что такое сквозные образовательные технологии

Цифровое поколение: какие технологии внедряются в школах

что такое сквозные образовательные технологии. Смотреть фото что такое сквозные образовательные технологии. Смотреть картинку что такое сквозные образовательные технологии. Картинка про что такое сквозные образовательные технологии. Фото что такое сквозные образовательные технологии

По оценке объединения компаний-разработчиков программного обеспечения «Руссофт», дефицит специалистов в сфере цифровых технологий составляет порядка 1 млн человек в год. Задачу программы «Цифровая экономика РФ» по переходу к новому технологическому укладу позволит решить подготовка кадров для высокотехнологичных производств.

К 2021 году доля населения, обладающего цифровыми навыками, должна составить не менее 40%, говорится в плане направления «Кадры и образование» программы «Цифровая экономика РФ». К 2024 году для увеличения доли цифровой экономики в ВВП с 2 до 6% потребуется 6,5 млн человек, отмечают в АНО «Цифровая экономика». Подготовкой кадров предстоит заниматься всей системе образования, начиная буквально с начальной и средней школы.

Потенциал страны оценивается как достаточно высокий: по данным доклада Global Human Capital — 2017 Всемирного экономического форума (ВЭФ), Россия входит в первую двадцатку стран по уровню развития человеческого капитала и занимает четвертое место по потенциалу этого ресурса благодаря высокому уровню начального, среднего и высшего образования.

«Однако действующая система образования и подготовки кадров в подындексе «Ноу-хау» таких результатов не показывает. Это указывает на необходимость дополнительных усилий в будущем для развития рабочей силы и подготовки населения страны к четвертой промышленной революции», — говорится в докладе ВЭФ.

Новая школьная среда

Цифровизация школы — одно из ключевых направлений нацпроекта «Образование», принятого правительством РФ в начале сентября. К 2025 году все школы страны должны быть подключены к высокоскоростному интернету со скоростью передачи данных не менее 100 Мбит/с. Нацпроект в целом предусматривает выравнивание образовательных возможностей для детей, создание условий для непрерывного образования взрослых и обеспечение равного доступа к качественному образованию.

Цифровая среда уже начала формироваться в российских школах. С сентября прошлого года в столице работает облачная платформа МЭШ («Московская электронная школа»). Столичные школы используют электронные доски, ноутбуки и скоростной интернет. Образовательная модернизация привнесла мультимедийные сценарии уроков, обучающие видео— и аудиоматериалы, 3D-программы, виртуальные музеи, библиотеки и лаборатории. К 2020 году планируется полностью отказаться от бумажных учебников по 11 школьным предметам, заменив их мобильными устройствами — индивидуальными планшетами. На них можно просматривать учебные материалы, видеоуроки, а также посещать видеоэкскурсии, пользоваться электронными библиотеками и вести электронные дневники. Со временем этот опыт планируется транслировать на другие регионы и внедрить Российскую электронную школы (РЭШ). Об этом ранее заявляла министр просвещения РФ Ольга Васильева.

Цифровая школа подразумевает свободный доступ к электронному образовательному контенту и широкие возможности индивидуализации учебного процесса с учетом способностей каждого ученика. Объемы электронного контента увеличиваются — оцифровываются учебники, разрабатываются онлайн-курсы. Требования использовать электронные ресурсы при обучении были прописаны в федеральных государственных образовательных стандартах с сентября 2015 года — все школьные учебники сегодня должны иметь электронные версии.

Электронный образовательный контент дает больше возможностей получать знания самостоятельно, ориентироваться в больших объемах информации — это то качество, которое необходимо для работодателей в цифровой экономике.

Роль учителя трансформируется из транслятора знаний в функцию наставника, направляющего ученика по максимально индивидуализированной траектории обучения.

Вместо прежнего принципа учителя «Я все знаю — делай как я» предлагается новая парадигма: «Я помогу тебе сделать самому», — говорит основатель международной школы «One!» Максим Натапов: «Компьютеризация нивелирует ценность доступа к знаниям, которую ранее, будучи основной точкой доступа к ним, обеспечивала система образования».

По словам директора Центра изучения школьных практик

и образовательных программ 21 века Института образования НИУ ВШЭ Елены Чернобай, учитель становится организатором совместного обучения и эффективного использования технологий в обучении.

