН3А отличаются хорошей прокаливаемостью, прочностью и вязкостью, но чувствительны к обратимой отпускной хрупкости. Для уменьшения чувствительности вводят молибден или вольфрам. Ванадий способствует измельчению зерна.

Стали 36Х2Н2МФА, 38ХН3ВА др. обладают лучшими свойствами, относятся к мартенситному классу, слабо разупрочняются при нагреве до 300…400 oС. из них изготавливаются валы и роторы турбин, тяжелонагруженные детали редукторов и компрессоров.

Улучшаемые стали

Улучшаемыми конструкционными сталями называются среднеуглеродистые стали (0,3-0,5%С). В них должно содержаться не более 5 % легирующих элементов. Эти стали используются после операции улучшения. Данная операция состоит из закалки и высокого отпуска. Закалка подобных сталей, как правило, проводится в масле. При отпуске температура улучшаемых сталей составит 550-650 °С.

После термической обработки улучшаемые стали обладают структурой сорбита͵ хорошо воспринимающего ударные нагрузки.

Улучшаемая сталь получает высокую прочность, вязкость, низкую чувствительность к концентраторам напряжения, а также сравнительно хорошую прокаливаемость.

При сквозной прокаливаемости, после одинаковой термообработки, свойства различных марок улучшаемых сталей обычно близки между собой. По этой причине выбор тех или иных марок улучшаемой стали обусловлен прокаливаемостью стали, обязательно учитывается сечение детали и сложностью ее конфигурации, также смотрим на наличие концентраторов напряжений.

Группа I. К ней относят углеродистые стали 35, 40, 45 Стали имеющие критический диаметр до 10 мм, при нем достигается сквозная прокаливаемость. Οʜᴎ содержат в своей структуре не менее 95 % мартенсита.

Группа II. К ней относятся хромистые стали 30Х, 40Х. Стали имеющие критический диаметр 15-20 мм. К недостатку сталей этой группы можно отнести склонность к отпускной хрупкости второго рода. Для этих сталей крайне важно быстрое охлаждение после отпуска (охлаждение маслом, водой).

Группа III. К ней относятся хромистые стали. Как правило, их дополнительно легируют еще одним а иногда и двумя элементами З0ХМ, 40ХГ, 30ХГТ Критический диаметр 20-25 мм. Для увеличения прокаливаемости в хромистые стали можно дополнительно ввести марганец (40ХГ) и бор (40ХР).

Молибден (30ХМ) вводят для уменьшения отпускной хрупкости второго рода. Высокие свойства имеют принадлежащие к этой группе стали, называемые хромансилями: 20ХГС, 30ХГС. Οʜᴎ хорошо свариваются при высокой прочности 1200 МПа и KCU = 0,4 МДж/м2.

К их недостаткам можно отнести склонность к отпускной хрупкости второго рода.

Группа IV. К ней относятся хромоникелœевые стали с содержанием до 1,5 % Ni: 40ХН, 40ХНМ. Их критический диаметр 40 мм. Эти стали при низких температурах эксплуатации обладают несколько большим запасом вязкости, чем стали находящиеся в предыдущих группах.

Группа V. К ней относятся комплекснолегированные стали, содержащие 3-4 % Ni: 38ХНЗМ, 38ХНЗМФА. Как правило, стали из этой группы достаточно дороги. Эти улучшаемые стали относятся к самым лучшим маркам.

Критический диаметр составляет 100 мм и более. Οʜᴎ обладают низкой склонности к хрупкому разрушению. Из этих сталей изготовляются детали со сложной конфигурацией, подвергаемые ударным нагрузкам.

Их недостатки, это склонность к флокенообразованию и трудность обработки резанием.

Улучшаемые стали. — понятие и виды. Классификация и особенности категории «Улучшаемые стали.» 2017, 2018.

Такими сталями являются углеродистые и легированные стали с содержанием углерода 0,3…0,5%. Стали применяют после закалки и высокого отпуска (такую термическую обработку называют улучшением). Стали имеют высокие пределы текучести и выносливости и достаточный запас… [читать подробнее].

Стали, подвергаемые термическому улучшению, широко применяют для изготовления различных деталей, работающих в сложных напряженных условиях ( при действии разнообразных нагрузок, в том числе переменных и динамических). Стали приобретают структуру сорбита, хорошо… [читать подробнее].

Цементуемые легированные стали. Химический состав (%) некоторых цементуемых (низкоуглеродистых) сталей (ГОСТ 1050-74 и 4543-71) Марка стали Элементы Другие элементы C Mn Cr Ni 20Х 0,17-0,23 0,5-0,8 0,7-1,0 &… [читать подробнее].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *