Умножение — арифметическое действие, в котором участвуют два аргумента: множимый и множитель. Результат их умножения называется произведением.
Узнаем, какие бывают свойства умножения и как их применять.
Переместительное свойство умножения
От перестановки мест множителей произведение не меняется.
То есть, для любых чисел a и b верно равенство: a * b = b * a.
Это свойство можно применять к произведениям, в которых больше двух множителей.
Сочетательное свойство умножения
Произведение трех и более множителей не изменится, если какую-то группу множителей заменить их произведением.
То есть, для любых чисел a, b и c верно равенство: a * b * c = (a * b) * c = a * (b * c).
Сочетательное свойство можно использовать, чтобы упростить вычисления при умножении. Например: 25 * 15 * 4 = (25 * 4) * 15 = 100 * 15 = 1500.
Если не применять сочетательное свойство и вычислять последовательно, решение будет значительно сложнее: 25 * 15 * 4 = (25 * 15) * 4 = 375 * 4 = 1500.
Распределительное свойство умножения относительно сложения
Чтобы умножить сумму на число, нужно умножить на это число каждое слагаемое и сложить полученные результаты.
То есть, для любых чисел a, b и c верно равенство: (a + b) * c = a * c + b * c.
Это свойство работает с любым количеством слагаемых: (a + b + с + d) * k = a * k + b * k + c * k + d * k.
В обратную сторону распределительное свойство умножения относительно сложения звучит так:
Чтобы число умножить на сумму чисел, нужно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.
Распределительное свойство умножения относительно вычитания
Чтобы умножить разность на число, нужно умножить на это число сначала уменьшаемое, затем вычитаемое, и из первого произведения вычесть второе.
То есть, для любых чисел a, b и c верно равенство: (a − b) * c = a * c − b * c.
В обратную сторону распределительное свойство умножения относительно вычитания звучит так:
Чтобы число умножить на разность чисел, нужно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.
Свойство нуля при умножении
Если в произведении хотя бы один множитель равен нулю, то само произведение будет равно нулю.
То есть, для любых чисел a, b и c верно равенство: 0 * a * b * c = 0.
Свойство единицы при умножении
Если умножить любое целое число на единицу, то в результате получится это же число.
То есть, умножение на единицу не изменяет умножаемое число: a * 1 = a.
Свойства деления
Деление — арифметическое действие обратное умножению. В результате деления получается число (частное), которое при умножении на делитель дает делимое.
Основные свойства деления целых чисел
И еще одно важное свойство деления, которое проходят в 5 классе:
Если делимое и делитель умножить или разделить на одно и тоже натуральное число, то их частное не изменится.
В буквенной форме это свойство выглядит так: a : b = (a * k) : (b * k), где k — любое натуральное число.
Применим свойства деления на практике.
Пример 1
Мама купила 6 кг конфет и разложила их в три пакета. Сколько килограммов конфет в каждом пакете?
Так как в каждом пакете одинаковое количество конфет, разделим 6 кг на три равные части: 6 : 3 = 2. Значит в каждом пакете по 2 кг конфет.
Свойства умножения и деления помогают упрощать выражения. То есть, если запомнить эти свойства и научиться их применять, то решать задачки можно быстрее.
Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число
Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.
Слагаемые — это числа, единицы которых складываются.
Сумма — это число, которое получается в результате сложения.
Рассмотрим пример 2 + 5 = 7, в котором:
При этом саму запись (2 + 5) можно тоже назвать суммой.
Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.
Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.
Свойства вычитания
Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.
Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.
Уменьшаемое — это число, из которого вычитают.
Вычитаемое — это число, которое вычитают.
Разность — это число, которое получается в результате вычитания.
Примеры использования свойств сложения и вычитания
Мы узнали основные свойства сложения и вычитания — осталось попрактиковаться. Чтобы ничего не забыть, используйте эту шпаргалку:
Пример 1
Вычислить сумму слагаемых с использованием разных свойств:
а) 4 + 3 + 8 = (4 + 3) + 8 = 7 + 8 = 15
б) 9 + 11 + 2 = (9 + 2) + 11 = 11 + 11 = 22
в) 30 + 0 + 13 = 30 + 13 = 43
Пример 2
Применить разные свойства при вычислении разности:
Презентация по математике на тему «Свойства сложения и умножения. Переместительное и сочетательное свойства»
Описание презентации по отдельным слайдам:
Переместительное и сочетательное свойства Действие умножения также обладает переместительным и сочетательным свойствами. С помощью букв эти свойства записываются так: для любых чисел а, b и с a ∙ b = b ∙ a a ∙ (b ∙ с) = (a ∙ b) ∙ с
Вы узнаете Правила, устанавливающие порядок действий в вычислениях, используют вычислительные машины для вычисления числовых значений. Человек считает хуже машины, но зато умеет думать и облегчать свою работу. Такую возможность при вычислениях дают свойства сложения и умножения. Попробуй определить свою цель на уроке Как можно упрощать вычисления, используя свойства сложения и умножения
Переместительное и сочетательное свойства Вы, конечно, знаете, что сложение чисел обладает переместительным свойством: при перестановке слагаемых сумма не меняется. С помощью букв это свойство записывается так: для любых чисел а и b a + b = b + a Вам известно также, что сложение чисел обладает сочетательным свойством. Оно состоит в том, что в сумме трех чисел можно объединять в группу как первые два слагаемые, так и последние два – результат будет одним и тем же. С помощью букв это свойство записывается так: для любых чисел а, b и с (a + b) + c = a + (b + c)
Удобные вычисления Рассмотренные правила сложения и умножения чисел полезны тем, что позволяют преобразовывать суммы и произведения в выражения, удобные для вычислений. Пример №1. Вычислим сумму В этом выражении есть числа, при сложении которых получается «круглые» числа – это 44 и 56, а также 189 и 11. 44 + 189 + 56 + 92 + 11 Заметив это, легко сложить числа устно. Очевидно, что сумма равна 392. 100 200
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-1518206
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
В Якутии проведут первую в РФ федеральную олимпиаду по родным языкам
Время чтения: 1 минута
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
В России утверждены новые аккредитационные показатели для школ и колледжей
Время чтения: 2 минуты
В Ленобласти педагоги призеров и победителей олимпиады получат денежные поощрения
Время чтения: 1 минута
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
В России отцы охотнее дают деньги детям на карманные расходы, чем матери
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
В математике любое действие принято называть операцией. Согласно математическому определению под ней понимают представления соответствия одному или нескольких элементам аргумента иного элемента. Все операции разделяют на арифметические и гипероперации. К первым относят сложение и вычитание. Вторые же включают в себя:
При умножении участвуют два члена (аргумента). Один из них называют множителем, а другой сомножителем. Но вместе с тем в учебниках используют и другие названия — множимое и множитель. Результатом умножения является не что иное, как произведение. Так как перемножение по своей сути является коммутативной операцией, то есть характеризуется свойством переместительности, порядок записи членов не оказывает влияния на результат.
Наряду с таблицей существуют и законы умножения. В 5 классе среднеобразовательной школы учащиеся проходят эти свойства, закладывая фундамент для освоения быстрого счёта. По своей сути произведение является результатом сложения одного из чисел столько раз, сколько указывает второе. Например, пусть имеется девять рядов. В каждом из них лежит пятнадцать яблок. Чтобы вычислить, сколько же всего фруктов необходимо, нужно сложить число пятнадцать само с собой девять раз. В ответе и получится искомое количество.
Эта неудобная операция сложения заменяется умножением. Другими словами, нужно просто число рядов умножить на количество яблок в каждом из них: k = 15 * 9 = 135 штук. При этом, согласно свойству умножения, порядок перемножения не имеет значения, так k = 9 * 15 = 135 штук.
Под умножением двух натуральных чисел понимают действие, результат которого равен сумме одинаковых слагаемых, определяемой первым из умножаемых чисел. При этом второе из этих чисел указывает количество слагаемых. В этом и заключена суть умножения двух натуральных чисел. Можно сформулировать простое определение действию: под произведением понимают результат, полученный суммированием слагаемого, при этом одно из перемножаемых чисел указывает на количество слагаемых.
Свойства произведения
Изучение математиками процесса умножения позволило им обнаружить ряд закономерностей, характерных для этого действия. Их назвали свойствами умножения. Наиболее часто при решении задач, при котором используется нахождение произведения, используют шесть законов умножения:
Сочетательный и переместительный законы были получены путём изучения результатов действия сложения. Они довольно похожи между собой. При сложении используется два правила: от перемены мест слагаемых результат остаётся неизменным, и при сложении нескольких членов можно сложить только два из них, а после полученную сумму прибавить к оставшимся. Именно на этих свойствах и построены два закона умножения. Сочетательное свойство сложения и умножения вместе с переместительным законом используют для существенного ускорения расчётов.
Например, пусть необходимо вычислить выражение: 15 * 3 * 4 * 5 + 1 * 2 * 3 * 4 * 5 * 6. Пример состоит из двух слагаемых. Первое, используя сочетательный закон, можно упростить. То есть не выполнять перемножение последовательно, что трудно сделать в уме, а вначале умножить первый и второй член, а затем третий с четвёртым, а уже после полученные произведения перемножить между собой: (15 * 3) * (4 * 5) = 45 * 20 = 900. Второе же слагаемое проще вычислить последовательно. В итоге получится: 900 + 720 = 1620.
Формулировка и объяснение
Сочетательный закон, а его часто называют ассоциативным, гласит, что при умножении любого количества множителей результат не поменяется, если группу этих множителей подменить произведением. Математической формулой это утверждение можно записать в виде: a * b * c = (a * b) * c = a * (b * c).
Для понимания этого действия нужно представить прямоугольник со сторонами три и пять сантиметров, нарисованный на тетрадном листе в клетку. Фигуру можно разбить на одинаковые единичные (сантиметровые) квадраты, а после подсчитать их количество. Сделать это можно несколькими способами.
Например, зная, что общее количество квадратов будет равняться произведению пяти на три, а каждый квадрат образуется четырьмя клетками, общее число будет равняться n = (5 * 3) *4 = 60 штук. Другой способ можно построить на том, что в каждом столбце находится три квадрата. Отсюда следует, что столбец содержит 3 * 4 клетки. Общее число клеток будет равняться: 5 * (3 * 4) = 60 штук.
Получается, что два способа равноправны, то есть (5 * 3) * 4 = 5 * (3 * 4). Таким образом, если заменить члены буквенным обозначением, то получится сочетательное свойство умножения. Отсюда следует ещё одно правило. Оно позволяет не только менять местами множители, но и вносить их под знак скобки, тем самым определяя порядок решения.
Распределительное свойство удобно применять и относительно сложения и вычитания. Пусть имеется отрезок разделяющий прямоугольник. Количество единичных квадратов, с одной стороны, будет равняться произведению трёх умноженному на три, а с другой — трёх на два. В итоге получится: 3 * 3 + 3 * 2 = 15 штук. Иначе можно утверждать, что в каждой строчке фигуры размещены 3 + 2 квадрата. Исходя из этого, верно будет записать: 3 * (3 + 2) = 15 штук. Равенство 3 * 3 + 3 * 2 = 3 * (3+ 2) и есть распределительное свойство, довольно плотно использующееся с сочетательным законом.
Например, нужно найти результат действия 25 *1349 * 4. Используя переместительное и сочетательное свойство, удобно выполнить перестановку членов, благодаря чему можно найти ответ. Так, удобно объединить члены выражения следующим образом: 25 * 1349 * 4 = 1349* (25 * 4) = 1349 * 100 = 134900. Аналогичным образом можно поступить и при присутствии в задании знака сложения или вычитания. Например, 311 * 734 + 329 * 266 = 311 * (734 + 266) = 311 * 1000 = 311 000.
Решение примеров
Необходимо не только понять сочетательный закон, но и уметь применять его в практических заданиях. Тем более что решение примеров позволит закрепить теоретический материал и довести действия до автоматизма. Получив опыт группирования членов, можно будет, затрачивая минимальные усилия, перемножить любой сложности выражения. При этом некоторые действия даже выполнить в уме.
Существует несколько условий применения сочетательного свойства: в задании не может быть менее трёх числовых значений; выражение должно содержать только все знаки сложения или умножения. Например, для следующих выражений: 6 * 55 — 3, 6 * 34, 4 * 9 *12, 34:5 * 8, 4 *9 *234, закон применим только ко второму и последнему.
Вот ряд примеров, предназначенных для самостоятельного решения:
Следует отметить, что для освоения сочетательного свойства обычно хватает самостоятельно решить около двадцати различных примеров. При этом для проверки результата можно использовать обычный калькулятор или даже онлайн-калькуляторы.
От перестановки сомножителей местами произведение не меняется.
Следовательно, для любых чисел a и b верно равенство:
выражающее переместительное свойство умножения.
4 · 2 · 3 = 3 · 2 · 4 = 24.
Обратите внимание, что данное свойство можно применять и к произведениям, в которых более двух множителей.
Сочетательное свойство умножения
Результат умножения трёх и более множителей не изменится, если какую-либо группу множителей заменить их произведением.
Следовательно, для любых чисел a, b и c верно равенство:
выражающее сочетательное свойство умножения.
3 · 2 · 5 = 3 · (2 · 5) = 3 · 10 = 30
3 · 2 · 5 = (3 · 2) · 5 = 6 · 5 = 30.
Сочетательное свойство используется для удобства и упрощения вычислений при умножении. Например:
25 · 15 · 4 = (25 · 4) · 15 = 100 · 15 = 1500.
В данном случае можно было вычислить всё последовательно:
25 · 15 · 4 = (25 · 15) · 4 = 375 · 4 = 1500,
но проще и легче сначала умножить 25 на 4 и получить 100, а уже потом умножить 100 на 15.
Распределительное свойство умножения
Сначала рассмотрим распределительное свойство умножения относительно сложения:
Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.
Следовательно, для любых чисел a, b и m верно равенство:
выражающее распределительное свойство умножения.
Так как в данном случае число и сумма являются множителями, то, поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:
Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на это число и полученные произведения сложить.
Следовательно, для любых чисел a, b и m верно равенство:
Теперь рассмотрим распределительное свойство умножения относительно вычитания:
Чтобы число умножить на разность чисел, можно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.
Следовательно, для любых чисел a, b и m верно равенство:
Так как в данном случае число и разность являются множителями, то поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:
Чтобы разность чисел умножить на число, можно уменьшаемое и вычитаемое отдельно умножить на это число и из первого полученного произведения вычесть второе.
Следовательно, для любых чисел a, b и m верно равенство: