что такое сокет в сети
Сокеты¶
Сокеты (англ. socket — разъём) — название программного интерфейса для обеспечения обмена данными между процессами. Процессы при таком обмене могут исполняться как на одной ЭВМ, так и на различных ЭВМ, связанных между собой сетью. Сокет — абстрактный объект, представляющий конечную точку соединения.
Принципы сокетов¶
Каждый процесс может создать слушающий сокет (серверный сокет) и привязать его к какому-нибудь порту операционной системы (в UNIX непривилегированные процессы не могут использовать порты меньше 1024). Слушающий процесс обычно находится в цикле ожидания, то есть просыпается при появлении нового соединения. При этом сохраняется возможность проверить наличие соединений на данный момент, установить тайм-аут для операции и т.д.
Каждый сокет имеет свой адрес. ОС семейства UNIX могут поддерживать много типов адресов, но обязательными являются INET-адрес и UNIX-адрес. Если привязать сокет к UNIX-адресу, то будет создан специальный файл (файл сокета) по заданному пути, через который смогут сообщаться любые локальные процессы путём чтения/записи из него (см. Доменный сокет Unix). Сокеты типа INET доступны из сети и требуют выделения номера порта.
Обычно клиент явно подсоединяется к слушателю, после чего любое чтение или запись через его файловый дескриптор будут передавать данные между ним и сервером.
Основные функции¶
Общие | |
Socket | Создать новый сокет и вернуть файловый дескриптор |
Send | Отправить данные по сети |
Receive | Получить данные из сети |
Close | Закрыть соединение |
Серверные | |
Bind | Связать сокет с IP-адресом и портом |
Listen | Объявить о желании принимать соединения. Слушает порт и ждет когда будет установлено соединение |
Accept | Принять запрос на установку соединения |
Клиентские | |
Connect | Установить соединение |
socket()¶
Создаёт конечную точку соединения и возвращает файловый дескриптор. Принимает три аргумента:
domain указывающий семейство протоколов создаваемого сокета
type
protocol
Протоколы обозначаются символьными константами с префиксом IPPROTO_* (например, IPPROTO_TCP или IPPROTO_UDP). Допускается значение protocol=0 (протокол не указан), в этом случае используется значение по умолчанию для данного вида соединений.
Функция возвращает −1 в случае ошибки. Иначе, она возвращает целое число, представляющее присвоенный дескриптор.
Связывает сокет с конкретным адресом. Когда сокет создается при помощи socket(), он ассоциируется с некоторым семейством адресов, но не с конкретным адресом. До того как сокет сможет принять входящие соединения, он должен быть связан с адресом. bind() принимает три аргумента:
Возвращает 0 при успехе и −1 при возникновении ошибки.
Автоматическое получение имени хоста.
listen()¶
Подготавливает привязываемый сокет к принятию входящих соединений. Данная функция применима только к типам сокетов SOCK_STREAM и SOCK_SEQPACKET. Принимает два аргумента:
После принятия соединения оно выводится из очереди. В случае успеха возвращается 0, в случае возникновения ошибки возвращается −1.
accept()¶
Используется для принятия запроса на установление соединения от удаленного хоста. Принимает следующие аргументы:
Функция возвращает дескриптор сокета, связанный с принятым соединением, или −1 в случае возникновения ошибки.
connect()¶
Устанавливает соединение с сервером.
Некоторые типы сокетов работают без установления соединения, это в основном касается UDP-сокетов. Для них соединение приобретает особое значение: цель по умолчанию для посылки и получения данных присваивается переданному адресу, позволяя использовать такие функции как send() и recv() на сокетах без установления соединения.
Загруженный сервер может отвергнуть попытку соединения, поэтому в некоторых видах программ необходимо предусмотреть повторные попытки соединения.
Возвращает целое число, представляющее код ошибки: 0 означает успешное выполнение, а −1 свидетельствует об ошибке.
Передача данных¶
Для передачи данных можно пользоваться стандартными функциями чтения/записи файлов read и write, но есть специальные функции для передачи данных через сокеты:
Нужно обратить внимание, что при использовании протокола TCP (сокеты типа SOCK_STREAM) есть вероятность получить меньше данных, чем было передано, так как ещё не все данные были переданы, поэтому нужно либо дождаться, когда функция recv возвратит 0 байт, либо выставить флаг MSG_WAITALL для функции recv, что заставит её дождаться окончания передачи. Для остальных типов сокетов флаг MSG_WAITALL ничего не меняет (например, в UDP весь пакет = целое сообщение).
Что такое сокет в сети
Сетевые сокеты — способ взаимодействия любого приложения с системой на которой оно работает. Сокет — это интерфейс, который по сути представляет собой совокупность адреса в сети и используемого порта. Также часто термин употребляется применительно к Socket API, о котором рассказывается во второй части статьи.
Клиентское приложение всегда работает на локальной машине, подключенной к сети
Интерфейс между приложением и хост-машиной (Network-Application Interface) определяет как приложение может использовать сеть.
Сетевые сокеты и клиент серверная модель
Приложение клиента (посылает например URL в случае с вебом или запрос к MySQL) на определенный сетевой адрес и порт. В примере это localhost и порт 3306 — сервер в свою отвечает приложению. К приложению при этом могут обращаться множество клиентов, запросы и использованием сокета приходят на один и тот же адрес и обрабатываются одним пакетом. Таким образом работает клиент-серверая модель взаимодействия.
Чтобы написать приложение, которое могло бы обслуживать множество клиентов (последовательно и параллельно) нужно сокет API
Socket API — интерфейс используемый всеми интернет приложениями.
Socket API при соединении 2-х приложений может работать с потоками и с датаграммами :
Сетевой сокет — комбинация IP адреса и номера порта, которые представляют собой способ адресации и обеспечивают нормальное взаимодействие большого количества приложений в рамках одной системы.
Один сокет не может использовать два приложения одновременно или два экземпляра одного приложения.
Вызовы в Socket API
SOCKET — вызов создает структуру
BIND — связывает локальный адрес с сокетом
LISTEN — заявляет о готовности установить соединение
ACCEPT — принимает входящее соединение
CONNECT — пробует установить соединение
SEND — отправляет данные в рамках соединения
RECEIVE — принимает информацию в рамках соединения
CLOSE — прерывает соединение
Сокеты в Python для начинающих
Предисловие
В далеком для меня 2010 году я писал статью для начинающих про сокеты в Python. Сейчас этот блог канул в небытие, но статья мне показалась довольно полезной. Статью нашел на флешке в либровском документе, так что это не кросспост, не копипаст — в интернете ее нигде нет.
Что это
Для начала нужно разобраться что такое вообще сокеты и зачем они нам нужны. Как говорит вики, сокет — это программный интерфейс для обеспечения информационного обмена между процессами. Но гораздо важнее не зазубрить определение, а понять суть. Поэтому я тут постараюсь рассказать все как можно подробнее и проще.
Существуют клиентские и серверные сокеты. Вполне легко догадаться что к чему. Серверный сокет прослушивает определенный порт, а клиентский подключается к серверу. После того, как было установлено соединение начинается обмен данными.
Рассмотрим это на простом примере. Представим себе большой зал с множеством небольших окошек, за которыми стоят девушки. Есть и пустые окна, за которыми никого нет. Те самые окна — это порты. Там, где стоит девушка — это открытый порт, за которым стоит какое-то приложение, которое его прослушивает. То есть, если, вы подойдете к окошку с номером 9090, то вас поприветствуют и спросят, чем могут помочь. Так же и с сокетами. Создается приложение, которое прослушивает свой порт. Когда клиент устанавливает соединение с сервером на этом порту именно данное приложение будет ответственно за работу этим клиентом. Вы же не подойдете к одному окошку, а кричать вам будут из соседнего 🙂
После успешной установки соединения сервер и клиент начинают обмениваться информацией. Например, сервер посылает приветствие и предложение ввести какую-либо команду. Клиент в свою очередь вводит команду, сервер ее анализирует, выполняет необходимые операции и отдает клиенту результат.
Сервер
Сейчас создайте два файла — один для сервера, а другой для клиента.
В Python для работы с сокетами используется модуль socket:
Прежде всего нам необходимо создать сокет:
Здесь ничего особенного нет и данная часть является общей и для клиентских и для серверных сокетов. Дальше мы будем писать код для сервера. Это вполне логично — зачем нам писать клиентское приложение, если некуда подключаться 🙂
Теперь нам нужно определиться с хостом и портом для нашего сервера. Насчет хоста — мы оставим строку пустой, чтобы наш сервер был доступен для всех интерфейсов. А порт возьмем любой от нуля до 65535. Следует отметить, что в большинстве операционных систем прослушивание портов с номерами 0 — 1023 требует особых привилегий. Я выбрал порт 9090. Теперь свяжем наш сокет с данными хостом и портом с помощью метода bind, которому передается кортеж, первый элемент (или нулевой, если считать от нуля) которого — хост, а второй — порт:
Теперь у нас все готово, чтобы принимать соединения. С помощью метода listen мы запустим для данного сокета режим прослушивания. Метод принимает один аргумент — максимальное количество подключений в очереди. Напряжем нашу бурную фантазию и вспомним про зал с окошками. Так вот этот параметр определяет размер очереди. Если он установлен в единицу, а кто-то, явно лишний, пытается еще подстроится сзади, то его пошлют 🙂 Установим его в единицу:
Ну вот, наконец-то, мы можем принять подключение с помощью метода accept, который возвращает кортеж с двумя элементами: новый сокет и адрес клиента. Именно этот сокет и будет использоваться для приема и посылке клиенту данных.
Вот и все. Теперь мы установили с клиентом связь и можем с ним «общаться». Т.к. мы не можем точно знать, что и в каких объемах клиент нам пошлет, то мы будем получать данные от него небольшими порциями. Чтобы получить данные нужно воспользоваться методом recv, который в качестве аргумента принимает количество байт для чтения. Мы будем читать порциями по 1024 байт (или 1 кб):
Как мы и говорили для общения с клиентом мы используем сокет, который получили в результате выполнения метода accept. Мы в бесконечном цикле принимаем 1024 байт данных с помощью метода recv. Если данных больше нет, то этот метод ничего не возвращает. Таким образом мы можем получать от клиента любое количество данных.
Дальше в нашем примере для наглядности мы что-то сделаем с полученными данными и отправим их обратно клиенту. Например, с помощью метода upper у строк вернем клиенту строку в верхнем регистре.
Теперь можно и закрыть соединение:
Собственно сервер готов. Он принимает соединение, принимает от клиента данные, возвращает их в виде строки в верхнем регистре и закрывает соединение. Все просто 🙂 В итоге у вас должно было получиться следующее:
Клиент
Думаю, что теперь будет легче. Да и само клиентское приложение проще — нам нужно создать сокет, подключиться к серверу послать ему данные, принять данные и закрыть соединение. Все это делается так:
Думаю, что все понятно, т.к. все уже разбиралось ранее. Единственное новое здесь — это метод connect, с помощью которого мы подключаемся к серверу. Дальше мы читаем 1024 байт данных и закрываем сокет.
Сокеты
Сокеты — это технология передачи данных низкого уровня, на основе которой реализованы многие сетевые протоколы. UWP предоставляет классы сокетов TCP и UDP для клиент-серверных или одноранговых приложений, если устанавливаются долгосрочные подключения или установленное подключение не требуется.
В этом разделе основное внимание уделяется использованию классов сокетов универсальной платформы Windows (UWP), которые находятся в пространстве имен Windows.Networking.Sockets. Кроме того, сокеты Windows 2 (WinSock) можно использовать в приложении UWP.
Как последствие сетевой изоляции WIndows запрещает установку подключения сокета (Sockets или WinSock) между двумя приложениями UWP, работающими на одном компьютере, через локальный петлевой адрес (127.0.0.0) либо путем явного указания локального IP-адреса. Дополнительные сведения о механизмах, с помощью которых приложения UWP могут взаимодействовать друг с другом, см. в разделе Связь между приложениями.
Создание базового клиента и сервера сокета TCP
Для постоянных подключений сокет протокола TCP обеспечивает в сети низкоуровневую двунаправленную передачу данных. Сокеты TCP широко используются большинством сетевых протоколов в Интернете. Чтобы продемонстрировать базовые операции TCP, в следующем примере кода реализованы отправка и получение данных через TCP объектами StreamSocket и StreamSocketListener, на основе которых создаются эхо-клиент и сервер.
Чтобы начать с минимально возможного количества перемещаемых частей и обойти проблем с сетевой изоляцией, создайте новый проект и поставьте в один проект как клиент, так и серверный код ниже.
Эхо-клиент и сервер на основе сокетов TCP
Создайте StreamSocketListener и начните слушать входящие подключения TCP. Событие StreamSocketListener.ConnectionReceived создается всякий раз, когда клиент устанавливает подключение к прослушивателю StreamSocketListener.
Кроме того, создайте сокет StreamSocket, установите подключение к серверу, отправьте запрос и получите ответ.
Ссылки на StreamSockets в продолжениях C++ PPL (в первую очередь применимо к C++/CX)
Это неприменимо в случае использования сопрограмм C++/WinRT и передачи параметров по значению. Рекомендации по передаче параметров см. в разделе Параллельная обработка и асинхронные операции с помощью C++/WinRT.
StreamSocket остается активным, пока в его потоке ввода/вывода выполняются активные операции чтения/записи (рассмотрим для примера StreamSocketListenerConnectionReceivedEventArgs.Socket, доступ к которому осуществляется в обработчике событий StreamSocketListener.ConnectionReceived). При вызове DataReader.LoadAsync (или ) он хранит ссылку на сокет (через поток ввода сокета) до тех пор, пока обработчик событий Completed (при наличии) метода LoadAsync не завершит выполнение.
Библиотека параллельных шаблонов (PPL) не планирует встроенное продолжение задач по умолчанию. Другими словами, добавление задачи продолжения (с task::then() ) не гарантирует, что задача продолжения будет выполняться во встроенном режиме в качестве завершающего обработчика.
С точки зрения StreamSocket завершающий обработчик завершит выполнение (и сокет станет готовым к ликвидации) до запуска основной части продолжения. Таким образом, чтобы предотвратить удаление сокета, если вы хотите использовать его в этом продолжении, необходимо ссылаться на сокет напрямую (через захват лямбда-функции) и использовать его, или косвенно (продолжая осуществлять доступ к args->Socket внутри продолжения), или обеспечить принудительное выполнение задач продолжения в коде. Эту первую технику можно наблюдать в действии (захват лямбда-функции) в примере StreamSocket. В коде C++/CX в разделе Создание базового клиента и сервера сокета TCP выше используется второй метод — он выводит запрос обратно в виде ответа и получает доступ из одного из самых внутренних продолжений.
Третий способ подходит в тех случаях, когда не нужно выводить ответ. Параметр task_continuation_context::use_synchronous_execution() используется для принудительного выполнения основной части продолжения внутри PPL. Этот пример кода демонстрирует, как это сделать.
Это поведение применяется ко всем сокетам и классам WebSockets в пространстве имен Windows.Networking.Sockets. Но для сценариев на стороне клиента сокеты обычно сохраняются в переменных-членах, так что эта проблема наиболее применима для сценария StreamSocketListener.ConnectionReceived, как описано выше.
Создание простейших клиента и сервера для UDP-сокетов
Сокет протокола UDP схож с сокетом TCP в том плане, что он обеспечивает низкоуровневую передачу данных по сети в любом направлении. Однако если сокет TCP подходит для постоянных подключений, сокет UDP подходит для сценариев, где установленное подключение не требуется. Поскольку сокеты UDP не поддерживают соединение на обеих конечных точках, они предоставляют быстрый и простой способ сетевого подключения между удаленными компьютерами. Однако сокеты UDP не гарантируют целостность сетевых пакетов и даже их передачу удаленному адресату. Поэтому необходимо учитывать это в приложении. Примеры приложений, использующих сокеты UDP: локальные клиенты обнаружения сети и локальные клиенты чатов.
Создание эхо-клиента и эко-сервера с использованием сокетов UDP
Создайте сокет DatagramSocket, который будет выполнять роль эхо-сервера, привяжите его к определенному номеру порта, получите входящее сообщение UDP и передайте его обратно. Событие DatagramSocket.MessageReceived создается, когда сокет получает сообщение.
Создайте другой сокет DatagramSocket, который будет выполнять роль эхо-клиента, привяжите его к определенному номеру порта, отправьте сообщение UDP и получите ответ.
Фоновые операции и брокер сокета
Можно использовать посредник сокетов и контролировать триггеры канала, чтобы убедиться, что приложение должным образом получает подключения или данные в сокетах, не находясь на переднем плане. Дополнительные сведения см. в статье о сетевом взаимодействии в фоновом режиме.
Пакетные отправки
Каждый раз, когда вы выполняется запись в поток, связанный с сокетом, происходит переход из режима пользователя (обычный код) в режим ядра (где работает сетевой стек). Если записывается много буферов одновременно, повторяющиеся переходы создают значительную нагрузку. Чтобы отправлять несколько буферов данных одновременно, избегая такой нагрузки, можно собирать отправляемые данные в пакеты. Это особенно полезно, если ваше приложение поддерживает VoIP, VPN или другие задачи, предполагающие максимально эффективное перемещение больших объемов данных.
В этом разделе показано несколько техник пакетных отправок, которые можно использовать с сокетом StreamSocket или подключенным сокетом DatagramSocket.
Чтобы получить общее представление о процессе, рассмотрим, как эффективно отправить большое число буферов. Вот минимальная демонстрация, в которой используется StreamSocket.
Следующий пример подходит для любого языка UWP, а не только для C#. В его основе — поведение потоков StreamSocket.OutputStream и DatagramSocket.OutputStream, объединяющих отправки. Эта техника вызывает метод FlushAsync в потоке вывода, который начиная с Windows 10 гарантированно возвращается только после того, как все операции потока вывода завершены.
Существуют некоторые важные ограничения, связанные с использованием пакетных отправок в вашем коде.
Совместное использование порта для DatagramSocket
Предоставление сертификата клиента с классом StreamSocket
Класс StreamSocket поддерживает возможность использования протокола SSL/TLS для проверки подлинности сервера, к которому обращается клиентское приложение. В некоторых случаях клиентское приложение также должно пройти проверку подлинности на сервере с помощью сертификата клиента SSL/TLS. Можно предоставить клиентский сертификат со свойством StreamSocketControl.ClientCertificate, прежде чем привязывать или подключать сокет (его необходимо задать до начала подтверждения протокола SSL/TLS). Доступ к экземпляру StreamSocketControl осуществляется из объекта StreamSocket через свойство StreamSocket.Control. Если сервер запрашивает сертификат клиента, Windows ответит, воспользовавшись предоставленным клиентским сертификатом.
Используйте переопределение метода StreamSocket.ConnectAsync, которое принимает значение SocketProtectionLevel, как показано в примере минимального кода.
Как указано в комментарии в примерах кода ниже, чтобы код работал, в проекте должна быть объявлена возможность приложения sharedUserCertificates.
Обработка исключений
Ошибка, обнаруженная в операции DatagramSocket, StreamSocket или StreamSocketListener, возвращается в виде значения HRESULT. Можно передать значение HRESULT методу SocketError.GetStatus, чтобы преобразовать его в значение перечисления SocketErrorStatus.
Большинство значений перечисления SocketErrorStatus соответствуют ошибке, возвращаемой стандартной операцией с сокетами Windows. Ваше приложение может включать значения перечисления SocketErrorStatus, чтобы по-разному действовать в зависимости от причины исключения.
Конструктор HostName может создать исключение, если переданная строка не является допустимым именем узла. Например, он содержит недопустимые символы, что вероятно, если имя узла вводится в приложении пользователем. Создайте HostName внутри блока try/catch. В этом случае приложение может сообщить пользователю об ошибке и запросить новое имя узла.
Разница между веб-сокетами и Socket.IO
Доброго времени суток, друзья!
Веб-сокеты и Socket.IO, вероятно, являются двумя наиболее распространенными средствами коммуникации в режиме реального времени (далее — живое общение). Но чем они отличаются?
При построении приложения для живого общения наступает момент, когда необходимо выбрать средство для обмена данными между клиентом и сервером. Веб-сокеты и Socket.IO являются самыми популярными средствами живого общения в современном вебе. Какое из них выбрать? В чем разница между этими технологиями? Давайте выясним.
Веб-сокеты
Говоря о веб-сокетах, мы имеем ввиду протокол веб-коммуникации, представляющий полнодуплексный канал коммуникации поверх простого TCP-соединения. Проще говоря, эта технология позволяет установить связь между клиентом и сервером с минимальными затратами, позволяя создавать приложения, использующие все преимущества живого общения.
Например, представьте, что вы создаете чат: вам необходимо получать и отправлять данные как можно быстрее, верно? С этим прекрасно справляются веб-сокеты! Вы можете открыть TCP-соединение и держать его открытым сколько потребуется.
Веб-сокеты появились в 2010 году в Google Chrome 4, первый RFC (6455) опубликован в 2011.
Веб-сокеты используются в следующих случаях:
Socket.IO
Socket.IO — библиотека JavaScript, основанная (написанная поверх) на веб-сокетах… и других технологиях. Она использует веб-сокеты, когда они доступны, или такие технологии, как Flash Socket, AJAX Long Polling, AJAX Multipart Stream, когда веб-сокеты недоступны. Легкой аналогией может служить сравнение Fetch API и Axios.
Разница между веб-сокетами и Socket.IO
Главными преимуществами Socket.IO является следующее:
Во-первых, веб-сокеты поддерживаются всеми современными браузерами. Поэтому вы редко нуждаетесь в поддержке других технологий, предоставляемой Socket.IO.
Если говорить о сетевом трафике, то веб-сокеты отправляют всего два запроса:
В npm существует пакет «websocket-vs-socket.io», который позволяет сравнить сетевой трафик этих технологий:
Сетевой трафик веб-сокетов:
Сетевой трафик Socket.IO:
Пишем код
Простой сервер на веб-сокетах
В нашей программе на Node.js мы создадим сервер, работающий на порту 3001. При каждом подключении клиента мы будем присваивать ему уникальный ID. При отправке сообщения клиентом мы будем уведомлять его об успехе: [ ]:
Отлично! Но что если мы хотим рассылать сообщение каждому подключенному клиенту? Веб-сокеты не поддерживают рассылку по умолчанию. Это можно реализовать следующим образом:
Легко и просто! Как видите, WebSocket.Server хранит записи о каждом подключенном клиенте, поэтому мы можем сделать итерацию и отправить сообщение каждому. Вы можете протестировать код на компьютере (MacOS) или в браузере (Chrome).
Простой сервер на Socket.IO
Это было не сложно. Может ли Socket.IO сделать это еще проще? Как нам написать такой же сервер на Socket.IO?
Код получился почти наполовину короче! Как видите, метод «broadcast» не отправляет уведомление отправителю, поэтому мы вынуждены делать это вручную.
Существует проблема: код нельзя протестировать на обычном клиенте веб-сокетов. Это связано с тем, что, как отмечалось ранее, Socket.IO использует не чистые веб-сокеты, а множество технологий для поддержки всех возможных клиентов. Так как же нам проверить его работоспособность?
Необходимо использовать специальный клиент. В приведенном примере мы загружаем его из CDN. Этот клиент позволяет нам провести быстрые (грязные) тесты в браузере.