Готовность к будущему

При этом электронные образовательные ресурсы должны быть не просто копией офлайн-учебников. Принципиально новым элементом становится интерактивная составляющая — так, чтобы можно было делать примечания и закладки.

«Умные» мультимедийные гаджеты призваны дать современным школьникам новое качество образования. Цифровой класс будущего поколения оснащается смартфонами, виртуальными очками, специальным ПО и образовательным VR-контентом. Это позволяет ученикам выполнять виртуальные лабораторные работы, проводить опыты в безопасной среде, в том числе те, которые не осуществимы в обычном классе, — например, замеры радиоактивного излучения, изучение изменений электрического тока в разных условиях или принципов работы двигателя «изнутри» и пр.

Интерактивные классные доски позволяют по-новому выстраивать уроки. Например, материал можно подавать в виде схем, графиков, трехмерных моделей и разнообразно организованных текстов. А учитель и ученики с помощью подключенных к сети сенсорных экранов могут постоянно взаимодействовать друг с другом. Это повышает в том числе и креативность учебного процесса. А цифровая копия урока будет доступна тем, кто его пропустил или хочет повторить дома. Сенсорная поверхность подключенных парт позволяет использовать их и как экран, и как клавиатуру. Формируется индивидуальное рабочее пространство ученика как площадка для совместной работы, решения коллективных задач.

На начало 2018 года, по оценке компании «ЯКласс», только 12% учителей страны пользовались электронными учебниками и другими цифровыми инструментами в учебном процессе.

По данным последнего опроса компании «Дневник.ру», в котором участвовали 16 тыс. учителей, учеников и родителей из 74 российских регионов, 36% школ страны полностью перешли на безбумажный формат ведения журналов и дневников. Миграцию в онлайн сдерживает недостаточное материально-техническое оснащение, об этом заявило 44% респондентов. Сохраняется проблема слабых ИТ-компетенций довольно большого числа педагогов, отмечает руководитель методического сопровождения инвестиционных проектов «Дневник.ру» Ксения Колесова.

Сетевой диплом

По оценке Российской ассоциации электронных коммуникаций (РАЭК), уровень проникновения онлайн-технологий в российском образовании в целом составляет лишь 1,1%. Глобально на долю е-learning приходится около 3% всего объема рынка образовательных услуг, по оценкам образовательного ресурса EduMarket. В российских вузах e-learning сегодня охватывает около 4% учащихся. По оценкам Tadviser, к 2021 году эта доля вырастет до 9%.

В новой парадигме обучения на протяжении всей жизни (lifelong learning) роль дистанционного направления усиливается. В России развивается и совершенствуется нормативно-правовая база, регулирующая электронное образование, онлайн-обучение получает дополнительное финансирование — в частности, в рамках приоритетного проекта «Современная цифровая образовательная среда». В его рамках до 2020 года планируется выделить российским вузам на онлайн-обучение и связанные с ним нужды гранты в размере 1 млрд руб. Деньги можно получить на создание ПО, технологической инфраструктуры, сервисов и интеграционных решений для развития онлайн-обучения. К 2025 году в России должно быть создано 3500 онлайн-курсов, 10 тыс. преподавателей должны научиться передавать свои знания онлайн.

Источник

Программа «Сквозные технологии в образовательной среде. Школьная ЦОС-сфера»

Основная идея Программы – раскрытие интеллектуально-творческого и инженерно-технического потенциала учащихся посредством внедрения в школе программы «Школьная ЦОС-сфера», формирование креативного мышления и нестандартного подхода к поиску путей решения поставленных целей и задач.

Просмотр содержимого документа
«Программа «Сквозные технологии в образовательной среде. Школьная ЦОС-сфера»»

Хоменко Ольга Владимировна, МБОУ «Масловопристанская СОШ Шебекмнского района Белгородской области»

Программа «Сквозные технологии в образовательной среде.

Согласно Концепции развития цифрового образования в системе общего образования Российской Федерации эффективное использование новых цифровых технологий будет определять международную конкурентоспособность не только отдельных компаний, но и целых стран, формирующих цифровую инфраструктуру и цифровое право.

Современной школьной среде необходимо быть динамично преобразующейся, современно трансформирующейся, отвечающей на запросы общества, так и участников образовательного процесса.

Необходима модернизация структуры образовательного процесса с учетом требований цифровой экономики: изменение модели компетенций, пересмотр программ обучения с учетом возрастающих требований к наличию и получению цифровых навыков.

Основная идея Программы – раскрытие интеллектуально-творческого и инженерно-технического потенциала учащихся посредством внедрения в школе программы «Школьная ЦОС-сфера», формирование креативного мышления и нестандартного подхода к поиску путей решения поставленных целей и задач.

В условиях развития цифровой экономики, на первое место вышли «сквозные» технологии, включающие в себя развитие искусственного интеллекта, AR и VR, промышленное и спортивное программирование, робототехнику, аддитивные технологии (3D-моделирование, проектирование и конструирование).

В связи с появлением новых профессий, новых ресурсов и новых технологий уходить только в одно направление «сквозных технологий считаем нецелесообразным. Поэтому было принято решение о создании в рамках программы 4 кластеров: «VR/AR», «ИТ-индустрия», «Аддитивные технологии», «Робототехника».

«VR/AR» ― Технологии виртуальной реальности ― технологии компьютерного моделирования трехмерного изображения или пространства, посредством которых человек взаимодействует с синтетической («виртуальной») средой с последующей сенсорной обратной связью. Технологии дополненной реальности ― технологии визуализации, основанные на добавлении информации или визуальных эффектов в физический мир посредством наложения графического и/или звукового контента для улучшения пользовательского опыта и интерактивных возможностей.

ИТ-индустрия – основы программирования, в том числе создание нейросетей.

Аддитивные технологии – технологии послойного создания трехмерных объектов на основе их цифровых моделей («двойников»), позволяющие изготавливать изделия сложных геометрических форм и профилей.

Робототехника – создание и программирование роботов, построенных на основе сенсоров и искусственного интеллекта, способных воспринимать окружающую среду, контролировать действия и адаптироваться к ее изменениям.

Все кластеры так или иначе перекликаются между собой. Все они позволяют сформировать представление школьников о мире инженерных профессий, научить не только практическим навыкам, но и презентации своей работы в рамках стартапа (занятия по ТРИЗ, представлению данных, изучение прикладных программ).

Цель Программы: создание условий для внедрения современной и безопасной цифровой образовательной среды «Школьная ЦОС-сфера», обеспечивающей формирование навыков работы, с использованием «сквозных» технологий.

Основные задачи Программы:

— раскрыть интеллектуально-творческий и инженерно-технический потенциал учащихся посредством внедрения в школе программы «Школьная ЦОС-сфера»;

— формировать 4K-компетенции, необходимые для инженерно-технического и творческого потенциала (критическое мышление, креативное мышление, коммуникация, кооперация);

— способствовать развитию памяти, внимания, технического и алгоритмического мышления, изобретательности, практического применения полученных знаний и их публичного представления;

— воспитывать чувство патриотизма, гражданственности, гордости за достижения отечественной ИТ-отрасли;

— развить и усовершенствовать методику обучения детей в области «сквозных» технологий, в том числе и с использованием облачных технологий;

— повысить квалификацию учителей общеобразовательных школ и педагогов дополнительного образования в области «сквозных» технологий, с применением онлайн-интенсивов;

— обеспечить функционирование и развитие аппаратно-программной и телекоммуникационной инфраструктуры, использование автоматизированных информационных систем;

— организовать методическое, научно-методическое сопровождение профессионального развития педагогических кадров в реализации потенциала цифровой образовательной среды в образовательном процессе;

— разработать концепцию взаимодействия с родителями (законными представителями) в условиях цифровой образовательной среды.

Требования к результатам

— креативное мышление в достижении поставленной цели;

-развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;

-развитие самостоятельности суждений, независимости и нестандартности мышления;

-формирование коммуникативной компетентности в сотрудничестве.

