что такое строение клетки ткани

Научная электронная библиотека

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки ткани

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки ткани

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки тканиучастие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки тканитранспортировка питательных веществ и утилизация продуктов обмена клетки;

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки тканибуферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки тканиподдержание тургора (упругость) клетки;

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки тканивсе биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки ткани

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки ткани

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки ткани

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки ткани

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Источник

Что такое строение клетки ткани

Строение и биологическая роль тканей человеческого организма:

Каждая ткань характеризуется развитием в онтогенезе из определенного эмбрионального зачатка и типичными для нее взаимоотношениями с другими тканями и положением в организме (Н.А. Шевченко)

Эпителиальная ткань:

Эпителий отделяет организм от внешней среды, но одновременно служит посредником при взаимодействии организма с окружающей средой. Клетки эпителия плотно соединены друг с другом и образуют механический барьер, препятствующий проникновению микроорганизмов и чужеродных веществ внутрь организма. Клетки эпителиальной ткани живут непродолжительное время и быстро заменяются новыми (этот процесс именуется регенерацией).

Эпителиальная ткань участвует и во многих других функциях: секреции (железы внешней и внутренней секреции), всасывании (кишечный эпителий), газообмене (эпителий легких).

Главной особенностью Эпителия является то, что он состоит из непрерывного слоя плотно прилегающих клеток. Эпителий может быть в виде пласта из клеток, выстилающих все поверхности организма, и в виде крупных скоплений клеток – желез: печень, поджелудочная, щитовидная, слюнные железы и др. В первом случае он лежит на базальной мембране, которая отделяет эпителий от подлежащей соединительной ткани. Однако существуют исключения: эпителиальные клетки в лимфатической ткани чередуются с элементами соединительной ткани, такой эпителий называется атипическим.

Эпителиальные клетки, располагающиеся пластом, могут лежать во много слоев (многослойный эпителий) или в один слой (однослойный эпителий). По высоте клеток различают эпителии плоский, кубический, призматический, цилиндрический.

Соединительная ткань состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.

В противоположность эпителиальной ткани во всех типах соединительной ткани (кроме жировой) межклеточное вещество преобладает над клетками по объему, т. е. межклеточное вещество очень хорошо выражено. Химический состав и физические свойства межклеточного вещества очень разнообразны в различных типах соединительной ткани. Например, кровь – клетки в ней «плавают» и передвигаются свободно, поскольку межклеточное вещество хорошо развито.

В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами – от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.

В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.

Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).

Костная ткань, образующая кости скелета, отличается большой прочностью. Она поддерживает форму тела (конституцию) и защищает органы, расположенные в черепной коробке, грудной и тазовой полостях, участвует в минеральном обмене. Ткань состоит из клеток (остеоцитов) и межклеточного вещества, в котором расположены питательные каналы с сосудами. В межклеточном веществе содержится до 70% минеральных солей (кальций, фосфор и магний).

В своем развитии костная ткань проходит волокнистую и пластинчатую стадии. На различных участках кости она организуется в виде компактного или губчатого костного вещества.

Хрящевая ткан ь состоит из клеток (хондроцитов) и межклеточного вещества (хрящевого матрикса), характеризующегося повышенной упругостью. Она выполняет опорную функцию, так как образует основную массу хрящей.

Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.

Нейрон – основная структурная и функциональная единица нервной ткани. Главная его особенность – способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела – дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце – аксоны. Аксоны образуют нервные волокна.

Нервный импульс – это электрическая волна, бегущая с большой скоростью по нервному волокну.

В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.

Мышечная ткань

Мышечные клетки называют мышечными волокнами, потому что они постоянно вытянуты в одном направлении.

Классификация мышечных тканей проводится на основании строения ткани (гистологически): по наличию или отсутствию поперечной исчерченности, и на основании механизма сокращения – произвольного (как в скелетной мышце) или непроизвольного (гладкая или сердечная мышцы).

Мышечная ткань обладает возбудимостью и способностью к активному сокращению под влиянием нервной системы и некоторых веществ. Микроскопические различия позволяют выделить два типа этой тканигладкую (неисчерченную) и поперечнополосатую (исчерченную).

Гладкая мышечная ткань имеет клеточное строение. Она образует мышечные оболочки стенок внутренних органов (кишечника, матки, мочевого пузыря и др.), кровеносных и лимфатических сосудов; сокращение ее происходит непроизвольно.

Поперечнополосатая мышечная ткань состоит из мышечных волокон, каждое из которых представлено многими тысячами клеток, слившимися, кроме их ядер, в одну структуру. Она образует скелетные мышцы. Их мы можем сокращать по своему желанию.

Разновидностью поперечнополосатой мышечной ткани является сердечная мышца, обладающая уникальными способностями. В течение жизни (около 70 лет) сердечная мышца сокращается более 2,5 млн. раз. Ни одна другая ткань не обладает таким потенциалом прочности. Сердечная мышечная ткань имеет поперечную исчерченность. Однако в отличие от скелетной мышцы здесь есть специальные участки, где мышечные волокна смыкаются. Благодаря такому строению сокращение одного волокна бысто передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы.

Источник

БИОЛОГИЧЕСКИЙ ОТДЕЛ ЦЕНТРА ПЕДАГОГИЧЕСКОГО МАСТЕРСТВА

что такое строение клетки ткани. Смотреть фото что такое строение клетки ткани. Смотреть картинку что такое строение клетки ткани. Картинка про что такое строение клетки ткани. Фото что такое строение клетки ткани

Ткани человека

Автор статьи Зыбина А.М.

Ткань – это совокупность клеток и межклеточного вещества, имеющих схожее строение, происхождение и выполняемые ими функции. В организме человека выделяют 4 типа тканей: эпителиальную, соединительную, мышечную и нервную.

Эпителиальные ткани делятся на два типа: покровные и железистые. Основные ее функции:

Расположение и функции эпителиальных тканей весьма разнообразно, поэтому он может образовываться из любого из трех зародышевых листков.

Покровный эпителий (рис.1) отделяет организм от внешней среды и выстилает внутренние органы. Таким образом, он с одной стороны является барьерной, а с другой – обменной тканью. В связи с этим главной особенностью строения эпителия является большое количество плотно сомкнутых клеток и малое количество межклеточного вещества. Эпителий лежит на базальной мембране (слой из белков и полисахаридов), под которой расположена соединительная ткань. В эпителиальной ткани не проходят сосуды. Они располагаются в соединительной ткани и питание осуществляется за счет диффузии газов и питательных веществ.

В зависимости от формы клеток покровный эпителий делится на плоский, кубический и призматический (цилиндрический). Клетки призматического эпителия в зависимости от выполняемых функций могут иметь микроворсинки или реснички (мерцательный эпителий) (рис.2) При этом, сами клетки могут располагаться в один или несколько слоев (однослойный и многослойный эпителий соответственно). Последнее свойство больше присуще плоскому эпителию. Многослойный кубический и призматический эпителии встречаются, но редко, в основном в местах перехода многослойного плоского в однослойный кубический или призматический эпителий.

Многослойный плоский эпителий может быть ороговевающим и неороговевающим. В однослойном эпителии все клетки контактируют с базальной мембраной. Если внутри однослойного эпителия клетки одинакового размера и все ядра расположены на одном уровне, то он называется однорядным, если нет – многорядным. Отдельно выделяют переходный эпителий (уроэпителий), выстилающий мочевой пузырь, мочевыводящие пути и аллантоис. Он содержит несколько слоев: базальный, промежуточный, состоящий из грушевидных клеток, покровный, состоящий из крупных клеток, покрытых слизью. Толщина этого эпителия меняется в зависимости от степени растяжения стенки мочевыводящих органов (рис.3).

Рис. 2. Электронные микрофотографии эпителия микроворсинками (а) и с ресничками (б).

Расположение основных видов эпителия следующее:

Многослойный эпителий неоднороден по клеточному составу. Ороговевающий эпителий может иметь до пяти слоев (на примере эпидермиса кожи):

Многослойный плоский неороговевающий эпителий состоит из трех слоев: базального, шиповатого и поверхностного, который сотоит из плоских постоянно отшелушивающийся клеток.

Несмотря на разнообразие строения различных видов эпителия, все они выполняют свои функции и строго контролируют поступление и выведение веществ из организма. Для предотвращения транспорта в организм нежелательных водорастворимых соединений, клетки снабжены плотными контактами, предотвращающими парацеллюлярный (межклеточный) (рис.5) транспорт. В таком контакте мембраны клеток максимально сближены и сшиты белками клаудинами и окклюдинами. При наличии плотного контакта все водорастворимые соединения переносятся строго через клетку, снабженную для них специальными транспортерами или каналами. Липофильные соединения могут свободно проходить через мембрану. Поэтому для защиты от нежелательных липофильных соединений клетки снабжены ABC-транспортерами (AТР binding cassette). Это суперсемейство белков, способных с затратой энергии АТФ переносить самые различные соединения из клетки во внешнюю среду.

Рис.5. Строение плотного контакта (а) и электронная микрофотография плотного контакта (стрелка) между двумя энтероцитами тощей кишки кролика, х 50 000 (по В. А. Шахламову) (б). Источник строения плотного контакта Википедия плотные контакты

Железистый эпителий образует железы внутренней (эндокринные), внешней (эндокринные) и смешанной секреции. Покровный эпителий может содержать в себе множество мелких желез.

Эндокринные железы (рис. 6б) не имеют выводных протоков и окружены капиллярами. Они секретируют биологически активные вещества в кровоток. Экзокринные железы (рис. 6а) имеют выводные протоки и выводят секрет через них во внешнюю среду или полости тела. Железы смешанной секреции состоят из эндо- так и экзокринных частей.

Соединительная ткань является самой распространенной тканью во всем организме (более 50%). Она имеет мезодермальное происхождение. Особенность этой ткани – большой объем межклеточного вещества со сравнительно небольшим объемом клеток. В состав межклеточного вещества может входить коллаген, эластин и минеральные вещества. Соединительная ткань организма находится в нескольких состояниях:

Рис.7. Разнообразие соединительных тканей. Слева направо: рыхлая соединительная ткань, плотная соединительная ткань, хрящ, кость, кровь.

Соединительная ткань имеет сложную классификацию (рис. 8). К ней относят кровь, лимфу, кроветворные ткани, кости, хрящи, связки, жировую ткань и т.д. Разнообразное строение и расположение позволяет ей выполнять разнообразные функции:

Рис. 9. Состав плазмы крови.

Рис. 10. Форменные элементы крови. Слева направо эритроцит, тромбоцит, лейкоцит.

Вторыми по численности являются тромбоциты (рис. 10) (250-350 тыс/мкл). Это небольшие безъядерные пластинки диаметром 2-4 мкм. Это постклеточные структуры, образующиеся из мегакариоцитов, расположенных в красном костном мозге. Они защищают наш организм от избыточной потери крови при травмах.

Самыми малочисленными форменными элементами являются лейкоциты (рис.10). Это группа клеток, обеспечивающих все виды иммунитета. Их численность в крови невелика (4-8 тыс/мл), так как большинство из них мигрирует в ткани или локализуются в иммунных органах.

Лимфа – это прозрачная соединительная ткань, лишенная эритроцитов. Однако, она богата лейкоцитами. По составу лимфа похожа на плазму крови. Функция лимфатической системы – дренаж лишней жидкости, вышедшей из капилляров в ткани и ее возврат в кровоток.

Кроветворные ткани взрослого человека – это красный костный мозг (рис. 11). В эмбриональном периоде кроветворную функцию также могут выполнять селезенка и печень. Красный костный мозг располагается в эпифизах крупных трубчатых костей. Он состоит из ретикулярной соединительной ткани, стволовых клеток и незрелых клеток крови. В среднем, костный мозг составляет примерно 4% массы тела. У детей он полностью занят кроветворением. У взрослых людей примерно половина костного мозга образует кровь, а вторая половина является недеятельной и называется желтым костным мозгом.

Рис. 11. Расположение красного костного мозга.

Волокнистые соединительные ткани могут быть рыхлыми и плотными.

Рыхлая волокнистая соединительная ткань располагается преимущественно по ходу кровеносных и лимфатических сосудов, нервов, образует строму многих внутренних органов, а также подслизистую, подсерозную и адвентициальную оболочку.

Плотная волокнистая соединительная ткань благодаря хорошо развитым волокнистым структурам выполняет в основном опорную и защитную функции. В ее межклеточном веществе преобладают волокна. Соединительнотканные волокна могут переплетаться в разных направлениях (неоформленная плотная волокнистая ткань), или располагаться параллельно друг другу (оформленная плотная волокнистая ткань).

Неоформленная плотная волокнистая соединительная ткань оплетает нервы и окружает органы. Эта ткань образует склеру глаза, надкостницу и надхрящницу, волокнистый слой суставных капсул, сетчатый слой дермы, клапаны сердца, перикард и твердую мозговую оболочку. Оформленная плотная волокнистая соединительная ткань образует сухожилия, связки, фасции, межкостные мембраны.

Жировая ткань (рис. 12) состоит из клеток (адипоцитов), в которых запасены жировые капли и развитого слабо межклеточного вещества (коллагеновые и эластические волокна, аморфное вещество). В цитоплазме адипоцита имеется одна большая капля жира, а ядро и органоиды оттеснены к периферии. Белая жировая ткань составляет 15-20% — у мужчин и 20-25% — у женщин от массы тела.

Новорожденные и дети первых месяцев жизни помимо белой, имеют бурую жировую ткань. С возрастом бурая жировая ткань подвергается атрофии. У взрослых она встречается: между лопатками, около почек и около щитовидной железы. Ядро бурых жировых клеток расположено по центру клетки, а в цитоплазме имеется много мелких капелек жира.

Рис. 12. Гистологические препараты бурой (слева) и белой (справа) жировой ткани.

Ретикулярная соединительная ткань образует селезенку, лимфатические узлы и красный костный мозг. Она является остовом для кроветворных клеток и лимфоцитов. Участвует в регуляции гемопоэза и иммунитета.

Слизистая соединительная ткань состоит из слабодифференцированных клеток – фибробластов и большого количества межклеточного вещества (волокна и аморфное вещество с гиалуроновой кислотой). Она входит в состав пупочного канатика зародыша. Обеспечивает тургор (упругость) тканей пупочного канатика и предотвращают возможность пережима кровеносных сосудов, питающих зародыш.

Скелетные соединительные ткани делят на костные и хрящевые.

Костная ткань отличается твердостью и прочностью. Эта ткань является важной частью скелета. Она состоит из костных клеток – остеобластов, которые откладывают большое количество межклеточного вещества и, замуровывая себя, утрачивают способность к делению, и превращаются в остеоциты. Пространство вокруг остеоцита называют лакуной. Межклеточное вещество содержит коллагеновые волокна, пропитанные неорганическими соединениями, среди которых превалируют фосфаты кальция. Костные клетки располагаются концентрически вокруг Гаверсова канала, в котором проходят кровеносные сосуды, питающие кость. Гаверсов канал с расположенными вокруг клетками называется остеон и является структурной единицей кости (рис. 13, 14). Направление остеонов зависит от нагрузки, действующей на кость.

Костная ткань обновляется в течение всей жизни. Разрушение старой кости осуществляют остеокласты, мигрирующие по гаверсову каналу. Новую костную ткань строят остеобласты.

Рис. 14. (компактное вещество диафиза трубчатой кости, поперечный срез). Видны остеоны (1) и вставочные костные пластинки (6). В остеоне хорошо различимы канал остеона (2), концентрические костные пластинки (3), костные полости или тельца (лакуны, содержащие остеоциты) (4), спайная линия (5). Окраска по Шморлю. Источник http://vmede.org/sait/?page=7&id=Gistologija_atlas_boi4uk_2008&menu=Gistologija_atlas_boi4uk_2008

Хрящевая ткань, по сравнению с костью, содержит больше воды и органических веществ, и меньше минералов. Клетки хрящевой ткани, или хондроциты, расположены в полостях (лакуны) и окружены межклеточным веществом. Различают три вида хряща:

Рис. 15. Гистологические срезы гиалинового (а), эластического (б) и волокнистого (в) хрящей.

Мышечные ткани выполняют двигательную функцию. Важным их свойством является способность к возбуждению и сокращению. Мышечные ткани имеют мезодермальное происхождение. Различают три типа мышечных тканей: скелетные, гладкие и сердечные.

Скелетные мышцы образованы цилиндрическими волокнами длиной 1-40 мм и толщиной 0,1 мкм. Клетки многоядерные и имеют поперечно-полосатую исчерченность (рис. 16). Исчерченность появляется благодаря упорядоченному расположению сократительных волокон в клетке. В совокупности они образуют саркомер – функциональную и сократительную единицу мышцы (рис. 17). Тонкие волокна называются актин, толстые – миозин. Актин прикрепляется к Z-пластинке и является пассивной частью саркомера. Миозин обладает АТФазной активностью и активно участвует в сокращении. Он имеет головки, с помощью которых он прикрепляется к актину и сближает актиновые волокна во время сокращения. Такое строение ткани позволяет совершать быстрые и сильные сокращения, однако, скелетная мускулатура относительно быстро утомляется. Под действием импульсов из ЦНС она сокращается и позволяет осуществлять произвольные движения и перемещения тела в пространстве.

Рис. 16. Схематичное строение (а) и гистологический срез (б) поперечно-полосатой скелетной мышцы.

Рис. 17. Схема строения и работы (а) и электронная микрофотография (б) саркомера.

Гладкие мышцы – это одноядерные клетки веретенообразной формы, не имеющие исчерченности. Сокращение этих клеток осуществляется за счет актина и миозина, однако, их распределение отличается от скелетных мышц (рис. 18). Сократительные фибриллы в клетках гладких мышц расположены по диагонали и прикрепляются к плотным тельцам. Из-за отсутствия параллельного расположения сократительных волокон, поперечно-полосатая исчерченность в этих клетках отсутствует. В отличие от скелетной мускулатуры, энергия АТФ расходуется не на каждый гребок миозина, что позволяет расходовать энергию более экономно.

Гладкие мышцы располагаются преимущественно в стенках органов и сосудов и управляются с помощью непроизвольной вегетативной нервной системы.

Рис. 18. Схема строения и сокращения (а) и гистологический срез (б) гладкой мышцы.

Сердечная мышца состоит из одноядерных клеток, имеющих поперечно-полосатую исчерченность. Миофибриллы располагаются вдоль клеток и образуют саркомеры. Для быстрой и эффективной передачи электрического импульса с одной клетки на другую, на границе клеток располагаются щелевые контакты, или коннексоны. Они соединяют цитоплазмы соседних клеток каналом так, что ионы могут свободно перемещаться из клетки в клетку. Концентрируясь на полюсах, щелевые контакты образуют вставочные диски (рис. 19).

Рис. 19. Гистологический срез сердечной мышцы. Стрелками обозначены вставочные диски и щелевыми контактами.

Сердечная мускулатура, как очевидно из названия, образует стенку сердца.

Нервная ткань образует все отделы нервной системы. Она имеет эктодермальное происхождение. Основные характеристики нервной ткани – это способность к восприятию, проведению и передаче нервных импульсов. Она состоит из нервных клеток, или нейронов, и клеток нейроглии (рис. 20).

Рис. 20. Строение нервной ткани.

Нейрон является структурно-функциональной единицей нервной системы. Он состоит из (рис. 21):

Рис. 21. Строение нейрона.

Таким образом, нейрон может передавать импульс только в одном направлении. Он получает множество сигналов по дендритам, затем, они передаются на тело, и, далее, на аксон. Аксон с дендритом образует специальный контакт, который называют синапсом (рис. 22).

Рис. 22. Строение синапса.

Передача информации с аксона на дендрит в синапсе осуществляется с помощью химических веществ, которые называются нейромедиаторами, или нейротрансмиттерами.

Клетки нейроглии – это совокупность вспомогательных клеток нервной системы. Их делят на микроглию и макроглию.

Микроглиальные клетки происходят от клеток-предшественников макрофагов. Таким образом, их происхождение отличается от всех остальных клеток нервной ткани. Они способны к фагоцитозу чужеродных частиц головного мозга, а также играют важную роль в развитии и регенерации ЦНС.

Макроглия включает несколько типов клеток: астроциты, олигодендроциты и эпендимальные клетки.

Астроциты – это звездчатые клетки с большим количеством отростков. Они поддерживают и разграничивают нейроны на группы, регулируют состав межклеточной жидкости, запасают питательные вещества, регулируют рост, развитие, репарацию и активность нейронов, участвуют в удалении нейромедиатора из щели, образуют гематоэнцефалический барьер (ГЭБ). Астроциты обеспечивают жизнедеятельность нейронов и делают их жизнь максимально комфортной.

Олигодендроциты – это клетки ЦНС, обеспечивающие миелинизацию аксонов. Миелин – это электроизолирующая оболочка, ускоряющая проведение нервного импульса. Миелин образуется как плоский вырост мембраны олигодендроцита, который многократно наматывается на аксон. В периферической нервной системе клетки, выполняющие аналогичную функцию называются Шванновскими клетками.

Эпендимальные клетки выстилают стенки желудочков головного мозга и спинномозговой канал. Это клетки с ресничками, биение которых обеспечивает циркуляцию ликвора. Также они способны выполнять секреторную функцию.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *