что такое стандартная функция
Что такое стандартная функция?
При решении различных задач с помощью компьютера бывает необходимо вычислить логарифм или модуль числа, синус угла и т.д.
Вычисления часто употребляемых функций осуществляются посредством подпрограмм, называемых стандартными функциями, которые заранее запрограммированы и встроены в транслятор языка. |
Таблица стандартных функций школьного алгоритмического языка
Название и математическое обозначение функции | Указатель функции | |
Абсолютная величина (модуль) | | х | | abs(x) |
Корень квадратный | | sqrt(x) |
Натуральный логарифм | ln x | ln(x) |
Десятичный логарифм | lg x | lg(x) |
Экспонента (степень числа е » 2.72) | e x | exp(x) |
Знак числа x (-1,если х 0) | sign x | sign(x) |
Целая часть х (т.е. максимальное целое число,не превосходящее х) | int(x) | |
Минимум из чисел х и y | min(x,y) | |
Максимум из чисел х и y | max(x,y) | |
Частное от деления целого х на целое y | div(x,y) | |
Остаток от деления целого х на целое y | mod(x,y) | |
Случайное число в диапазоне от 0 до х-1 | rnd(x) | |
Синус (угол в радианах) | sin x | sin(x) |
Косинус (угол в радианах) | cos x | cos(x) |
Тангенс (угол в радианах) | tg x | tg(x) |
Котангенс (угол в радианах) | ctg x | ctg(x) |
Арксинус (главное значение в радианах) | arcsin x | arcsin(x) |
Арккосинус (главное значение в радианах) | arccos x | arccos(x) |
Арктангенс (главное значение в радианах) | arctg x | arctg(x) |
Арккотангенс (главное значение в радианах) | arcctg x | arcctg(x) |
В качестве аргументов функций можно использовать константы, переменные и выражения. Например:
sin(3.05) min(a, 5) | sin(x) min(a, b) | sin(2*y+t/2) min(a+b, a*b) | sin((exp(x)+1)**2) min(min(a,b),min(c,d)) |
Каждый язык программирования имеет свой набор стандартных функций.
Как записываются арифметические выражения?
Арифметические выражения записываются по следующим правилам:
Примеры записи арифметических выражений
7.19. Что такое стандартная функция?
При решении различных задач с помощью компьютера бывает необходимо вычислить логарифм или модуль числа, синус угла и т.д.
Вычисления часто употребляемых функций осуществляются посредством подпрограмм, называемых стандартными функциями , которые заранее запрограммированы и встроены в транслятор языка. |
Таблица стандартных функций школьного алгоритмического языка
Название и математическое обозначение функции | Указатель функции | |
Абсолютная величина (модуль) | | х | | abs(x) |
Корень квадратный | sqrt(x) | |
Натуральный логарифм | ln x | ln(x) |
Десятичный логарифм | lg x | lg(x) |
Экспонента (степень числа е » 2.72) | e x | exp(x) |
Знак числа x (-1,если х 0) | sign x | sign(x) |
Целая часть х (т.е. максимальное целое число,не превосходящее х) | int(x) | |
Минимум из чисел х и y | min(x,y) | |
Максимум из чисел х и y | max(x,y) | |
Частное от деления целого х на целое y | div(x,y) | |
Остаток от деления целого х на целое y | mod(x,y) | |
Случайное число в диапазоне от 0 до х-1 | rnd(x) | |
Синус (угол в радианах) | sin x | sin(x) |
Косинус (угол в радианах) | cos x | cos(x) |
Тангенс (угол в радианах) | tg x | tg(x) |
Котангенс (угол в радианах) | ctg x | ctg(x) |
Арксинус (главное значение в радианах) | arcsin x | arcsin(x) |
Арккосинус (главное значение в радианах) | arccos x | arccos(x) |
Арктангенс (главное значение в радианах) | arctg x | arctg(x) |
Арккотангенс (главное значение в радианах) | arcctg x | arcctg(x) |
В качестве аргументов функций можно использовать константы, переменные и выражения. Например:
sin(3.05) min(a, 5) | sin(x) min(a, b) | sin(2*y+t/2) min(a+b, a*b) | sin((exp(x)+1)**2) min(min(a,b),min(c,d)) |
Каждый язык программирования имеет свой набор стандартных функций.
Что такое стандартная функция?
При решении различных задач с помощью компьютера бывает необходимо вычислить логарифм или модуль числа, синус угла и т.д.
