что такое трв в машине
Терморегулирующие вентили (ТРВ)
Статическая характеристика ТРВ представляет собой зависимость холодопроизводительности (пропускной способности ТРВ) от перегрева.
При выборе ТРВ необходимо заботиться о том, чтобы он полностью соответствовал производительности испарителя, так как только в этом случае можно обеспечить абсолютно устойчивую работу регулируемой установки. С этой целью следует предусматривать минимальный перегрев во всем диапазоне возможной производительности испарителя. Регулирование может быть устойчивым, только если точка пересечения кривых рабочей характеристики испарителя и рабочей характеристики ТРВ соответствует рабочей точке холодопроизводительности установки.
Для многосекционных испарителей, у которых секции установлены параллельно и имеют одинаковую тепловую нагрузку, после ТРВ предусматривают распределитель жидкости. Однако наличие распределителя всегда вызывает дополнительные потери давления, в связи с чем в таких случаях необходимо использовать ТРВ не с внутренним уравновешиванием, а с наружным. Этот тип ТРВ применяется также, когда потери давления в испарителе превышают значения. В ТРВ с наружным уравновешиванием давления полость под сильфоном связана не с давлением в корпусе ТРВ, а с давлением на выходе из испарителя с помощью уравнительного трубопровода (линии). Такое устройство позволяет уравновесить потери давления в трубках распределителя и в испарителе.
Уравнительная линия выходит го специального отверстия, предусмотренного в корпусе ТРВ, а ее другой конец врезается в трубопровод всасывания. Для защиты двигателя компрессора от перегрузки, которая может возникнуть в определенных условиях, например при запуске после оттаивания, предусматривают терморегулирующий вентиль типа MOP (Maximal Operating Pressure — максимальное рабочее давление), т.е. ТРВ с ограниченным значением давления максимального открытия. Такой ТРВ может открыться только тогда, когда температура испарения (т.е. давление в испарителе) упадет ниже заданного значения точки МОР. Другими словами, в точке МОР вентиль начинает перекрывать подачу хладагента в испаритель, чтобы предотвратить рост давления испарения. Повышение температуры термобаллона выше точки МОР практически не приводит к дополнительному открытию ТРВ.
Двигатель компрессора остается защищенным до тех пор, пока давление испарения не упадет ниже заданного значения точки МОР, вследствие чего аббревиатура МОР расшифровывается иногда как «защита двигателя от перегрузки» (Motor Overload Protection). Термобаллоны ТРВ следует закреплять, как правило, на горизонтальных участках всасывающих трубопроводов. Чтобы термобаллон мог быстро реагировать на любое изменение температуры в трубопроводе, необходимо обеспечить оптимальные условия теплообмена между трубопроводом всасывания и термобаллоном ТРВ (регулирование трв).
Термобаллон всегда должен располагаться на чистом и прямолинейном участке трубопровода и прикрепляться к нему специальным хомутом. Если диаметр всасывающего трубопровода менее 22 мм, термобаллон ТРВ должен располагаться на верхнем гребне этого трубопровода, так как там влияние пленки масла, которое всегда в большем или меньшем количестве присутствует в хладагенте в виде жидких частиц, на искажение информации о величине перегрева самое незначительное. Для трубопроводов с диаметром более 22 мм характер распределения масляной пленки по внутренней поверхности всасывающей магистрали различен. Поэтому для обеспечения хорошего теплообмена между термобаллоном и всасывающим трубопроводом, необходимого для нормальной работы ТРВ, следует размещать термобаллон в точке окружности трубопровода, соответствующей значениям 10 или 14 часов на часовом циферблате, если номинальный диаметр трубопровода заключен между 22 и 50 мм, и в точке 16 или 20 часов, если номинальный диаметр трубопровода более 50 мм.
В случае когда действительно нельзя установить термобаллон на горизонтальном участке трубопровода всасывания, выход капиллярной трубки из термобаллона обязательно должен находиться вверху. С другой стороны, термобаллоны никогда не следует размещать вблизи массивных металлических частей и тем более в воздушной струе от вентилятора. Кроме того, термобаллон должен быть изолирован от любых посторонних источников тепла (в частности, от нагрева излучением). Терморегулирующие вентили нашли широкое применение в холодильных установках (холодильные камеры), работающих на углеродсодержащих хладагентах, так как в них возврат масла не является особенно проблематичным и поэтому такие установки часто оснащаются испарителями, работающими в режиме перегрева даже при высоких мощностях. Вместе с тем это не исключает существования ТРВ, специально спроектированных для работы на аммиаке.
Дроссельное (или сопловое) отверстие многих ТРВ выполняется в виде сменного вкладыша, что позволяет обеспечить новое значение его производительности простой заменой этого элемента. Терморегулирующий (силовой, управляющий) тракт ТРВ, т.е. комплекс, состоящий из верхней части ТРВ (надмембранная полость, образующая терморегулирующий элемент), капиллярной трубки и термобаллона, также иногда бывает сменным, что позволяет подобрать наилучший вариант заправки термобаллона (паровая, жидкостная или адсорбционная заправка), наиболее подходящий для конкретных условий работы данного холодильного оборудования.
Простой заменой типа заправки термобаллона иногда удается легко решить проблему пульсации («качания») иглы регулятора. Статический перегрев этого ТРВ устанавливается в заводских условиях на уровне 4 К и обычно для большинства традиционных областей использования не требует перенастройки. Если, однако, такая необходимость возникает, можно повысить или понизить перегрев, т.е. соответственно уменьшить или увеличить расход подачи хладагента, вращая в ту или иную сторону винт регулировочного штока, при этом один полный оборот винта соответствует изменению перегрева на 4 К.
Проблемы с автокондиционером? Проверяем неисправность ТРВ
Клапан ТРВ (Терморегулирующий вентиль автокондиционера) — это скрытый от наших глаз важнейший элемент системы кондиционирования в автомобиле, без которого работа современного автомобильного кондиционера невозможна.
Клапан ТРВ устанавливается перед испарителем (эвапоратором), по мере необходимости он уменьшает или увеличивает проходное сечение магистрали, дозируя рабочую жидкость в испарителе.
Сжатый жидкий хладагент при проходе через клапан резко расширяется и принимает газообразное состояние, фактически происходит испарение — подобно огнетушителю, распыляющему жидкость.
При этом клапан способствует резкому уменьшению давления хладагента, что влечет за собой понижение его температуры, влага из воздуха конденсируется на испарителе, охлаждая его. Далее с помощью вентилятора воздух, проходящий через испаритель, охлаждается и попадает в салон автомобиля, гарантируя комфортную температуру воздуха.
При неисправности клапана ТРВ система кондиционирования автомобиля будет работать некорректно, а именно:
— работа кондиционера станет цикличной, поступление охлажденного воздуха будет не постоянным, а с перебоями;
— присутствует самопроизвольное отключение системы;
— шланг испарителя начнет обмерзать
Причиной неисправности клапана ТРВ может быть:
— механическое повреждение клапана;
— неправильная регулировка;
— загрязнение системы изнутри;
— наличие в системе воды или воздуха
Клапан ТРВ требует обязательной замены при ремонте системы кондиционирования, в ходе поломки компрессора кондиционера — в системе могла образоваться металлическая стружка, появиться грязь, а также влага (при прекратившим справляться со своей задачей ресивером-осушителем), что негативно повлияет на работу клапана.
Бренд LUZAR предоставляет на рынке обширный ассортимент клапанов ТРВ под внутренним артикулом LTRV, соответствующим качеству и характеристикам оригинальным изделиям, при более мягких, отвечающим сегодняшним реалиям рынка ценам.
