что такое спектрометр для чего его применяют
Спектрометр своими руками за 5 долларов и немного OpenCV
В освоении физики лабораторные эксперименты проясняют понятия гораздо лучше лекций. Но из-за пандемии у автора статьи, переводом которой мы делимся к старту флагманского курса о Data Science, уже больше года не было лабораторных занятий; при этом большинство экспериментов последнего курса физики требуют сложных, дорогих приборов. Но автору бросились в глаза эксперименты со спектроскопом, и он решил из подручных материалов сделать свой, недорогой цифровой спектрометр, а для анализа вывода прибора написал программу на Python.
1. Немного теории спектрографии
Спектрометр — прибор, используемый для измерения свойств света. Это позволяет учёным использовать этот прибор для огромного количества экспериментов, таких как определение материалов, обнаруженных в объектах из повседневной жизни, или определение элементов, обнаруженных на далёких звёздах и планетах.
Основная концепция спектрометра заключается в том, что «неизвестный» луч света подаётся на оптический элемент, разделяющий луч по длинам волн, присутствующих в «неизвестном» луче света. Каждая длина волны отклоняется на разную величину, поэтому, измеряя отклонение, можно определить длины волн в «неизвестном» луче света, что потенциально может дать больше информации об источнике света, даже если он возник на расстоянии миллионов километров.
Спектрометр тогда и сейчас
В прежние времена учёные использовали призмы для разделения луча света на составляющие и поворотный окуляр для измерения углового отклонения длины волны каждой составляющей. Однако совсем недавно призму заменили дифракционной решёткой, которая служит той же цели, что и призма, а окуляр заменили подключённым к компьютеру электронным фоторецепторным блоком.
2. Материалы
Все материалы довольно легко найти, и, возможно, они уже есть у вас дома):
чёрная картографическая бумага;
Без веб-камеры обошёлся дешевле 5 долларов.
3. Расчёт корпуса
Корпус мог быть изготовлен с использованием любого вида коробки, но я решил сделать его с нуля, чтобы он идеально подходил по размеру для моей веб-камеры. Начните с измерения веб-камеры. Сложите коробку в соответствии со следующими измерениями:
длина — от 20 до 25 см;
ширина — на 2 см больше ширины веб-камеры;
высота — на 1 см выше, чем высота веб-камеры.
Прочертите 6 граней коробки в соответствии с размерами на листе картона, кусочки отрежьте ножом. На задней панели сделайте прорезь, через которую можно пропустить кабель веб-камеры, а на передней панели — прорезь размером 2×1 см посередине на высоте объектива камеры. Приклейте все грани на лист чёрной картографической бумаги, разрежьте бумагу по границам картонных кусочков и склейте. Чтобы избежать путаницы, можно разметить грани карандашом.
4. Сборка корпуса
Возьмите нижнюю грань и две боковые грани и поместите их рядом. Лентой соедините три части вместе, затем, убедившись, что ориентация граней сохраняется, прикрепите переднюю и заднюю грани дополнительной лентой. Верхняя грань прикреплена вдоль одного края, так что мы можем открыть корпус, верхняя грань будет откидной крышкой на случай, если нам потребуется позже что-то изменить. Чтобы свет не проникал через верх, отрежьте ещё несколько кусочков картона, сделав небольшое перекрытие. Загляните в корпус через одну из щелей и убедитесь, что в коробку не проникает свет. Чтобы закрыть зазоры, можно использовать дополнительный слой изоленты или любой другой непрозрачной ленты.
5. Делаем прорезь
Чтобы сделать входную щель, приклейте одно из лезвий вертикально, чтобы закрыть часть щели на передней поверхности. Приклейте второе лезвие бритвы рядом с первым, используя один лист бумаги, чтобы создать тонкий зазор между двумя лезвиями. Приклейте изолентой второе лезвие и ею же закройте все зазоры, чтобы свет не попадал в корпус.
6. Дифракционная решётка из CD-диска
Этот шаг в проекте — самый важный. Дифракционная решётка отвечает за разделение луча света в соответствии с длиной волны. Одним из вариантов было бы просто купить дифракционную решётку. Они обычно доступны в Интернете примерно за 4–5 долларов. Другой вариант — использовать в качестве решётки старый DVD-диск; результат будет схожим с результатом от решётки за 5 долларов. Сначала разрежьте диск ножницами. Углубляясь в диск, вы заметите, что он состоит из двух слоёв, которые начнут отделяться. Полностью отделите их друг от друга и выбросьте слой с серебряным покрытием. Отрежьте четверть от второй половины и выровняйте края, чтобы получился прямоугольник чуть больше ширины объектива.
Крепление решётки на камеру
Затем приклейте этот кусочек на объектив. Обязательно работайте с временным клеем, чтобы на случай, если вы захотите использовать веб-камеру для чего-то другого, дифракционную решётку можно было убрать.
Примечание: один из важных шагов, чтобы соорудить ваш спектрометр, — сделать так, чтобы концентрические канавки вдоль диска были выровнены вертикально, то есть они должны быть параллельны прорези. Если это не так, дифракции не будет.
7. Установка камеры
Как только дифракционная решётка будет прикреплена к веб-камере, пропустите кабель через заднюю прорезь корпуса и поместите веб-камеру в заднюю часть корпуса под углом 30 ° относительно передней поверхности и выровняйте с прорезью спереди. Прежде чем установить веб-камеру на место, подключите её к компьютеру и откройте приложение камеры. Направьте спектрометр на источник света и регулируйте положение веб-камеры до тех пор, пока спектр дифракции не окажется в центре изображения. Теперь можно двусторонней лентой приклеить веб-камеру к нижней грани.
8. Тестирование
Чтобы проверить, правильно ли работает ваш спектрометр, наведите его на источник света и регулируйте высоты источника и спектрометра до тех пор, пока они не выровняются. Подойдёт стопка книг или что-то ещё, а я решил подложить несколько старых рулонов нити 3D-принтера. Подключите веб-камеру к компьютеру и откройте приложение камеры. На изображении должен быть чёткий дифракционный спектр.
9. Работа с ПО спектрометра
Простое представление спектра даёт немного информации, поэтому, чтобы построить график интенсивности света, я разработал программу на Python. Она вычисляет относительное расстояние между «пиками», которое может использоваться в определении длин волн источника света. Чтобы запустить программу, нужно установить Python и несколько библиотек с открытым кодом:
Установив библиотеки, можно клонировать программу анализатора спектра из этого репозитория. Затем запустите программу и вы увидите фид веб-камеры. Наведите камеру на источник света и, чтобы захватить интересующую область, на клавиатуре нажмите кнопку «r». Щёлкните и проведите мышью по спектру и нажмите Enter. Как только выбрана нужная область, нажмите кнопку «s», чтобы захватить кадр и проанализировать интенсивность через визуализацию. Для выхода из программы можно нажать «q».
10. Результаты
Чтобы измерить длины волн определённого источника света, можно начать с источника света с известной длиной волны, такого как лазер, и определить соотношение между положением пиков и длиной волны.
Есть и другие интересные эксперименты, например, можно определить и измерить содержание натрия в поваренной соли или содержание хлорофилла в оливковом масле. При помощи этого недорогого спектрометра можно проводить разные простые и интересные эксперименты прямо у себя дома. А если вам интересно экспериментировать и с другими видами данных, понимать их, отличать сезонные явления от реальных тенденций и делать корректные выводы, вы можете присмотреться к нашему флагманскому курсу о Data Science, где студенты получают опыт, равный опыту после трёх лет самостоятельного изучения науки о данных. Или, если вам больше по душе программирование, вы можете обратить внимание на курс о Fullstack-разработке на Python.
Узнайте, как прокачаться и в других специальностях или освоить их с нуля:
Спектрометр: что такое, виды и области использования
Дозатор, или диспенсер, — прибор для автоматического отмеривания количества жидких, сыпучих и пастообразных веществ. Он широко используется в фармацевтике, химии, пищевой промышленности, применяется в клинических лабораториях и в целом широко распространён и востребован.
Фотометр — прибор, который осуществляет измерение фотометрических величин: силы света и светового потока, степени освещённости, яркости и т. д., а также величин, связанных с инфракрасным и ультрафиолетовым излучениями. С его помощью измеряют степень плотности и светопропускающую способность жидкостей и твёрдых прозрачных и полупрозрачных объектов.
Что это такое?
Для измерения спектров электромагнитного излучения используется спектрометр. Это прибор, который измеряет частоту и плотность излучения, взаимодействующего с материей, что позволяет с его помощью производить детальный анализ состава указанного вещества.
Современные спектрометры работают на специальном кристалле и детекторе по такому принципу:
Дальнейшая работа чаще всего представляет из себя сравнение полученного спектра со спектром уже известного вещества, например, некоего эталонного образца.
Ранние спектрометры использовали простые призмы с градуировкой, сейчас же их заменили дифракционные решётки, которые сделали результаты точнее, а процесс анализа проще, доступным фактически для всех обученных лаборантов. Это сравнительно простое и комфортное в применении лабораторное оборудование, дающее отличный результат.
Спектрометры классифицируются по принципу действия на несколько видов:
Сами по себе приборы могут быть интерференционными, призменными и дифракционными.
Сфера использования
Спектрометры используются повсеместно. В пищевой промышленности с помощью спектрометрии определяется токсичность продукции; эти устройства используют для того, чтобы устанавливать возраст и состав напитков, в том числе старых вин и виски. Чаще всего, впрочем, спектрометры используют для установки качества продуктов, чтобы исключить брак и установить его процентное соотношение.
Их применяют для определения возраста и подлинности произведений искусства, в промышленности — лакокрасочной, металлургической, в научных исследованиях и экологии, где исследуют ими загрязнённость почвы и водоёмов.
Спектрометры, особенно портативные модели, применяются в работе правоохранительных органов, в криминалистике. С их помощью можно легко, быстро и точно установить состав вещества.
Стационарные приборы можно встретить в практически каждой лаборатории.
Это универсальное лабораторное оборудование с очень высокими техническими характеристиками.
Что такое спектрометры, их виды и принцип работы
Спектрометр – это аналитический прибор, принцип работы которого основан на накоплении, обработке и анализе спектра излучения. Получают этот спектр методом облучения образца и регистрации появляющейся флуоресценции. Замеряется длина, частота волн, интенсивность излучения.
Спектрометры служат для анализа элементного состава веществ
По способу разложения спектра эти приборы бывают:
По принципу действия виды спектрометров разделяют на:
Рассмотрим детальнее типы спектрометров.
Н2 Принцип работы и сфера применения инфракрасного спектрометра
Принцип работы основан на возбуждении степеней свободы при облучении образца ИК-излучением. По спектрам пропускания и отражения, которые зависят от строения атомов, их масс, распределения заряда и т.д., можно судить об особенностях материала.
Преимущества инфракрасных спектрофотометров:
Инфракрасный спектрометр ФСМ-1202 в деле
Применяются ИК-спектрометры в следующих отраслях промышленности:
Кроме того, одна из основных технических характеристик данных спектрометров – простота в использовании. Поэтому подобные приборы нередко используют в криминалистике, экологическом контроле и других смежных областях, требующих быстрого получения результатов анализа.
Атомно-абсорбционный спектрометр – принцип действия и сфера применения
Принцип работы этих приборов основан на методе количественного элементного анализа по атомным спектрам абсорбции:
Атомно-абсорбционный спектрометр серии SensAA
Основной недостаток заключается в том, что образцы перед началом эксперимента требуется переводить в раствор. Того требуют особенности устройства спектрометра.
Данные приборы применяются:
Как работают и где применяются рентгенофлуоресцентные спектрометры
Работают РФ-спектрометры по следующему принципу:
Эти приборы используются для того, чтобы определять содержание различных хим. элементов в веществах. При этом их физическое состояние неважно – опыты можно проводить и с газом, и с жидкостью и с твердым телом. Таким способом можно определить наличие и процентное содержание металлов, в том числе и драгоценных, кальция, йода, серы, хлора, провести анализ почвы, воды, минералов.
Работа с рентгенофлуоресцентным спектрометром
Рентгенофлуоресцентные спектрометры применяются в:
Часто приборы можно встретить в криминалистических и судебно-медицинских лабораториях.
Что такое масс-спектрометры и в каких отраслях они применяются
Принцип работы этих приборов основан на измерении отношения массы атома к его заряду. На нейтральный атом не действуют ни магнитные, ни электрические поля. Но если добавить или отнять один или несколько электронов, он станет ионом. То, как он движется, определяет его масса и заряд. Если заряд известен, вычисляется его масса.
Функционируют масс-спектрометры следующим образом:
Так выглядит лабораторный масс-спектрометр
Масс-спектрометры применяются для определения относительного количественного состава атомов элемента (-ов) в смеси. Метод используется в:
Нередко приборы попадают на вооружение к экологическим службам и отделам криминалистической экспертизы.
Где применяются Фурье-спектрометры и по какому принципу работают
Эти приборы представляют собой доработанные интерферометры Майкельсона, облучаемые определенным способом. При этом одно зеркало перемещается с неизменной скоростью. Результат – полученная на выходе кривая подвергается Фурье-анализу. Такой способ зачастую более эффективен, чем обычный прямой анализ спектра.
Рабочее место лаборанта, оборудованное ИК Фурье-спектрометром ФСМ-1201
Используются приборы при исследованиях в инфракрасном спектре колебательно-вращательных спектров различных газов. Этот метод применяется для анализа атмосферы Земли и других планет.
Н2 Какой спектрометр подойдет для вашей лаборатории
Мы разобрали, что измеряет спектрометр, принципы функционирования разных устройств. Выбор подходящего прибора зависит от деятельности предприятия. В любом случае современные аналитические приборы дают очень точные результаты, поэтому покупать спектрометр следует исходя из:
Если желаете получить более подробную консультацию, касательно того, какой спектрометр подойдет вам, описание деятельности вашей лаборатории упростит процесс выбора. Обращайтесь за консультацией к менеджерам компании «Спектраналит». Все они практикующие лаборанты и будут рады дать экспертную оценку.
Принцип работы спектрометра
Задачи спектрометрии
Существуют универсальные модели с расширенными эксплуатационными характеристиками, но для работы с такой аппаратурой требуются специальные механические манипуляции.
Для чего используют спектрометры универсального и специализированного назначения? Первые подходят для генерации параметров серийных импульсов с помощью частотной гребёнки, а вторые применяются для узких задач, связанных с однотипными замерами в определенных условиях.
Также получили распространение квантовые модели спектрометров, которые находят применение в потоковом сканировании материалов, производя контроль широкого диапазона разных веществ и сред на высокой скорости.
Оптическая щель прибора
Основные рабочие компоненты:
Щель служит для пропуска и визуализации излучений, поступающих в анализатор прибора через специальную полость. Она определяет световой поток, который отправляется на оптическую область детектора.
Входной контур может иметь разную ширину, в зависимости от общего назначения спектрометра, – это диапазон от 5 до 800 мкм, в среднем. Высота щели в стандартном исполнении составляет 1 мм.
Дифракционная решетка спектрометра
Это компонент, который определяет угол блеска и частоту световых штрихов.
Существуют голографические и нарезные решетки. Разница состоит в распределении лазерных пучков на светочувствительном слое и общими спектральными характеристиками.
Виды спектрометров
Многофункциональные промышленные спектрометры способны работать со светом, красками и другими рабочими средами в контексте изучения разных параметров.
Портативные и стационарные аппараты
Портативные (мобильные, карманные) устройства внешне напоминают небольшие тестеры или мультиметры. Это компактные аппараты, которыми можно контролировать цвета на поверхностях со сложной геометрией, где невозможно применение стационарного оборудования. Приборы такого типа эффективно справляются с анализом разных покрытий.
Стационарный спектрометр – это более функциональный аппарат, обеспеченный мощными оптическими элементами и средствами обработки данных. Он имеет собственный микропроцессор с системой визуального представления зарегистрированных спектров. Пользователь может работать с собственным LCD-дисплеем и клавиатурой оборудования.
Принцип действия световых спектрометров
Принцип действия спектрометра красок
Получение данных выполняет оптическая система. Затем производится анализ информации и ее переработка в насадках апертуры. Большинство таких аппаратов оснащается импульсными ксеноновыми лампами, которые фиксируют спектры длиной волны от 360 до 740 нм. На выходе составляется график с колориметрическими значениями.
Сфера использования
Их используют в научных исследованиях, при контроле продукции на производствах, в строительстве при оценке качества конструкции, а также в сельском хозяйстве и бытовой сфере.
Анализ света, например, позволит организовать комфортное освещение как на предприятиях, так и в домашних условиях.
Работа с краской позволит автомобилисту подобрать оптимальную лакокрасочную смесь для ремонта кузова, а производителю облицовки успешно изготовить материал с заданной дизайнером фактурой.
Принцип работы и конструкция УФ-спектрометра
Спектрофотометрический метод анализа основывается на избирательном поглощении молекулами определяемого компонента видимого света или ультрафиолетового излучения. Данные представляют в виде спектров поглощения вещества.
На практике для определения спектра поглощения вещества используют приборы, называемые спектрофотометрами. Работают они следующим образом. Исследуемое вещество помещают между источником и приемником излучения. Источник с помощью специальных устройств посылает излучение с определенной или меняющейся длиной волны. Приемник измеряет интенсивность излучения, прошедшего через образец, и регистрирует его.
Спектрометр представляет собой лабораторный прибор, который включает в себя источник излучения, монохроматор, кюветное отделение, фотометрический детектор и устройство обработки сигнала. Для вывода сигнала на экран монитора спектрометр подсоединяют к компьютеру. Источниками излучения могут служить специальные галогенные вольфрамовые, дейтериевые и ксеноновые лампы. Монохроматоры обычно построены на базе дифракционной решетки. Фотодиодные детекторы или фотоэлектрические умножители используют для регистрации сигнала.
Благодаря электронной микропроцессорной базе современных спектрометров, позволяющей выполнить необходимый пересчет и преобразование сигнала, возможен вывод результата анализа вещества непосредственно в единицах концентрации.
-достаточно малое количество вещества
-простота в оборудовании и техники
-спектры имеют небольшое число полос поглощения
Устройство и принцип действия оже-спектрометра
Функциональные связи, состав и компоновка электронного оже-спектрометра приведены на рисунке 2.1.
Рисунок 2.1 — Функциональная схема прибора
Рабочий объем для исследования образца имеет две части: предварительная и основная камеры, отсекаемые друг от друга клапаном. Такое разделение позволяет производить загрузку и первичную обработку образца в предварительной камере, и смену образцов в основной камере с помощью передающего манипулятора без нарушения в ней вакуума.
Система для откачки предварительной камеры включает в себя форвакуумный насос типа 2НВР-6Д (до 1∙10-2 мм. рт. ст.), турбомолекулярный ТМН-450 (до 1∙10-7 мм. рт. ст.) и магниторазрядный НМД-025 (до 1∙10-8 мм. рт. ст.) насосы. Система водяного охлаждения служит для обеспечения рабочего режима турбомолекулярного насоса.
Для откачки основной камеры служит два цеолитовых ЦВН-1-2 (до 1∙10-2 мм. рт. ст.), магниторазрядный НМД-0,25 (до 1∙10-8 мм. рт. ст.) и испарительный (сублиматор титана, до 1∙10-10 мм. рт. ст.) насосы.
С целью достижения более высокого предельного вакуума камеры, манипуляторы и все элементы вакуумной системы в процессе подготовки к работе подвергаются высокотемпературному обезгаживанию путем длительного прогрева с помощью нагревательных устройств при наличии непрерывной откачки.
Система газонаполнения камер представляет из себя два баллона, газовый редуктор и натекатель НРТ. Баллоны наполняются любым газом или газовой смесью (кроме химически активных) в зависимости от проводимого эксперимента. С помощью натекателя можно регулировать степень наполнения камер газом. Вакуум контролируется вакуумметрами ВМБ-8, ВМБ-11 и ВТ-3 от манометрических преобразователей ПММ-32, ПММ-46 и ПМТ-4М.
Юстировка образца в основной камере обеспечивается манипулятором сверхвысоковакуумным Ду 100. Для визуальной юстировки образцов в основной и предварительной камерах предусмотрены смотровые окна.
Для получения чистой поверхности исследуемого образца (свободной от адсорбированных веществ) в оже-спектрометре предусмотрены обработка путем прямонакального прогрева, электронной бомбардировки и травление поверхности образца ионами инертных газов. Ионное травление также можно использовать для определения состава образца не только по поверхности, но и по толщине слоя (химические профили).
Для электронной бомбардировки в предварительной камере служит электронная пушка.
В режиме ионного травления в обе камеры, в которых находятся две одинаковые ионные пушки, поступает инертный газ, который ионизируется в ионизаторе работающей пушки. Электронный ток эмиссии ионизатора стабилизирован и регулируется в широких пределах.
Перемещение ионного пучка осуществляется при помощи ручной регулировки напряжения отклоняющих пластин пушки на блоке питания ионной пушки. Для быстрой визуализации юстировки образца относительно ионного пучка предусмотрена возможность питания отклоняющих пластин пушки от растрового устройства. Растровое устройство работает на телевизионном стандарте и конструктивно выполнено в виде отдельных блоков ТВ-позиционера и ТВ-монитора. Яркость регистрирующей электронно-лучевой трубки ТВ-монитора в режиме управления ионным пучком модулируется сигналом поглощенных образцом ионов. Для этого в основной камере объектодержатель образца изолирован от корпуса камеры, а образец устанавливается таким образом, чтобы электрический потенциал объектодержателя и образца был одинаковым. В предварительной камере вывод сигнала поглощенных ионов на вход ТB-позиционера осуществляется через ввод поступательного перемещения, который обеспечивает электрический контакт с изолированным от корпуса образцом. Обеспечивая сканирование ионного пучка, можно получить изображение поверхности образца в поглощенных ионах.
Для формирования возбуждающего электронного пучка в режиме снятия оже-спектрометра в основной камере могут работать: электронная пушка, встроенная в анализатор, с нормальным падением пучка, или пушка с косым падением. Обе пушки одинаковые, имеют электростатические фокусировки и отклоняющую систему.
Перемещение электронного пучка обеспечивается с помощью ручной регулировки напряжения отклоняющих пластин пушки на блоке питания оже-пушки. Для быстрой визуальной юстировки образца относительно электронного пучка и фокуса анализатора, питание отклоняющих пластин пушки осуществляется от ТВ-позиционера. Яркость электронно-лучевой трубки в этом режиме модулируется сигналом поглощенных электронов.
Развертка отклоняющего потенциала для вторичных электронов в анализаторе формируется подачей на электроды анализатора линейной развертки напряжения с блока развертки, промодулированного синусоидальным напряжением с блока регистрации.
Для решения ряда сложных исследовательских задач (например, анализа состояния поверхности при изменении условий эксперимента), когда предъявляются повышенные требования к быстродействию системы регистрации, в блоке развертки предусмотрена возможность формирования развертки на различных, заранее выбранных участках диапазона выходного напряжения (энергетические окна). Такой режим блока также позволяет сократить время воздействия электронного зонда на образец.
Обработка регистрируемого сигнала, поступающего с коллектора анализатора, происходит с помощью блока регистрации. Запись спектра производится на графопостроителе зависимостей Н306. Для оперативной расшифровки спектра в блоках регистрация и развертки предусмотрены выходы для сопряжения с ЭВМ.
Прибор предназначен для определения распределения химического элемента на поверхности твердого тела методом электронной оже-спектроскопии (ЭОС) с растровой разверткой электронного пучка.
Основные технические данные и характеристики
Предельное остаточное давление в основной камере не более 1,33∙10-7 Па (1∙10-9 мм.рт.ст).
Предельное остаточное давление в камере предварительного разрежения 1,33∙10-5 Па (1∙10-7 мм.рт.ст).
Натекание в вакуумную систему прибора не более 6,55∙10-10 Вт (5∙10-9 л.мм.рт.ст/с).
Манипулятор в основной камере обеспечивает:
— 4 степени подвижности объекта;
— количество объектов, устанавливаемых в держатель, от 1 до 5.
Передающий манипулятор обеспечивает передвижение объекта из основной камеры в предкамеру и обратно.
Прибор обеспечивает прямонакальный прогрев объекта, максимальной мощностью накала 75 Вт, при максимальном токе объекта 25 А.
Прибор обеспечивает обработку объекта методом электронной бомбардировки. Максимальный ток объекта 20 мА при максимальном ускоряющем напряжении электронов 1300 В.
Прибор обеспечивает обработку объекта методом ионной бомбардировки. Минимальный диаметр ионного пучка не более 4 мм и максимальный ток пучка не менее 2∙10-6 А при ускоряющем напряжении 5 кВ и давлении по аргону 1,33∙10-3 Па (1∙10-5 мм.рт.ст). Прибор обеспечивает получение изображений объектов в поглощенных электронах.
Прибор обеспечивает регистрацию оже-электронов с энергиями до 2000 эВ с разрешением по энергии не хуже 1%.
Максимальная площадь исследования не менее 200×200 мкм.
Время непрерывной работы в режиме откачки не менее 120 часов.
Спектроскоп своими руками
Все комментарии Автора +15Mimin24 года назад Если ты скажешь, что на этой конференции ты не занял первое место, то значит кто-то там собрал коллайдер. раскрыть ветку 18 +9 4 года назад Я занял 3 место,дело в том что я плохо умею рассказывать,а это минус баллы раскрыть ветку 17 +33 4 года назад Я вот тоже решил, что ты рассказывать не умеешь. Прочитал твой пост и нифига не понял. Ну труба, ну кусочек диска засунут туда.. Дальше что? Теорию дай, я не понял как эта конструкция работает и каким образом ты спектр записал на веб камеру..Т.е. заинтересовать меня у тебя получилось, а удовлетворить моё любопытство нет раскрыть ветку 16 +8 4 года назад Респект. Прослезился. Завтра соберу и сниму спектр моего сгорающего в ведре диплома физика. +1 4 года назад Молодец парень! Обожаю спектральный анализ, порадовала знакомая тема:) +1 4 года назад А вот как мне в таком случае,например,получить спектр образца металла,чтобы изучить его качественный состав. Вот,у меня есть метеорит,хочется узнать из чего он 0 4 года назад Да я с этим на конференцию пойду XDD 0 4 года назад изящно, просто и красиво! 0 4 года назад а я сначала подумал фазик для ас.. 0 4 года назад Солнечный свет 0 3 года назад
Автор, прием! Срочно! Какой диаметр трубы?
Принцип работы масс-спектрометров
Методы масс-спектрометрии являются методами получения спектров масс ионов.
Теоретические и экспериментальные основы масс-спектрометрии были заложены Д.Д.Томсоном, который впервые в 1912 г. создал прибор для получения спектра масс положительных ионов.
Схема масс-спектрометров относительно проста и включает три главных элемента – ионный источник, анализатор и детектор. При использовании различных методов ионизации в ионном источнике создаются пучки ионов как положительных, так и отрицательных, в зависимости от поставленной задачи, а иногда те и другие одновременно. Эти пучки ионов, содержащие ионы различных масс, направляются далее в анализатор, где под влиянием полей различной природы формируются пучки ионов определенной массы. Регистрация пучка ионов в коллекторе позволяет получить спектр масс ионов.
Ученик Томсона Ф. Астон существенно повысил разрешение масс-спектрографа за счет лучшей фокусировки ионного пучка и на своем масс-спектрографе впервые открыл изотопы элементов. Масс-спектрографы используют для точного определения атомных масс. Одновременно с Астоном в Чикаго А. Демпстер сконструировал первый масс-спектрометр, в котором анализатором служило поперечное магнитное поле и ионные токи измерялись электрическими методами. Именно этот тип масс-спектрометров имеет широкое применение. Существенное улучшение разрешения масс-спектра было получено в 50-х годах в приборах с двойной фокусировкой, т.е. с использованием в анализаторе электрического и магнитного статических полей. Наряду со статическими полями для получения масс-спектров используют переменное электрическое поле в динамических масс-спектрометрах. Это позволяет исключить из конструкции масс-спектрометров громоздкие масс-спектрометры.
Принцип работы масс-спектрометров
В методах масс-спектрометрии используют ионизацию вещества, так как существуют эффективные методы управления пучками заряженных частиц с помощью магнитных и электрических полей. Большая часть исследований ведется с пучками положительных ионов.
Схематически процесс ионизации с образованием положительных ионов можно представить следующим образом:
где Нм, Нх, Н1 и Н2 – число частиц в единице объема; Ем, Ех, Е1, Е2 – энергия соответствующих частиц; q – степень ионизации, в большинстве случаев равная единице и поэтому Н1 = Н2.
Образование положительных ионов является результатом взаимодействия молекул, атома или радикала в газовой фазе (М) с электроном, фотоном, ионом или быстрой молекулой (х), а также макроскопическим телом, обладающим электрическим полем с высоким градиентом.
Ех должна быть больше потенциала ионизации (М). Избыток энергии Ех над потенциалом ионизации после ионизации распределяется между ионом Мq+ с энергией Е1 и эмиттированным электроном с энергией Е2.
Методы спектроскопии и спектрометрия для измерения спектров
Спектроскопия относится к разделу физики изучающей данные о строении и свойствах материи полученные путем анализа спектров электромагнитного излучения. Данные используются для решения задач широкого применения.
Термин является производным от латинского слова “spectron”, что означает дух или призрак, и греческое слово “skopein”, что означает смотреть на мир.
Спектроскопия занимается измерением и интерпретацией спектров, которые возникают в результате взаимодействия электромагнитного излучения (в виде энергии распространяемой путем электромагнитных волн) с веществом. Это касается поглощения, излучения или рассеяния электромагнитного излучения атомами или молекулами.
Еще Джеймс Кларк Максвелл в 1864 году рассказал миру, что свет состоит из электрических и магнитных полей.
Следовательно, большинство инженеров и ученых прямо или косвенно в какой-то момент в своей карьере включали области электромагнитного спектра в свои работы.
Спектрометрия как область физической науки разрабатывает приборы и устройства для измерении спектров. Одним из сложных вопров являются методы измерения спектров.
Основные ограничения методов спектроскопии связаны с трудностями приготовления эталонных растворов с учетом влияния третьих компонентов. Поэтому для получения достоверных результатов должны применяться растворы для спектрометрического анализа особой чистоты. Данные измерения широко используется для количественного анализа в различных областях (например, химия, физика, биология, биохимия, материалы и химическая инженерия, клинические применения, промышленный комплекс).
Основные методы спектроскопии
Спектроскопия представляет собой общий методологический подход. Методы могут варьироваться в отношении проанализированных (например, атомной или молекулярной спектроскопии), в области электромагнитного спектра, и типа контролируемого взаимодействия излучения с веществом (например, эмиссии, поглощения или дифракции).
Тем не менее, основным принципом, общим для всех различных методов является луч электромагнитного излучения на желаемый образец для того, чтобы наблюдать, как он реагирует на определенные воздействия. Ответ обычно записывается как функция длины волны излучения и уровня представляющего собой спектр. Любая энергия света от низкочастотных радиоволн до высокочастотных гамма-лучей может показать определенный спектр.
Общая цель спектроскопии представляет изучение спектров различных видов излучения для понимания того, как именно свет взаимодействует с материей, и как эта информация может использоваться, чтобы количественно понять образцы материи.
Область физики, должна также быть оценена как набор инструментов, который может быть использован, чтобы понять различные системы и решать сложные физические и химические проблемные задачи.