Вычисления часто употребляемых функций осуществляются посредством подпрограмм, называемых стандартными функциями, которые заранее запрограммированы и встроены в транслятор языка. |
Таблица стандартных функций школьного алгоритмического языка
Название и математическое обозначение функции | Указатель функции | |
Абсолютная величина (модуль) | | х | | abs(x) |
Корень квадратный | sqrt(x) | |
Натуральный логарифм | ln x | ln(x) |
Десятичный логарифм | lg x | lg(x) |
Экспонента (степень числа е » 2.72) | e x | exp(x) |
Знак числа x (-1,если х 0) | sign x | sign(x) |
Целая часть х (т.е. максимальное целое число,не превосходящее х) | int(x) | |
Минимум из чисел х и y | min(x,y) | |
Максимум из чисел х и y | max(x,y) | |
Частное от деления целого х на целое y | div(x,y) | |
Остаток от деления целого х на целое y | mod(x,y) | |
Случайное число в диапазоне от 0 до х-1 | rnd(x) | |
Синус (угол в радианах) | sin x | sin(x) |
Косинус (угол в радианах) | cos x | cos(x) |
Тангенс (угол в радианах) | tg x | tg(x) |
Котангенс (угол в радианах) | ctg x | ctg(x) |
Арксинус (главное значение в радианах) | arcsin x | arcsin(x) |
Арккосинус (главное значение в радианах) | arccos x | arccos(x) |
Арктангенс (главное значение в радианах) | arctg x | arctg(x) |
Арккотангенс (главное значение в радианах) | arcctg x | arcctg(x) |
В качестве аргументов функций можно использовать константы, переменные и выражения. Например:
sin(3.05) min(a, 5) | sin(x) min(a, b) | sin(2*y+t/2) min(a+b, a*b) | sin((exp(x)+1)**2) min(min(a,b),min(c,d)) |
Каждый язык программирования имеет свой набор стандартных функций.
Pascal. Стандартные функции и выражения
Стандартные функции.
В программировании, довольно часто приходиться выполнять однотипные действия, причем в задачах разного уровня и класса. И для ускорения процесса написания кода эти действия выносят в специальные подпрограммы – стандартные функции. Обращение к такой подпрограмме происходит по ее имени, а в скобках указывается значение аргумента. В следующей таблице указаны те стандартные функции, которые используются в языке программирования Pascal.
Функция | Назначение |
ABS(x) | Вычисление абсолютного значения x: |х| |
SQR(x) | Вычисление квадрата x: x*x |
SIN(x) | Вычисление синуса x: sin x |
COS(x) | Вычисление косинуса x: cos x |
ARCTAN(x) | Вычисление арктангенса x: arctg x |
EXP(x) | Вычисление экспоненты (числа Е) в степени x |
EXP10(x) | Вычисление 10 в степени x |
LN(x) | Вычисление натурального логарифма x |
LOG(x) | Вычисление десятичного логарифма x |
SQRT(x) | Вычисление квадратного корня из x |
A DIV B | Вычисление частного при делении А на В с отбрасыванием остатка |
A MOD B | Нахождение остатка от делении А на В |
TRUNC(x) | Нахождение целой части x |
RANDOM(x) | Псевдослучайное число в интервале [0, x] |
ROUND(x) | Округление значения x в сторону ближайшего целого |
ODD(x) | Проверяет аргумент на нечетность. Результат TRUE, если аргумент нечетный, FALSE – если четный. |
ORD(x) | Возвращает порядковый номер аргумента и, как следствие, преобразует величину порядкового типа в величину целого типа. |
CHR(x) | Определение символа языка Паскаль по его порядковому номеру |
SUCC(x) | Нахождение элемента, идущего после данного в перечне допустимых элементов |
PRED(x) | Нахождение элемента, идущего перед данным в перечне допустимых элементов |
FRAC(X) | Возвращает дробную часть x |
INT(X) | Возвращает целую часть x |
Pi | Значение математической постоянной π |
EOF(x) | Возвращает TRUE, если файл находится в стоянии “конец файла”, иначе FALSE, если нет конца файла |
Выражения
Выражение состоит из переменных, констант, полей в записях, указателей функций, круглых скобок и знаков операций. Для корректной записи выражений необходимо знать не только как обозначаются те или иные операции, функции и т. п., но также стоит предусмотреть приоритеты их выполнения, математические и логические правила, а также некоторые тонкости самого языка. Для более углубленного изучения выражений, стоит рассмотреть несколько примеров.
1) 12+3*3=21 (12+3)*3=45
2) ( a >1) and ( a 3) (a+3>0) and (a+3 1) and (b
Логическая операция OR (или) суть дизъюнкция в логики и поэтому имеет следующую таблицу истинности:
Ложь имеет место только когда X и Y ложны (нули). В том случае, чтобы истина возвращалась только тогда, когда одно из условий верно следует применить оператор XOR (исключающее или):
(a+3>0) and (a+3 1) and (b
4) x ^( a ) = exp( a *ln( x ))
В Pascal нет функции возведения числа в степень (кроме степени 2), поэтому существует два пути:
1 — умножать число само на себя, какое то количество раз;
2 — воспользоваться функциями экспоненты и натурального логарифма.
В этом примере использованы оба варианта, но если степень, в которую необходимо возвести число, достаточно велика, то предпочтение следует отдать второму способу.
Что такое стандартная функция?
При решении различных задач с помощью компьютера бывает необходимо вычислить логарифм или модуль числа, синус угла и т.д.
Вычисления часто употребляемых функций осуществляются посредством подпрограмм, называемых стандартными функциями, которые заранее запрограммированы и встроены в транслятор языка. |
Таблица стандартных функций школьного алгоритмического языка
Название и математическое обозначение функции | Указатель функции | |
Абсолютная величина (модуль) | | х | | abs(x) |
Корень квадратный | sqrt(x) | |
Натуральный логарифм | ln x | ln(x) |
Десятичный логарифм | lg x | lg(x) |
Экспонента (степень числа е » 2.72) | e x | exp(x) |
Знак числа x (-1,если х 0) | sign x | sign(x) |
Целая часть х (т.е. максимальное целое число, не превосходящее х) | int(x) | |
Минимум из чисел х и y | min(x,y) | |
Максимум из чисел х и y | max(x,y) | |
Частное от деления целого х на целое y | div(x,y) | |
Остаток от деления целого х на целое y | mod(x,y) | |
Случайное число в диапазоне от 0 до х-1 | rnd(x) | |
Синус (угол в радианах) | sin x | sin(x) |
Косинус (угол в радианах) | cos x | cos(x) |
Тангенс (угол в радианах) | tg x | tg(x) |
Котангенс (угол в радианах) | ctg x | ctg(x) |
Арксинус (главное значение в радианах) | arcsin x | arcsin(x) |
Арккосинус (главное значение в радианах) | arccos x | arccos(x) |
Арктангенс (главное значение в радианах) | arctg x | arctg(x) |
Арккотангенс (главное значение в радианах) | arcctg x | arcctg(x) |
Как записываются арифметические выражения?
Арифметические выражения записываются по следующим правилам:
· Нельзя опускать знак умножения между сомножителями и ставить рядом два знака операций.
· Индексы элементов массивов записываются в квадратных (школьный АЯ, Pascal) или круглых (Basic) скобках.
· Для обозначения переменных используются буквы латинского алфавита.
· Операции выполняются в порядке старшинства: сначала вычисление функций, затем возведение в степень, потом умножение и деление и в последнюю очередь — сложение и вычитание.
· Операции одного старшинства выполняются слева направо. Например, a/b*c соответствует a/b*c. Однако, в школьном АЯ есть одно исключение из этого правила: операции возведения в степень выполняются справа налево. Так, выражение 2**(3**2) в школьном языке АЯ вычисляется как 2**(3**2) = 512. В языке QBasic аналогичное выражение 2^3^2 вычисляется как (2^3)^2 = 64. А в языке Pascal вообще не предусмотрена операция возведения в степень, в Pascal x^y записывается как exp(y*ln(x)), а x^y^z как exp(exp(z*ln(y))*ln(x)).
Примеры записи арифметических выражений
Математическая запись | Запись на школьном алгоритмическом языке АЯ | ||||||||||||||||||||
| x*y/z | ||||||||||||||||||||
| x/(y*z) или x/y/z | ||||||||||||||||||||
| (a**3+b**3)/(b*c) | ||||||||||||||||||||
| (a[i+1]+b[i-1])/(2*x*y) | ||||||||||||||||||||
| (-b+sqrt(b*b-4*a*c))/(2*a) | ||||||||||||||||||||
Примеры записи логических выражений, истинных при выполнении указанных условий. Примеры. Определите значение целочисленной переменной S после выполнения операторов:
10. Определите значение переменной S после выполнения операторов:
|