Будьте в курсе наших новостей — подписывайтесь на официальные каналы в соцсетях:
Подбор терморегулирующего вентиля для кондиционеров
Терморегулирующий вентиль (ТРВ) – один из элементов, без которого работа холодильного контура невозможна. Другими словами, без ТРВ не сможет функционировать ни одна холодильная машина. Вместо ТРВ в холодильный контур может быть также установлено другое устройство с подобными функциональными свойствами. Это может быть более простая и дешевая капиллярная трубка, или более дорогой и сложный электронный терморегулирующий вентиль (ЭТРВ). Все эти приборы носят одно общее название – дросселирующие устройства. Установка в холодильный контур одного или другого дросселирующего устройства регламентируется только производителем, исходя из особенностей того или иного вида кондиционера.
Где устанавливается ТРВ
Место установки ТРВ в холодильном контуре имеет вполне определенное место. Он должен устанавливаться поближе к испарителю, а расширительный баллончик – на выходном горизонтальном участке фреонового трубопровода испарителя. Прикрепляется он очень плотно, в идеальном варианте между баллончиком и трубопроводом должна быть проложена теплопроводящая паста, а место установки – теплоизолировано.
В исключительных случаях в бытовых или полупромышленных кондиционерах дросселирующее устройство устанавливается во внешнем блоке. Это достаточно далеко от испарителя, но это исключение из правил.
На фото: Место установки ТРВ в холодильном контуре
ТРВ может регулировать проходное сечение дросселирующего отверстия. В нижней его части имеется регулировочный винт. После сборки, на фабрике ТРВ настраивают на перегрев 4°C. Если необходимо увеличить или уменьшить перегрев, то регулировочный винт следует повернуть по часовой или против часовой стрелки. Один полный оборот винта соответствует перегреву в 0.5, 2 или 4 °C, в зависимости от производителя и модели ТРВ.
Как правильно подобрать ТРВ
Независимо от оборудования, на котором устанавливается ТРВ, вентиль должен соответствовать типу заправленного холодильного агента. Если мы говорим о кондиционировании, то 99% подобного оборудования работает на R410А. В некоторых случаях в кондиционерах применяются R134А, R32 или R407C. Все эти холодильные агенты озонобезопасны. В настоящее время имеются кондиционеры, работающие на старом хладагенте R22. На поверхности ТРВ обязательно указывается тип холодильного агента, для которого предназначен данный терморегулирующий вентиль. В исключительных случаях на корпусе ТРВ может быть указано два типа холодильных агентов. Категорически запрещается устанавливать ТРВ на кондиционер, если марка холодильного агента на корпусе ТРВ не соответствует заправленному в кондиционер.
На фото: Принцип работы терморегулирующего вентиля (ТРВ)
Второй показатель, на который необходимо обратить внимание, выбирая ТРВ, — это производительность. Так как терморегулирующий вентиль устанавливается перед испарителем, то он должен быть согласован с его производительностью. Принимая во внимание справочные данные различных ТРВ, можно сказать, что у каждого из них есть фиксированный показатель производительности, которой должен соответствовать характеристиками испарителя. Конечно, точно подобрать вентиль просто невозможно, но после расчета допускается, чтобы его производительность была меньше аналогичного показателя у испарителя. В противном случае в испаритель будет поступать больше холодильного агента, что в дальнейшем неизбежно приведет к выходу из строя самого кондиционера.
Мы рассмотрели два основных параметра, по которым подбирается ТРВ. Однако существуют и другие характеристики, которыми обладают терморегулирующие вентили. Так, например, ТРВ могут быть с внешним и внутренним уравниванием, с постоянным дросселирующем отверстием или сменным отверстием, меняющейся вставкой с отверстием, а также однопоточные и реверсивные. Эти параметры терморегулирующего вентиля выбираются самим производителем.
Формулы для расчета характеристик ТРВ
Терморегулирующий вентиль кондиционера или любой другой холодильной установки может быть рассчитан более точно с применением академических формул.
Для расчета номинальной холодопроизводительности ТРВ может быть использована следующая зависимость:
где Qо — холодопроизводительность системы, Вт;
КΔР — поправочный коэффициент, учитывающий потери давления;
К1 — поправочный коэффициент, учитывающий разность значений температуры кипения.
Пример значений коэффициентов КΔР и К1 для К410А приведены ниже в таблицах.
Если переохлаждение превышает 15 о С, необходима соответствующая корректировка типоразмеров составных элементов системы. На практике для компенсации эффекта переохлаждения к уже известным поправочным коэффициентам К1 и КΔР добавляют еще один коэффициент, К2.
В этом случае расчет номинальной холодопроизводительности ТРВ может быть произведен по формуле
где Qо — холодопроизводительность системы, Вт;
КΔР — поправочный коэффициент, учитывающий потери давления;
К2 — поправочный коэффициент, учитывающий переохлаждение свыше 15 о С.
Если испаритель расположен выше уровня жидкостного ресивера, то из этой разницы вычитают гидростатическое давление высоты столба соответствующей жидкости.
В этом случае для расчета ТРВ требуется знать действительный перепад давления. Для его расчета может быть использована следующая зависимость:
где Рк — давление конденсации, определяемое по температуре конденсации, мПа;
Ро — давление кипения, определяемое по температуре кипения, мПа;
ΔР1 — падение давления на жидкостной линии (примерно равно 0,01 мПа);
ΔР2 — общее падение давления на фильтре-осушителе, смотровом окне, ручном запорном вентиле и на участках изгиба (составляет приблизительно 0,02 мПа);
ΔР3 — падение давления на вертикальном жидкостном трубопроводе, возникающее из-за разности высот при высоте 6 м (для определения данного значения необходимо воспользоваться дополнительными источниками);
ΔР4 — падение давления в распределителе жидкости (примерно равно 0,05 мПа);
ΔР5 — падение давления в трубах распределителя жидкости, (примерно равно 0,05 мПа).
Однако сегодня такими формулами для расчета мало кто пользуется, поскольку это занимает много времени и не исключает больших погрешностей, так как техника быстро развивается и претерпевает со временем значительные изменения. Наиболее точный расчет и подбор ТРВ возможен только при помощи специализированных программ подбора холодильной автоматики. Каждый производитель имеет такую программу, и она позволяет выбрать любой тип ТРВ под рассчитанные параметры кондиционера, такие как температура кипения, перегрев, температура конденсации, переохлаждение, температура нагнетания и т.д. Использование программ подбора полностью исключает ошибки при подборе ТРВ, если специалист строго следует рекомендациям производителя.
Принципы работы терморегулирующего вентиля (ТРВ)
Если температура термобаллона превысит 11 С, то это повлечет и увеличение давления (оно станет больше 6 бар) и ТРВ откроется. Когда температура и давление станут ниже 11 С и 6 бар соответственно, то ТРВ закроется.
Получается, что при соответствующей настройке регулировочной пружины ТРВ (1,4 бар), будет поддерживаться постоянная разница между температурой кипения и температурой термобаллона в 7 К.
Основные причины аномального перегрева
На (рис. 5.1) tB= tE= температуре кипения=4 С. В точке D температура составляет 18 С, а перегрев составляет 14 К.
Объясняется это следующим образом: если холодильный контур имеет нормальную работу, то последние капли жидкости в точке С уже выкипели. Далее пары продолжают нагреваться – участок C-D. Когда участок C-D заполнен парами, обеспечивается нормальный перегрев.
Когда в испарителе хладагент находится в недостаточном количестве, длина участка, заполненного парами, увеличивается (рис.5.1 точка Е), в результате чего перегрев значительно возрастает. Если температура в точке D достигнет 18 С, то перегрев составит 14 К.
Чрезмерно низкий перегрев (меньше 5 К)
Практика показывает, что даже после выполнения настроек ТРВ, системе необходимо 20 минут для того, чтобы войти в новый режим.
В стабильно работающих установках открытие ТРВ действительно приводит к увеличению давления кипения, в связи с этим необходимо знать, что в функции ТРВ не входит его регулировка. Основное назначение ТРВ – это оптимальное заполнение испарителя при различных тепловых нагрузках для обеспечения постоянного перегрева всасываемых паров.
Как перегрев влияет на холодопроизводительность?
Поэтому для максимальной холодопроизводительности необходимо следить, чтобы испаритель был как можно больше заполнен хладагентом. Снижая перегрев необходимо следить, чтобы жидкость не попадала на вход в компрессор. Если в системе слишком большой перегрев, то это означает, что ТРВ пропускает слишком мало жидкости (почти закрыт). Низкая холодопроизводительность испарителя свидетельствует о том, что перепад температур Δθ на входе-выходе является незначительным. Давление кипения на выходе из ТРВ падает, и трубопровод покрывается инеем. При низком перегреве отверстие ТРВ пропускает много жидкости или полностью открыто. Если в испарителе содержится много жидкости, то наблюдается высокая холодопроизводительность и перепад температур Δθ для охлаждаемого воздуха является нормальным. В этом случае в компрессор могут попадать губительные для него частицы жидкости.
Воздействие температуры охлаждаемого воздуха
Если охлаждаемый воздух поступает к испарителю с температурой 25 С, то участка трубопровода А-В достаточно, чтобы обеспечить перегрев паров в 7 К. Давление кипения в этом случае соответствует 5,2 барам, что является эквивалентом температурному напору Δθполн 18 К.
В данном случае установка работает нормально, температура окружающей среды падает, как и температура на входе в испаритель. Допустим, что температура на входе в испаритель снизилась на 20 С. При прежних настройках ТРВ перегрев остается почти постоянным – 7 К. Чтобы перегрев паров остался прежним при более низкой температуре, необходимо увеличить участок трубопровода испарителя, где происходит обмен между воздухом и парами хладагента. При температуре наружного воздуха 20 С длина участка А?-В больше для обеспечения перегрева 7 К, чем участка А-Б при температуре 25 С, для обеспечения аналогичного перегрева паров. Поскольку в данных участках находятся только пары, то можно утверждать, что при температуре воздуха на входе в испаритель 20 С в нем находится меньше жидкого хладагента, нежели при температуре 25 С.
При поступлении в ТРВ более холодного воздуха он начинается закрываться, что приводит к снижению количества жидкости и уменьшении холодопроизводительность. Давление кипения также снижается. Говоря другими словами, при снижении температуры воздуха на входе в испаритель, сечение ТРВ становится меньше, для сохранения необходимого перегрева. При этом давление кипения также уменьшается. Температурный напор Δθполн остается неизменным, если давление конденсации не меняется и правильно отрегулировано.
Производительность ТРВ
Аналогичная ситуация происходит и с терморегулирующим вентилем: при снижении расхода жидкости давление между входом и выходом уменьшается, и увеличивается при его повышении. Также следует помнить о том, что увеличение расхода жидкости хладагента, проходящего через терморегулирующий вентиль, повышает его производительность, а, следовательно, и мощность установки.
Необходимо различать следующие понятия: производительность ТРВ, поглощающая способность испарителя и холодопроизводительность.
Под производительностью терморегулирующего вентиля понимают максимальный расход, способный пропускать данный элемент при полностью открытом отверстии и фиксированном перепаде давления ΔР. Исходя из этого, можно сделать вывод, что производительность напрямую зависит от диаметра сечения сменного клапанного узла внутри ТРВ. Данная зависимость отображена на схеме рис.8.2.
Проходное сечение В обладает большим диаметром чем b, а, следовательно, может пропускать больше жидкости. Таким образом, терморегулирующий вентиль с клапанным узлом, имеющим сечение В, обладает большей производительностью, чем ТРВ с патроном сечением b.
При этом производительность ТРВ и холодопроизводительность испарителя должны быть равны, поскольку через ТРВ может проходить столько жидкости, сколько сможет выкипеть в испарителе.
В приведенной ниже таблице 8.1 указаны данные по выбору ТРВ для установки на R22.
Точка 1: Производительность ТРВ 3,32 кВт при tk=50 С и to=0 С (ΔР=18,4-4=14,4 бар)
Точка 2: Производительность ТРВ 2,88 кВт при tk=35 С и to=0 С (ΔР=12,5-4=8,5 бар)
Точка 2: Производительность ТРВ 2,53 кВт при tk=35 С и to=10 С (ΔР=12,5-5,8=6,7 бар)
Следовательно, для температуры кипения 0 С производительность снижается с 3,32 до 2,88 кВт при уменьшении ΔР с 14,4 до 8,5 бар, что равняется 13%.
При температуре конденсации 35 С производительность терморегулирующего вентиля снижается с 2,88 до 2,53 кВт и ΔР уменьшается с 8,5 до 6,7 бар – 12%.
Поэтому ТРВ и маркируются по производительности. Некоторые изготовители указывают номинальную производительность данной величины для определенных условий работы (+5/+32 С переохлаждение 4 К). Так, номинальная производительность ТРВ компании DANFOSS марки TEX5-3 составляет 3 тонны, а ALCO марки TIE4HW – 4 тонны.
Стоит помнить, что номинальная производительность обозначает только порядок величины, а ее конкретное значение будет показано на практике. Определяется оно рабочим перепадом и паспортом ТРВ, устанавливающим определенное значение производительности для данного проходного сечения.
Пульсации ТРВ
В точке to хорошо налаженный ТРВ обеспечит перегрев 7 К. В целом, установка показывает стабильную работу и необходимый перегрев. На промежутке времени t1 открываем вентиль на один оборот, после чего сразу видим, как он быстро переходит на пульсирующий режим работы. При этом перегрев меняется от 2 до 14 К. Показания манометра НД также свидетельствуют о пульсации давления кипения, которые совпадают по частоте с изменениями кривой 2. На следующем промежутке t2 ТРВ открываем еще на оборот. При этом частота пульсации начинает быстро возрастать, и перегрев находится в промежутке 0-12 К.
Если дотронутся до всасывающего трубопровода, то можно отчетливо ощутить гидроудары, которые передаются в компрессор. При этом корпус компрессора будет холодным. Чем больше открываем регулировочный винт ТРВ, тем больше повышается его производительность. Пульсация свидетельствует о том, что пропускная способность ТРВ выше производительности испарителя.
Негативные нюансы пульсации
При дальнейшем открытии ТРВ, пульсации прекратятся, низкое давление стабилизируется, а температуры 1 и 2 приобретут одинаковое значение. Компрессор станет работать в условиях, когда на его входе имеются неиспарившиеся частицы. Правда, данный режим может привести к негативным последствиям.
Настройка терморегулирующего вентиля
Давайте рассмотрим наиболее простой и верный способ. К используемым манометрам подключаем электронный термометр, датчик которого крепим на термобаллоне ТРВ (рис.8.4). Для того, чтобы обеспечить стабильность настроек необходимо все действия производить при температуре близкой к отключению компрессора. Категорически не рекомендуется их выполнять при высокой температуре ТРВ в охлаждаемом объеме.
Предлагаемая технология настройки основана на том, что вначале необходимо ТРВ вывести на предельный режим, во время которого начнутся пульсации. Для этого ТРВ медленно открывается до появления пульсации (показания манометра НД и термометра остаются неизменными). При возникновении пульсаций перегрева необходимо прикрывать ТРВ до тех пор, пока они не прекратятся.
Не следует вращать регулировочный винт больше, чем на один оборот, поскольку предельный режим пульсации может наступить через ¼, а иногда и через 1/8 оборота. После всех совершенных изменений необходимо выждать порядка 15 минут. В конечном результате это поможет сократить общее время настройки.
Если в период работы установки в пульсирующем режиме слегка закрыть ТРВ (пол-оборота), то это будет значить, что терморегулирующий вентиль настроен на минимально возможный перегрев. В этом случае заполнение испарителя жидким хладагентом станет оптимальным, и пульсации прекратятся.
Стоит учитывать, что давление конденсации должно оставаться практически стабильным, но максимально приближенным к номинальным условиям работы, поскольку от нее зависит производительность ТРВ.