что такое тирес в самолете
Шины для самолетов. Давление в шинах самолета.
Современная авиационная шина – сложная высокотехнологическая структура, разработанная для работы с огромными скоростями и нагрузками при максимально возможном весе и размерах. Несмотря на это, шина – один из наименее понимаемых и наиболее недооцененных элементов самолета. Каждый согласится с тем, что они «грязные, черные и круглые». Но в реальности авиашина – многоэлементный компонент, сконструированный из трех материалов: корд, резина, металл. В весовом соотношении шина самолета состоит на 50% из резины, на 45 % из корда и на 5% из металла. Углубившись в материалы компонента детальнее, можно увидеть различные типы резиновых смесей и нейлоновых кордов. Они имеют свои особые свойства для успешного выполнения поставленных задач.
Все авиационные шины можно разделить на 2 категории:
низкоскоростные (рассчитаны на наземную скорость самолета до 192 км/час);
высокоскоростные (наземная скорость – более 192 км/час).
Перед установкой шины на колесо самолета над ней проводится целый ряд испытаний.
Эти тестовые проверки разделяют на статические и динамические.
Статические
1.Проверка на прочность под воздействием внутреннего гидравлического давления. Способ: на испытательное колесо монтируют шину и до грани разрыва накачивают его водой. Определенное время шина должна без разрушения выдерживать нагрузку.
2.Определение давления посадки шины на обод колеса. Один из методов – копировальный. Между двух листов обычной бумаги кладут один копировальный лист. Затем эту бумажную «конструкцию» устанавливают между ребордой колеса и бортом шины. Далее шину накачивают. Когда пятка борта колеса коснется вертикальной поверхности реборды, фиксируется показатель давления посадки на обод. Это отразится в виде следа на обычной бумаге от копировального листа.
3.Выявление герметичности бескамерных авиашин. Шину накачивают до предельного давления и удерживают при одинаковой температуре на протяжении определенного времени. За это время давление внутри шины уменьшается за счет увеличения ее габаритов. Далее измеряют разницу давления, насколько оно упало за отведенный срок.
4.Определение габаритов шин. Авиационную шину устанавливают на колесо, накачивают до предельного номинального давления. Определенное время выдерживают при комнатной температуре. После окончания этого времени докачивают шину до изначального значения. Затем измеряют следующие величины: внешнюю ширину, наружный диаметр, ширину и диаметр по плечевой зоне.
Динамические
1.Поправка давления. Выполняется учет влияния кривизны барабана.
2.Проведение динамических испытаний шин в максимально приближенных к эксплуатации условиях: на скорость, нагрузку и т.д.
Как проводится замена шин у реактивного самолета
Авиационные шины вызывают восхищение в воздухе и гарантируют безопасность на земле. Но посадки и взлеты негативно отражаются на их состоянии.
За год самолет проезжает по земле расстояние, равное 8 тыс. километров, выполняя рулежки, маневрируя, влетая и приземляясь. Контакты элементов шасси самолета с взлетной полосой сильно сказываются на износе шин. Замена шин – настоящая проблема для авиакомпаний, поскольку стоит немалых денег, но для авиаперевозчиков безопасность всегда на первом месте. Квалифицированная команда шиномонтажников обязана проводить замену за 30 минут.
Во Франкфурте расположен один из самых больших по загруженности международный аэропорт и базируется одна из крупнейших авиакомпаний – Lufthansa.
Воздушное судно подруливает на стоянку, бригада специалистов начинает работу. Начало процесса очень похоже на замену автомобильных шин, разница заключается только в том, что если в машине 4 колеса, то у самолета их целых 30. Блоки по 8 штук находятся под носовой частью и крыльями и прикреплены на т.н. тележках. Поднятие тележки проводится при помощи домкрата. Гидронасос домкрата использует давление, находящееся внутри шины.
после аварийной посадки
Подняв конструкцию, бригада снимает колесо. Сначала специалист откручивает фиксирующую гайку. По умело отточенным движениям механиков видно, что работа обыденная. Цена ошибки велика и измеряется жизнями людей, которые полетят этим самолетом. Механики должны знать, когда актуально проводить замену шины. Диагностические маркеры для этого находятся в канавках протектора. Если этих индикаторов не видно – значит, шину нужно менять.
Сняв шину, можно увидеть ее огромные размеры: ширина – 0,5 м, диаметр – 1,5 м.
Самолетные шины испытывают огромные нагрузки. Несколько часов они находятся в условиях очень низких температур, а во время посадки самолета набирают скорость до 280 км/ч. При приземлении температура шины составляет 260°С. Почему же тогда эти компоненты не взрываются в воздухе и не лопаются при контакте с покрытием ВПП?
Секрет находится внутри шины: она заполнена не сжатым воздухом, как автошина, а газом – азотом. Поэтому авиационные шины всегда сухие, без воды внутри и не могут замерзнуть. Также они не горючие.
На одно колесо у немецких механиков ушло 15 минут, и они приступают к съему следующего колеса, а «переобутое» ставят на место. Специалист внимательно проверяет затяжку болтов, ведь их ослабление грозит катастрофой.
Далее шины накачивают, опускают домкрат, проверяют, все ли болты находятся на своих местах, укрепляют их контровочной проволокой. На этом процесс замены шин заканчивается.
Всё, что вы хотели знать о турбулентности: рассказывает пилот
Алина Архипова
Очень многие пассажиры пугаются, когда самолёт в воздухе начинает трясти, то есть когда по тем или иным причинам появляется «болтанка» или турбулентность, если по-научному.
Турбулентность — это естественное явление в авиации, точно также, как качка в море, как тряска автомобиля на неровной или ухабистой дороге.
Если в море вы можете видеть волны, на дорогах — заплатки или ямы, то в небе часто этого ничего не видно, но на самом деле оно тоже совсем не однородно.
Что происходит в небе?
В воздухе постоянно происходит много различных процессов — движутся разные воздушные потоки и струйные течения, скорость которых иногда может достигать до 300 км/час, а то и больше. Образуются зоны разного атмосферного давления. Одни воздушные массы сменяются другими, возникают метеорологические фронты — от холодного, тёплого до смешанного.
Каждый день в атмосфере изменяется температура и давление. Обычно с ростом высоты и то, и другое должно уменьшаться, но бывает и наоборот. Сила и направление ветра тоже постоянно варьируются. Иногда можно видеть, как облака на разных высотах движутся в противоположные стороны.
Всё это в целом делает атмосферу либо стабильной, либо нестабильной, создавая условия для появления разных погодных явлений, в том числе и турбулентности.
Иногда пилоты заведомо могут знать о возможной турбулентности на своём маршруте из метеорологических карт и сводок погоды, которые они проверяют перед каждым полётом. А если в полёте появилась турбулентность там, где в картах она не была отмечена, то пилоты сообщают об этом диспетчеру, и он в свою очередь предупреждает потом другие борты, входящие в данный сектор.
Причины «болтанки»
1) Красивые пушистые облака, кучевые (cumulus) и особенно кучевые-дождевые (cumulunimbus CB) являются турбулентными за счёт восходящих и нисходящих потоков, образующихся в них. Во время гроз воздух переполнен грозовыми облаками CB.
Но не все облака турбулентны. В отличие от пушистых красивых облаков, внутри и рядом с которыми может «болтать», низкие слоистые сплошные облака обычно спокойные.
2) Но тряска не всегда рождается из-за одних только облаков. Есть ещё турбулентность ясного неба (clear air turbulence — CAT), когда в воздухе нет ни единого облачка, солнечно и красиво, а атмосфера нестабильная, и самолёт неожиданно начинает трясти.
3) Также турбулентность часто возникает в горной местности, и чем ближе к горам, тем сильнее.
4) Ещё есть термические потоки (восходящие потоки) в тёплое время года, образующиеся от нагрева поверхности земли. Поэтому тёплой весной и летом даже при хорошей ясной погоде самолёт на посадке может прилично «болтать» именно из-за них, особенно при пролёте разной поверхности (так как она по-разному прогревается). Например, когда лесистая местность сменяется полем или долиной, или при пролёте береговой линии с моря на сушу.
5) Есть искусственная турбулентность – это если самолёт попадёт случайно в спутную струю впереди летящего или взлетающего самолёта. Это достаточно опасно. Именно поэтому диспетчеры должны обеспечить, а лётчики соблюдать определённую дистанцию — интервал между бортами самолётов как при взлётах/посадках, так и на других этапах полёта.
Хотя случайности всё равно иногда бывают, например, по причине ветра, когда тот задерживает спутную струю пролетающего самолёта или сносит её прямо на идущий самолёт следом. В таких случаях самолёт может сильно мотнуть из стороны в сторону вплоть до самопроизвольного отключения автоматики, и среагировать надо очень быстро.
У меня было так несколько раз, ощущения не из приятных. Но чтобы пилоты были подготовлены к таким неожиданностям и знали, как действовать, подобные ситуации прорабатываются обязательно на тренажёрах.
6) А ещё, например, наш Boeing может трясти, когда мы летим с выпущенными спойлерами (интерцепторами), если срочно надо снизиться или быстро погасить скорость. Спойлеры — это пластины на верхней поверхности крыла, поднимающиеся вертикально вверх при выпуске.
То есть в полёте очень много естественных причин тряски самолёта.
Насколько опасна турбулентность?
В авиации турбулентность делят по интенсивности на три категории:
Но сразу скажу, что мы делаем всё, чтобы самолёт никогда не оказывался в зоне с сильной турбулентностью. Просто так сильная турбулентность сама по себе не бывает. В большинстве случаев она появляется в зоне действия гроз и большого скопления грозовых облаков. А это возможно предвидеть, изучив метеокарты и отследив по радару. Пилоты всегда обходят подобные зоны, если возможно. А если невозможно, то уходят на запасные аэродромы. Причём есть ограничения, на каком удалении безопасно обходить опасные сектора, как сбоку, так и по высоте.