-умение ставить цель (создание творческой работы), планировать достижение этой цели посредством алгоритмической последовательности шагов;

-умение вносить коррективы и исправления в последовательность действий, в случае расхождения результата решения задачи на основе её оценки и учёта характера сделанных ошибок;

-умение осуществлять поиск информации и умение использовать средства ИКТ для решения творческих и инженерных задач;

-умение ориентироваться в разнообразии способов решения задач;

-умение устанавливать аналогии, причинно-следственные связи;

-умение моделировать, преобразовывать объект из чувственной формы в модель, где выделены существенные характеристики объекта (пространственно-графическая или знаково-символическая);

-иметь представление о ключевых особенностях технологий и принципов работы виртуальной и дополненной реальности;

-владеть перечнем современных устройств, используемых для работы с технологиями, и их предназначением;

-овладеть основным функционалом программ для трёхмерного моделирования и программных сред для разработки приложений с виртуальной и дополненной реальностью;

-уметь настраивать и запускать шлем виртуальной реальности, устанавливать и тестировать приложения виртуальной реальности, выполнять примитивные операции в программах для трёхмерного моделирования и в программных средах для разработки приложений с виртуальной и дополненной реальностью;

-уметь разрабатывать все необходимые графические и видеоматериалы для презентации проекта, представлять свой проект;

-владеть основной терминологией в области технологий виртуальной и дополненной реальности и базовыми знаниями и навыками разработки приложений с виртуальной и дополненной реальностью.

Основные понятия компьютерной графики. Двухмерное и трёхмерное пространство проекта-сцены, ортогональные проекции (виды). Типы трёхмерных моделей. Составные модели. Плоские и криволинейные поверхности. Сплайны и полигоны. Изучение интерфейса программы и ее возможностей. Фигуры стереометрии. Объёмное моделирование.

Основные понятия робототехники. Основы алгоритмизации и программирования, применяемые в робототехнике. Сборные детали и механизмы. Программируемые датчики. Схемы для сборки и программирования роботов. Основные принципы работы нейронных сетей. Принципы обучения нейронов и нейронных сетей. Широко используемые языки программирования. Основные стратегии, применяемые при создании интеллектуальных информационных систем.

Двухмерное рабочее поле. Цветовое кодирование осей. Камеры, навигация в сцене, ортогональные проекции (виды). Три типа трёхмерных моделей. Составные модели. Плоские и криволинейные поверхности. Сплайны и полигоны. Изучение интерфейса программы и ее возможностей. Построение плоских фигур в координатных плоскостях их стандартные виды и проекции. Фигуры стереометрии. Объёмное моделирование.

-настраивать и запускать 3D принтер;

-выполнять примитивные действия в программах для трёхмерного моделирования и в программных средах для разработки приложений с виртуальной и дополненной реальностью;

-разрабатывать все необходимые графические и видеоматериалы для презентации проекта, представлять свой проект;

-владеть основной терминологией в области аддитивных технологий, базовыми знаниями и навыками разработки и печати 3 d моделей;

-работать со схемами и чертежами;

— применять принципы автономного программирования;

— подключать и задействовать датчики и двигатели;

-разбираться в схемах, чертежах и электронной начинке роботов;

-пользоваться нейросетевыми технологиями;

-применять нейросетевые технологии для решения практических проблем;

-креативно и творчески мыслить.

Покластеровая разбивка программы

Освоение VR и AR технологий – это новый мощный образовательный инструмент, который может помочь школьнику в генерировании с помощью компьютера трехмерной среды, с, которой пользователь может взаимодействовать, полностью или частично в неё погружаясь. Эти технологии позволяют развивать креативное мышление, показывать интеграцию различных дисциплин, что открывает широкие возможности для проектного обучения и самостоятельной творческой работы.

Цель кластера: формирование уникальных H/S-компетенций по работе с VR/AR технологиями.

-разобрать базовые понятия сферы разработки приложений виртуальной и дополненной реальности: ключевые особенности технологий и их различия;

-сформировать навыки выполнения технологической цепочки разработки приложений для мобильных устройств и/или персональных компьютеров с использованием специальных программных сред;

-сформировать необходимые навыки работы в программах для разработки приложений с виртуальной и дополненной реальностью.

Вводное занятие. Техника безопасности при работе в компьютерном

классе. Общий обзор курса. Правила работы с оборудованием.

Работа с АРМ учащегося. Начало и завершение работы, интерфейс,

запуск программ, установка программ на смартфон.

Приложение Google Expeditions.

Приложение MEL Chemistry VR.

Приложение Tilt Brush.

