что такое стелс камень
Стелс
« | Да они тут баррикад понастроили, ну чистая революция! Дерьмо. Надо поближе подойти. Давай, обезвредь постовых. | » |
— Бурбон из Metro 2033 кратко раскрывает суть |
Стелс (от англ. stealth — скрытность, незаметность) — вид геймплея в видеоиграх. Суть стелса заключается в его цели: оставаться незамеченным и действовать исподтишка. Быть обнаруженным в стелсе — все равно что быть убитым.
Содержание
Стелс-экшен [ править ]
Жанр видеоигр, сама суть которых заключается в стелсе. В этих играх, формально являющихся TPS или FPS, стелс — ключевая механика: вы не ломитесь напролом с большими пушками, а нападаете из-за угла. Попытка играть в эти игры, как в Doom, приведет к очень быстрому поражению — так уж они устроены и отбалансированы.
Классикой такой игры является Thief. Позднее к этой ней добавились и другие игры, в которых играешь за шпиона. Следует упомянуть, что далеко не во всех играх, которые сегодня позиционируются как стелс-экшены, придется применять этот самый стелс. Изначально жанр жил по принципам Чужого из одноименного фильма: «избегай прямого контакта, ищи обходные пути, бей в спину, избавляйся от врагов по одному» В современных играх скрытное прохождение подается скорее как фича, а не как основа геймплея, ибо целевая аудитория может и заскучать, если заставлять ее час за часом красться вдоль стеночек. Результатом такого либерального отношения разработчиков являются ситуации, когда игрок, управляя по сюжету каким-нибудь шпионом или Ниндзя, проникнувшим в забитый врагами лагерь, может отказаться от скрытного прохождения и начать играть в стиле Рэмбо — и игра ему это позволит сделать, лишив, в худшем случае, какой-нибудь ачивки «Призрак» или выдав меньше опыта/денег по окончанию эпизода, а то и вовсе никак не оштрафовав, пассивно поощряя такой топорный вариант прохождения.
Примеры классического стелса: первые части Thief, Manhunt, первые части Splinter Cell, Metal Gear до третьей части включительно, а из нового — Styx: Master of Shadows.
Примеры «необязательного» стелса: Dishonored, The Saboteur, дилогия «Смерть шпионам», продолжения Hitman.
Стелс-миссия [ править ]
Стелс как опция [ править ]
Наиболее здравый подход к стелсу встречается в RPG, особенно в RPG-песочницах, таких, как The Elder Scrolls. Здесь существует класс персонажа, сила которого в стелсе, обычно называемый «Вор» или «Ассасин». Любители играть в стелс будут выбирать и качать именно этого персонажа, а любители покрошить все в капусту мечом или отфайерболить до золотистой корочки будут избегать его, как чумы.
Аналогично в Deus Ex можно качаться в эдакого «Терминатора», идущего напролом — а можно качаться под стелс, и соответственно ставить себе имплантанты на скрытность, а не на бой. Также отличные возможности для стелса появились в Fallout 4 — собственную незаметность можно обеспечивать не только правильной прокачкой навыков, но и правильным подбором экипировки (глушители на оружии, затененная броня), а также использованием различных технических устройств — стелс-бой и оптический камуфляж превращают героя практически в невидимку.
Курьёзы [ править ]
Что за камень?(фото)
так чё за камень то? нашли ответ?
у меня такой же только наоборот
В стопицотый раз про умную ленту
Пожаааалуйста, умоляю, сделайте функцию отключения умной ленты. Заходить на сайт всё менее и менее интересно. Прелесть была именно в разнообразии постов и самых неожиданных темах. Пусть стопицотый пост на тему, но очень жаль терять любимую когда-то пикабушечку.
ЗЫ: и отключение этого дурацкого фона постов тоже.
Я тоже душнила
У жены во время беременности был жёсткий токсикоз. Да такой, что два раза приходилось ложиться в перинатальный центр. Речь пойдет про первый раз. В четверг жена с направлением от врача на госпитализацию приезжает в перинатальный центр, а там говорят «мест нет». На вопрос «что делать и как быть» отвечают «идите к главврачу на второй этаж». Главврач говорит жене «мест нет, может быть завтра кого-то выпишут и будет место, но скорее всего до понедельника ничего не будет». Перинатальный центр новый и большой, странно, что там нет мест. Да и создалась впечатление, что человек финансовой благодарности захотел. Жена в слезах звонит мне, меня же такой поворот конкретно взбесил, ибо есть направление на госпитализацию, беременной девушке реально очень плохо, а они тут на денежки намекают и отфутболивают. Приезжаю я в перинаталку и начинаю просто звонить в министерство здравоохранения. С третьего раза дозваниваюсь куда надо (два первых раза меня переадресовывали на министерства по другим областям) и минут через 15 с небес на землю (с какого-то этажа выше на первый этаж к нам) спускается какая-то баба и ведёт нас в абсолютно пустую палату ставить капельницы жене, попутно приговаривая «ой ну что вы сразу письма писать, это всё решается на местном уровне, надо было к главврачу зайти». Потом ещё мне звонили из министерства, спрашивали решился ли мой вопрос и главврач сам звонил мне и рассказывал сказки как он сейчас будет нам место искать. По итогу в четверг капельницы прокапали, отправили домой. На следующий день в пятницу жену положили одну в палату (палаты на двоих) и при этом на этаже было очень много пустых палат.
Я считаю, что в данной ситуации, когда время очень дорого и на кону жизнь неродившегося ребёнка, я всё сделал правильно. Не стал бегать обивать пороги и пробовать «договориться», а решил всё быстро несколькими звонками.
Всем здоровья! Не бойтесь и не стесняйтесь предпринимать какие-то действия в экстренных ситуациях.
Что такое «стелс» и когда оно работает, а когда — не очень?
Технологии, позволяющие уменьшить заметность самолётов получили название «стелс». Их эффективность вызывает споры многие годы. Оценки разнятся от «вы его не заметите, пока самолёт не подлетит в упор» до «да у нас есть радары метрового диапазона, против которых “стелс” бессильны!» Что же это такое и как оно работает?
Теория
Тела отражают электромагнитные волны, и это позволяет обнаруживать летающие объекты. В истинности этого утверждения может убедиться каждый, посмотрев на пролетающую мимо ворону. Но электромагнитные волны бывают разными.
Более короткие волны — например, ультрафиолет — не всегда подходят для обнаружения воздушных целей, потому что хорошо поглощаются водяным паром, который всегда присутствует в атмосфере. Другое дело — более длинные волны: инфракрасные и радиоволны. Уже перед Второй мировой войной во многих странах начали экспериментировать с радиолокаторами. Они посылали электромагнитную волну, та отражалась от цели, и по принятому сигналу при должном умении можно было узнать много интересного: в каком направлении находится цель, её скорость и дальность до неё.
Как только появились радиолокаторы, тут же появились и средства борьбы с ними. Например, бросали алюминиевые полоски, отражения от которых могли ослеплять локаторы, излучать ложный сигнал, обманывающий или также ослепляющий радар и тому подобное.
Борьба средств радиоэлектронной борьбы (РЭБ) с радиолокаторами продолжается до сих пор. Но в определённый момент возник вопрос: а нельзя ли сделать так, чтобы отражённого излучения не было? Ну или по крайней мере не было в сторону радара?
Оказалось, что можно резко уменьшить возвращаемое излучение, и в этом помогает знание природы электромагнитного излучения. Дело в том, что это волна. И ведёт она себя далеко не всегда как поток частиц, и уж тем более не как луч в учебнике оптики. Например, волна может обойти вокруг объекта и отправиться в сторону своего источника. Особенно это хорошо ей удаётся, если объект по форме близок к цилиндру.
Обшивка самолёта может работать, как волновод, позволяя волне пройти вокруг фюзеляжа и излучиться в ту сторону, с которой и пришла
На гранях объекта волна излучается во все стороны, а отражается по законам геометрической оптики. И если есть на самолёте прямые углы, то они сыграют роль уголкового отражателя, направляя волну в направлении локатора, где и поджидает противник.
Правила и проблемы
Из всего этого следуют некоторые правила.
Отдельная проблема — двигатель, а точнее, лопатки турбины. Из-за своей функции они имеют сложную форму, поэтому их отражающая способность весьма велика. Хорошо, если удаётся скрыть их за S-образным воздуховодом, однако это ведёт к дополнительным потерям скорости. Поэтому на В-2, например, воздухозаборники просто выведены на верх крыла — оно закрывает их от вражеских радаров. Но для истребителей это плохой вариант, поскольку при маневрировании с большим углом атаки (грубо говоря, когда нос самолёта задирается вверх) крыло начинает затенять воздухозаборник: увеличивается турбулентность потока, а значит, возможен помпаж двигателя. Поэтому на истребителях такой вариант ещё ни разу не применяли.
Это всё — про форму. Однако для заметности важна не только форма объекта, но и поверхность. Все материалы по-разному отражают и преломляют излучение.
Можно подобрать те материалы, что будут это делать особенно хорошо как раз на тех длинных волнах, на которых работают вражеские локаторы.
В ход вполне может пойти эффект, сходный с тем, который помогает добиваться «просветлённой» оптики. Если сделать двухслойный материал толщиной примерно в четверть длины падающей на него волны, то отразившееся от внутренней границы излучение при выходе за внешнюю границу материала окажется в противофазе с отразившемся излучением, — и волны друг друга погасят.
Что же делать?
На вопли «аэродинамистов»: «вы что, хотите нам запретить делать нужную форму несущих поверхностей?!» тоже нашёлся ответ. Можно сделать накладку из материала, свойства которого изменяются с глубиной. Тогда волны будут «заманиваться» внутрь материала, где и поглотятся. И только на крики «прочнистов» — «да сколько ж это будет весить?!» — нет никакого ответа. Весит всё это радиопоглощающее богатство много.
Ехидные замечания: «а вот если мы посветим радаром метрового диапазона, что будет?» тоже остаются без приятного для пилотов «стелс» ответа: ничего хорошего не будет. Как уже говорилось выше, толщина покрытия привязана к длине волны, против которой оно работает. Соответственно, чтобы покрытие работало против радаров метрового диапазона, оно должно быть очень толстым.
Ну что — всё? Сплошной обман эти ваши «стелсы», мы их будем видеть радарами метрового диапазона?
Проблема в том, что радар, работающий в таком диапазоне, тоже должен быть размера порядка нескольких метров. Это слишком много даже для истребителя, не говоря уже об управляемой ракете. Кроме того, есть проблема точности. Чем больше длина волны — тем меньше точность измерений.
В общем, обнаружить самолёт «стелс» можно, а вот поразить — куда более сложная задача.
На данный момент есть лишь один случай достоверного поражения такого самолёта — когда югославы в 1999 году сбили F-117. Отличился 3-й дивизион 250-й ракетной бригады, вооружённой старенькими С-125. Согласно наиболее правдоподобным описаниям, цель была обнаружена и поражена с использованием только радиолокационных средств. Фирма «Локхид», построившая самолёт, потом оправдывалась: мол, американские военные заставили F-117 маневрировать в сложном рельефе местности, а меры по уменьшению заметности адаптированы только для горизонтального полёта. Но, согласно югославскому описанию, самолёт летел на средней высоте и начал маневрирование уже после пуска. Так что иногда «стелс» сбить всё-таки можно.
Впрочем, это единственная потеря — при том, что F-117 и в Ираке в 1991 году и в 2003-м, и в Югославии выполняли особо важные задания и летали довольно много.
Мерой заметности самолёта является эффективная поверхность рассеивания (ЭПР). По имеющимся оценкам, у наиболее продвинутых современных самолётов эта ЭПР снижена до 0,001 кв.м или даже до 0,0001 кв.м. Это в тысячи, а то и в десятки тысяч раз меньше, чем у обычного истребителя. Правда, впечатление от успехов американских авиастроителей несколько портит то, что дальность обнаружения, согласно основному закону радиолокации, пропорциональна корню четвёртой степени от ЭПР. Если переводить с физического на русский, то это означает уменьшение дальности обнаружения в сравнении с обычным истребителем раз эдак в пять. Тоже очень много, но всё же не в тысячи раз.
Кроме радиодиапазона существует ещё и инфракрасный диапазон. И здесь совсем сложно, — ведь источником является сам самолёт. Чем современнее двигатель, тем больше температура газов в нём. Выключенный, он остывает не сразу, и за самолётом остаётся довольно длинный факел, не всегда видимый визуально, но отлично заметный для инфракрасных головок самонаведения ракет. Кроме того, излучение идёт и от горячих поверхностей двигателей — ведь неслучайно их делают из жаропрочного титана.
Су-27. Титановые вставки легко видеть – их не красят по той же самой причине: краска обгорит
Что с этим можно сделать? Горячие части можно прикрыть теми же килями; кроме того, кили могут хотя бы частично закрывать факел. Ещё можно поставить двухконтурный двигатель, часть тяги которого будет образовываться за счёт разгона турбиной холодного воздуха. Этот воздух, смешиваясь ещё внутри двигателя с горячими газами из первого контура, будет их охлаждать.
Двухконтурный двигатель — это не только меньшая заметность, но и большая топливная эффективность!
Платой за это станет меньшая максимальная скорость. Поэтому ни F-22, ни F-35 до двух махов и не добираются.
Выводы
Технологии «стелс» не панацея. Но она позволяет существенно уменьшить дальность обнаружения самолётов, в том числе и для головок самонаведения ракет. Возможно, против них современные радиолокационные ракеты станут совсем неэффективными. Но пока что в реальном бою этого ещё никто не проверял.
Стелс-технологии в космосе: как и зачем прятать спутники от чужих глаз и радаров
Развитые космические технологии обеспечивают связь, предупреждают об опасности и помогает наносить урон, если это нужно. Поэтому страны развивают стелс-технологии, которые помогают скрыть спутники от обнаружения. Рассказываем подробнее, как работают стелс-технологии и кому нужны.
Читайте «Хайтек» в
Что такое стелс-технологии
Поглотить большую часть радиоволн можно только в сантиметровом диапазоне. В силу физики распространения радиоволн сделать объект малозаметным в метровом диапазоне, когда длина волны сравнима с собственными размерами объекта, изменением его формы в принципе невозможно.
Также на нынешнем уровне технологий невозможно добиться полного поглощения любого радиоизлучения, падающего на объект под произвольным углом.
Поэтому в настоящее время главная цель при выборе формы объекта, отразить волны в сторону от излучателя, — таким образом, часть сигнала поглощается специальными покрытиями, а остальная часть отражается так, что радиоэхо не возвращается к наблюдающей РЛС.
Почему сделать спутник невидимым трудно
Против стелса в космосе говорят следующие факты объективной реальности:
Уязвимость для современных средств обнаружения
По большинству боевых и специальных вспомогательных машин, созданных с применением стелс-технологий, отсутствуют независимые данные по величине эффективной поверхности рассеяния (ЭПР) в различных диапазонах, так как экспертная оценка этой информации может повысить их уязвимость.
Часть данных о заметности подобных машин основана на теоретических оценках, поэтому ко всем оценкам величин заметности малозаметных военных машин следует относиться с высокой степенью осторожности.
Спутник-невидимка от SpaceX
В июне 2020 года SpaceX запустила в космос спутники со специальным стелс-покрытием, чтобы протестировать его работу: оно было призвано «спрятать» спутники от телескопов.
Один из спутников тестировал специальный антибликовый козырек. Ожидается, что обновлённый дизайн позволит решить проблему отражения солнечного света группировкой спутников.
Астрономы уже не раз жаловались на помехи в наблюдении космических объектов, создаваемые ее присутствием на орбите.
Новая разработка призвана улучшить наблюдения за космическим пространством и только поэтому блокирует часть сигналов от спутников, однако возможно новая разработка была только первым шагом и американские ученые будут развивать это направление.
Российские запатентованные стелс-технологии для спутников
Российские предприятия провели исследования применения радиопоглощающего покрытия для космических аппаратов, которое должно снизить заметность российских спутников для радиолокаторов, говорится в материале.
В статье представлены результаты экспериментальных исследований свойств, стойких к аномальным высоким и аномально низким температурам образцов радиопоглощающего материала ВТМВ-1С.
Замаскированная с применением наших изделий техника буквально исчезает с экранов радаров, отмечают разработчики.
Кроме этого, «Роскосмос» получил патент на космический аппарат, который может менять свою форму. За счет изменения площади отражающей поверхности панелей солнечных батарей такие аппараты способны становиться малозаметными для иностранных спутников-шпионов.
Таким образом, можно будет экранировать космический аппарат, изменив его отражательные качества относительно лазерного излучения шпиона. Когда чужой спутник пройдет мимо, панели можно будет снова развернуть.
Китайское покрытие, которое поглощает 80% излучения радаров
В Китае работают над стелс-технологиями для космоса. Существует много идей: от покраски спутников в черный цвет, покрытия графеном до их перемещения в радарной тени от космического мусора. Основная проблема не в том, чтобы сделать спутник незаметным, а в том, чтобы скрыть его от радаров.
Ученые из Чанчуньского института оптики, точной механики и физики, расположенного в Нанкине. Используя композитные материалы со включением бумаги и пластика, исследователи создали многослойную сотовую структуру, способную поглощать до 80% радарного излучения во всём задействованном сегодня диапазоне частот.
Также они создали прозрачное радарное стелс-покрытие для солнечных панелей с толщиной всего в 3 мм, но оно остается устойчивым на изгиб и выдерживает удары.
Что такое «стелс» и когда оно работает, а когда — не очень?
Что такое «стелс» и когда оно работает, а когда — не очень?
Статья Никиты Баринова с сайта WARCATS, которая, думаю, заинтересует коллег.
Технологии, позволяющие уменьшить заметность самолётов получили название «стелс». Их эффективность вызывает споры многие годы. Оценки разнятся от «вы его не заметите, пока самолёт не подлетит в упор» до «да у нас есть радары метрового диапазона, против которых “стелс” бессильны!» Что же это такое и как оно работает?
Теория
Тела отражают электромагнитные волны, и это позволяет обнаруживать летающие объекты. В истинности этого утверждения может убедиться каждый, посмотрев на пролетающую мимо ворону. Но электромагнитные волны бывают разными.
Более короткие волны — например, ультрафиолет — не всегда подходят для обнаружения воздушных целей, потому что хорошо поглощаются водяным паром, который всегда присутствует в атмосфере. Другое дело — более длинные волны: инфракрасные и радиоволны. Уже перед Второй мировой войной во многих странах начали экспериментировать с радиолокаторами. Они посылали электромагнитную волну, та отражалась от цели, и по принятому сигналу при должном умении можно было узнать много интересного: в каком направлении находится цель, её скорость и дальность до неё.
Как только появились радиолокаторы, тут же появились и средства борьбы с ними. Например, бросали алюминиевые полоски, отражения от которых могли ослеплять локаторы, излучать ложный сигнал, обманывающий или также ослепляющий радар и тому подобное.
Борьба средств радиоэлектронной борьбы (РЭБ) с радиолокаторами продолжается до сих пор. Но в определённый момент возник вопрос: а нельзя ли сделать так, чтобы отражённого излучения не было? Ну или по крайней мере не было в сторону радара?
Оказалось, что можно резко уменьшить возвращаемое излучение, и в этом помогает знание природы электромагнитного излучения. Дело в том, что это волна. И ведёт она себя далеко не всегда как поток частиц, и уж тем более не как луч в учебнике оптики. Например, волна может обойти вокруг объекта и отправиться в сторону своего источника. Особенно это хорошо ей удаётся, если объект по форме близок к цилиндру.
Обшивка самолёта может работать, как волновод, позволяя волне пройти вокруг фюзеляжа и излучиться в ту сторону, с которой и пришла
На гранях объекта волна излучается во все стороны, а отражается по законам геометрической оптики. И если есть на самолёте прямые углы, то они сыграют роль уголкового отражателя, направляя волну в направлении локатора, где и поджидает противник.
Правила и проблемы
Из всего этого следуют некоторые правила.
В-2. Волны, отражаясь от задней кромки крыла, будут уходить куда угодно, но только не в стороны радара
На этом израильском F-35 хорошо заметны лючки, прикрытые крышками с зубчатыми краями. Фонарь чуть темнее, чем привычно – как раз из-за металлизированного покрытия
Отдельная проблема — двигатель, а точнее, лопатки турбины. Из-за своей функции они имеют сложную форму, поэтому их отражающая способность весьма велика. Хорошо, если удаётся скрыть их за S-образным воздуховодом, однако это ведёт к дополнительным потерям скорости. Поэтому на В-2, например, воздухозаборники просто выведены на верх крыла — оно закрывает их от вражеских радаров. Но для истребителей это плохой вариант, поскольку при маневрировании с большим углом атаки (грубо говоря, когда нос самолёта задирается вверх) крыло начинает затенять воздухозаборник: увеличивается турбулентность потока, а значит, возможен помпаж двигателя. Поэтому на истребителях такой вариант ещё ни разу не применяли.
Это всё — про форму. Однако для заметности важна не только форма объекта, но и поверхность. Все материалы по-разному отражают и преломляют излучение.
Можно подобрать те материалы, что будут это делать особенно хорошо как раз на тех длинных волнах, на которых работают вражеские локаторы.
В ход вполне может пойти эффект, сходный с тем, который помогает добиваться «просветлённой» оптики. Если сделать двухслойный материал толщиной примерно в четверть длины падающей на него волны, то отразившееся от внутренней границы излучение при выходе за внешнюю границу материала окажется в противофазе с отразившемся излучением, — и волны друг друга погасят.
Что же делать?
На вопли «аэродинамистов»: «вы что, хотите нам запретить делать нужную форму несущих поверхностей?!» тоже нашёлся ответ. Можно сделать накладку из материала, свойства которого изменяются с глубиной. Тогда волны будут «заманиваться» внутрь материала, где и поглотятся. И только на крики «прочнистов» — «да сколько ж это будет весить?!» — нет никакого ответа. Весит всё это радиопоглощающее богатство много.
Ехидные замечания: «а вот если мы посветим радаром метрового диапазона, что будет?» тоже остаются без приятного для пилотов «стелс» ответа: ничего хорошего не будет. Как уже говорилось выше, толщина покрытия привязана к длине волны, против которой оно работает. Соответственно, чтобы покрытие работало против радаров метрового диапазона, оно должно быть очень толстым.
Ну что — всё? Сплошной обман эти ваши «стелсы», мы их будем видеть радарами метрового диапазона?
Проблема в том, что радар, работающий в таком диапазоне, тоже должен быть размера порядка нескольких метров. Это слишком много даже для истребителя, не говоря уже об управляемой ракете. Кроме того, есть проблема точности. Чем больше длина волны — тем меньше точность измерений.
В общем, обнаружить самолёт «стелс» можно, а вот поразить — куда более сложная задача.
На данный момент есть лишь один случай достоверного поражения такого самолёта — когда югославы в 1999 году сбили F-117. Отличился 3-й дивизион 250-й ракетной бригады, вооружённой старенькими С-75. Согласно наиболее правдоподобным описаниям, цель была обнаружена и поражена с использованием только радиолокационных средств. Фирма «Локхид», построившая самолёт, потом оправдывалась: мол, американские военные заставили F-117 маневрировать в сложном рельефе местности, а меры по уменьшению заметности адаптированы только для горизонтального полёта. Но, согласно югославскому описанию, самолёт летел на средней высоте и начал маневрирование уже после пуска. Так что иногда «стелс» сбить всё-таки можно.
Впрочем, это единственная потеря — при том, что F-117 и в Ираке в 1991 году, и в Югославии в 2003-м выполняли особо важные задания и летали довольно много.
Мерой заметности самолёта является эффективная поверхность рассеивания (ЭПР). По имеющимся оценкам, у наиболее продвинутых современных самолётов эта ЭПР снижена до 0,001 кв.м или даже до 0,0001 кв.м. Это в тысячи, а то и в десятки тысяч раз меньше, чем у обычного истребителя. Правда, впечатление от успехов американских авиастроителей несколько портит то, что дальность обнаружения, согласно основному закону радиолокации, пропорциональна корню четвёртой степени от ЭПР. Если переводить с физического на русский, то это означает уменьшение дальности обнаружения в сравнении с обычным истребителем раз эдак в пять. Тоже очень много, но всё же не в тысячи раз.
Кроме радиодиапазона существует ещё и инфракрасный диапазон. И здесь совсем сложно, — ведь источником является сам самолёт. Чем современнее двигатель, тем больше температура газов в нём. Выключенный, он остывает не сразу, и за самолётом остаётся довольно длинный факел, не всегда видимый визуально, но отлично заметный для инфракрасных головок самонаведения ракет. Кроме того, излучение идёт и от горячих поверхностей двигателей — ведь неслучайно их делают из жаропрочного титана.
Су-27. Титановые вставки легко видеть – их не красят по той же самой причине: краска обгорит
Что с этим можно сделать? Горячие части можно прикрыть теми же килями; кроме того, кили могут хотя бы частично закрывать факел. Ещё можно поставить двухконтурный двигатель, часть тяги которого будет образовываться за счёт разгона турбиной холодного воздуха. Этот воздух, смешиваясь ещё внутри двигателя с горячими газами из первого контура, будет их охлаждать.
Двухконтурный двигатель — это не только меньшая заметность, но и большая топливная эффективность!
Платой за это станет меньшая максимальная скорость. Поэтому ни F-22, ни F-35 до двух махов и не добираются.
Выводы
Технологии «стелс» не панацея. Но она позволяет существенно уменьшить дальность обнаружения самолётов, в том числе и для головок самонаведения ракет. Возможно, против них современные радиолокационные ракеты станут совсем неэффективными. Но пока что в реальном бою этого ещё никто не проверял.