Узнать о строении организма в InMind

Узнать о строении организма в InCell

ПриложениеTitans of Space VR

Основы программирования. Среда программирования Unity

Второй кластер Аддитивные технологии

В рамках данного курса обучающиеся исследуют существующие модели устройств виртуальной реальности, выявляют их ключевые параметры и характеристики, знакомятся с моделированием и визуализацией и выполняют проектную задачу — конструируют собственное VR-устройство.

Цель кластера: формирование инженерно-технических и творческих компетенций в направлении 3 D моделирование и прототипирование.

-сформировать компетенции учащихся в работе с аддитивными технологиями, интеллектуальные и практические компетенций в области создания пространственных моделей;

-сформировать навыки выполнения алгоритма трёхмерного моделирования, ориентации в трёхмерной сцене.

Знакомство. Техника безопасности. Вводное занятие («Создавай миры»)

Введение в технологии виртуальной и дополненной реальности.

Знакомство с AR/VR-технологиями.

Тестирование устройств, обзор и установка приложений, системный анализ принципов работы шлема виртуальной реальности.

Выбор материала и конструкции для собственной гарнитуры, подготовка к сборке устройства. Дизайн и сборка собственной гарнитуры.

Освоение навыков работы в ПО 3D-моделирование и визуализация разрабатываемого устройства. Представление своей работы.

Учащиеся выполняют задания по освоению технологий визуализации и для проекта распечатывают 3D-модели на 3D-принтере. Параллельно учениками выполняется проектная работа, связанная с тем или иным методом визуализации.

Третий кластер Робототехника

Цель кластера: формирование интереса к техническим видам творчества, развитие конструктивного и инженерно-проектного мышления средствами робототехники.

-развивать навыки конструирования и программирования робототехнических комплексов;

-формировать умение работать не только по предложенным инструкциям, но и творчески подходить к решению задач;

-обогащать информационный запас обучающихся научными понятиями и законами.

Введение в робототехнику. Знакомимся с набором конструирования роботов.

Разбор понятий процессор, сервопривод, экранный интерфейс и другие.

Определение различных видов датчиков: освещённости, движения и т.д.

Знакомство с программным обеспечением, для программирования робота на выполнение команд. Основы программирования роботов.

Сбор и конструирование усложнённых моделей роботов, программирование их на движение по разным траекториям.

Удаленное управление роботом (вариант без доступа человека).

Разработка и программирование собственной модели робота. Защита проекта.

Четвертый кластер ИТ-индустрия

Цель кластера: знакомство с историей искусственного интеллекта, с основными стратегиями, применяемыми при создании интеллектуальных информационных систем.

-научить пользоваться нейросетевыми технологиями и применять их для решения практических проблем;

-развивать навыки программирования, используя наиболее популярные языки программирования;

-формировать умение творчески подходить к решению задач, связанных с созданием ИИ;

-обогащать информационный запас обучающихся научными понятиями и законами.

Определения искусственного интеллекта, машинного обучения, истории разработок, отличающие современный искусственный интеллект от предыдущих версий.

Изучение математической модели нейрона.

Исследование модели нейронной сети.

Обучение нейронных сетей

Основы управляемого обучения и обзор концепций углубленного изучения

Использование аппаратного и программного обеспечения Intel® для решения проблем искусственного интеллекта

Самостоятельная разработка собственного проекта по созданию и обучению нейронных сетей.

Источник

5 образовательных технологий, которые изменят мир в ближайшие пять лет

Пройдет совсем немного времени, и все то, что для нас в образовании было привычным (лекции, тетрадки, грифельные доски), станет примитивным прошлым. Редактор интернет-журнала о будущем образования Edutainme Наталья Чеботарь рассказала «Снобу» о том, какие образовательные технологии вскоре до неузнаваемости изменят процесс обучения

Поделиться:

1. Одной из самых революционных современных образовательных технологий являются массовые открытые онлайн-курсы (massive open online course — MOOC), которые начались в Стэнфорде с Udacity и Coursera (в 2012-м) и с инициативы MIT edX.

Открытые онлайн-курсы делают качественное образование настолько доступным, что раньше это и представить было невозможно — я, например, выросла в Кишиневе и не могла даже мечтать о том, чтобы, не выходя из дома, слушать лекции преподавателей мирового уровня и получать за эти курсы дипломы.

Сначала университеты начали выкладывать свои лекции, в частности, MIT много лет делал свою библиотеку лекций, потом к ним стали добавлять другие функции. К тому, чтобы сделать открытый бесплатный курс с проверочными заданиями, которые позволят сказать, что человек его успешно прошел, образовательные технологии пришли два года назад.

2. Следующая технология — так называемые большие данные.

Когда вы задаете в интернете параметры поиска, весь мир, который есть в онлайне, настраивается на ваши параметры. В образовании этого пока нет. В компьютерных и сетевых образовательных методиках можно собрать и проанализировать данные, например, о миллионе кликов и видеть, с чем именно у человека возникают проблемы, где он не понимает; можно сравнивать его с другими учащимися; можно давать рекомендации по тому, каким образом ему продвигать обучение, можно выстраивать персональные траектории.

Большие данные сами по себе позволяют сделать очень много интересных выводов, и благодаря им педагогика превращается в точную науку, которой она раньше не была. Если раньше мы получали информацию, опросив тысячу человек, или проводили эксперимент в ста школах, или оценивали эффективность обучения несколько раз в году, то сейчас можно померить все что угодно на бесконечном количестве учеников и увидеть, что работает, а что нет, какие методики и педагогические приемы дают результат, а что является непроецируемым и немасштабируемым эффектом харизматичности и личных свойств преподавателя. Большие данные дают возможность сделать процесс обучения более точным. Кроме того, они делают возможным существование следующей технологии — адаптивного обучения.

3. Адаптивное обучение — это когда ученик получает на основании больших данных рекомендации по содержанию, процессу, методикам и темпу обучения, когда для него выстраивается образовательная траектория. Все коммерческие онлайн-сервисы (например, сайт по продаже билетов) бесконечно адаптируются под вас, потому что они таким образом зарабатывают деньги. То же самое теперь можно делать и в образовании. Самый известный в этой области стартап Knewton берет любой контент (видео, игру, лекцию) и использует огромное количество разных метрик к этому контенту, чтобы понять, как человек с ним взаимодействует. Как на сайтах есть google analytics, так и адаптивное обучение — это такой аналитик для образования. При этом он не только собирает данные, но и перерабатывает их и рекомендует студенту тот контент, который будет для него наиболее эффективным.

4. Обучайся, играя: еще одна мощная новая образовательная технология — геймификация. Все знают, что обучение через игру — лучшее, что можно придумать, так учатся дети, все это давно доказано исследованиями. Смысл геймификации — вычленить из игры игровые механики, структуру и каркас и применить их в неигровом контексте: например, превратить в игру мытье посуды. В России о ней стали говорить после взлета Foursquare, который геймифицировал свое приложение, и все стали пытаться геймифицировать всё подряд.

5. Другая методика, которая сейчас набирает обороты, — смешанное (гибридное) обучение, blended learning. Его смысл в том, чтобы сочетать обучение за компьютером и общение с живым учителем. Благодаря тому, что можно индивидуально собирать курс из частей разных курсов, геймифицировать, адаптировать, собирать данные и давать обратную связь, в смешанном обучении есть возможность выстроить по-настоящему индивидуальную образовательную траекторию и дать ребенку управление своим обучением.

Выглядит это так: ребенок приходит в школу, получает плей-лист, в котором написано: сейчас ты будешь делать то-то, потом пойдешь туда, потом сюда. В школе нет уроков, нет классов. Каждый ученик идет по своей программе. Плей-лист может быть напечатан на бумажке, может быть в приложении в телефоне, может показываться на экране при входе. Далее ребенок идет заниматься на компьютере. Если ему нужна помощь, он занимается с учителем, а учитель благодаря программе уже знает, что именно недопонял ученик. Расписание становится тоже очень подвижным и электронным, каждый день оно меняется, и учитель тоже каждый день получает плей-лист, где говорится: сегодня этому надо помочь с этим, потом собрать вот этих трех и сделать с ними то-то. Ребенок сам управляет своей программой обучения, но не может перейти на следующий уровень, пока не освоит предыдущий блок на отлично. Таким образом полностью ломается классно-урочная система, потому что не остается ни традиционных классов, ни уроков.

Что дадут новые образовательные технологии традиционной школе в ближайшие пять лет:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *