что такое сильное поле
Силовые поля. Возможны ли они в реальности?
Силовые поля — обычное явление в мирах научной фантастики. И, как правило, их природа остается без какого-либо объяснения. Большинство произведений такого рода обычно не раскрывает природу подобных технологий…
Что такое силовые поля?
Идея достаточно проста: силовое поле — это тонкий барьер из энергии или частиц, который способен блокировать проникновение через него твердой материи. Обычно это какие-нибудь ракеты, пули, мечи, комары или даже радиация. Силовые поля в основном используются как защитные системы. В случае опасности они появляются над защищаемыми городами, препятствую проникновению в них опасных лазеров или снарядов тяжелой артиллерии.
Однако на самом деле их можно использовать и по другому. Представьте себе совершенно новые фантастические пейзажи, созданные с помощью этой технологии. Силовые поля могли бы применяться не только в войнах и космических путешествиях. Из них можно было бы строить целые города.
Физик Митио Каку в своей книге «Физика невозможного» пишет, что силовые поля когда-нибудь заменят обычные строительные материалы, такие как кирпич и сталь. Использование подобных технологий позволит гораздо дешевле и быстрее строить дороги, мосты и города. И строить их в самых сложных местах. Поскольку силовые поля могут действовать как барьер от внешнего мира, можно было бы строить дома в местах, столь же безжалостных как, например, океанские глубины.
Представьте себе футуристический город, окруженный любопытными морскими обитателями, ошалело наблюдающими за тем, как живут в огромном подводном пузыре люди😉.
Все не просто
Без всякого преувеличения можно сказать, что изобретение подобной технологии произведет настоящую революцию.
Однако на самом деле здесь все не так просто.
Плазма как щит от пришельцев
Хорошо, какие же есть еще варианты? Давайте обратимся к состояниям материи. Наиболее известные из них это твердое, жидкое и газообразное. Однако, как бы это странно не звучало, это не самые распространенные состояния материи во Вселенной. Плазма является еще одним состоянием материи. И именно она наиболее распространена в космосе. Более 99% вещества во Вселенной — это плазма. В этом состоянии электроны не связаны с атомами. А это означает, что плазменный газ может проводить электричество. И подвергаться влиянию магнитных полей. Эти магнитные поля, в теории, могут превратить плазму в тонкие защитные сферы из научно-фантастических романов. Если мы создадим плазму, нагревая такой газ, как аргон, она будет светиться фантастическим электрическим синим цветом…
Да. Для создания силовых полей нужно использовать плазму. Нагретая до высокой температуры она легко испарит предметы, с которыми соприкасается. И не только. У ученых есть доказательства того, что плазма также может останавливать и излучение. Именно она защищает Землю в ионосфере атмосферы нашей планеты.
Создание реального силового поля будет зависеть от достижений в различных областях науки. Нам нужны новые технологии, в том числе в области фотохроматики, которая будет фильтровать высокоэнергетическое излучение. Фотохроматика позволит силовому полю блокировать входящие лазерные лучи с вражеской стороны. Ну на тот случай, если враждебные пришельцы прилетят захватывать Землю.
Нужно подождать
Когда же у человечества появится столь продвинутая и, несомненно, очень ценная технология? По разным оценкам — не раньше, чем через несколько десятилетий. Как раз такое время нам понадобится, что бы начать всерьез осваивать ближайшие к нам миры Солнечной системы.
Силовые поля станут основной технологией будущих преобразований и научного прогресса. Они раздвинут границы нашей науки. Ведь это намного больше, чем просто купол, под которым можно спрятаться во время нападения. Подобные знания дадут нам материал, из которого можно будет простроить сказочную жизнь в пустыне. Или даже в Воркуте.
Основная ценность силовых полей состоит в том, что они смогут защитить нас от разрушительной войны. И позволят осваивать даже самые экстремальные уголки космоса…
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Сила известных физических взаимодействий
В этой статье я хочу обсудить основные свойства известных нам взаимодействий – четырёх наблюдаемых и пятого – нового – о чьём существовании мы делаем вывод из открытия частицы Хиггса.
Конкретно я хочу обсудить, что имеют в виду специалисты по физике частиц, описывая взаимодействия, как слабые или сильные. Такую терминологию вы можете встречать часто, но если её никто вам не объяснял, невозможно догадаться, что она означает. Так что вот вам объяснение – хоть и длинное, но, надеюсь, оно откроет вам глаза на то, как работает природа, а также поднимет много новых вопросов, на которые я надеюсь ответить позже.
«Слабые» против «сильных»
Что означают эти термины? В обычной жизни мы представляли бы, что сильное взаимодействие может поднять нас в воздух, а со слабым мы можем справиться, немного напрягши мускулы. Но специалисты по физике частиц имеют в виду вовсе не это.
Говоря о сильных и слабых, физики не имеют в виду абсолютную силу или слабость взаимодействия. Речь не идёт о том, сможет ли взаимодействие разбить окно или удержать золотой слиток. В этом контексте термины «сильный» и «слабый» не совсем абсолютные, в том смысле, в котором мы используем их в повседневной жизни или даже в начальных классах по физике. Эта терминология появилась благодаря глубокому пониманию квантовой теории поля, современного математического языка, используемого для описания известных элементарных частиц и сил. Но он фундаментален для современного обсуждения этих проблем физиками. Так что я начну с обоснования причин появления таких терминов.
Возьмём пару объектов определённого типа, допустим, элементарных частиц, и поместим их на расстоянии r друг от друга. Допустим, каждая оказывает воздействие F на другую. Тогда мы скажем, что воздействие слабое, если
Где h – постоянная Планка, c – скорость света. Часто в физике удобно использовать не h, а
Короче говоря, в физике частиц:
• Для слабого взаимодействия
• Для сильного взаимодействия
Обычно, даже в теоретических изысканиях, нам не встречаются взаимодействия гораздо сильнее . Такая сила делает их столь сложными, что мы работаем с ними иным способом. Но это долгая история.
Получается, что подобная характеристика говорит не об абсолютной силе или слабости взаимодействия, но о том, является ли оно сильным или слабым по сравнению с типичными взаимодействиями, работающими на расстоянии r. Учитывается не само взаимодействие; учитывается взаимодействие, помноженное на квадрат расстояния, и эта величина сравнивается с ℏ c.
Чтобы объяснить полезность этого понятия, я дам иллюстрацию для случая электромагнитных взаимодействий, воздействующих на простые заряженные частицы – электроны, позитроны и протоны. Электрический заряд электронов равен –e; у протонов и позитронов заряд равен +e.
Во-первых, представьте два неподвижных протона, каждый массой m и электрическим зарядом +e, находящихся на расстоянии r друг от друга. Электрическая сила расталкивает их в стороны, и её величина задаётся формулой
Та же формула применима и для двух электронов с зарядом –e. Для электрона и позитрона взаимодействие будет таким же, только оно будет притягивать их, а не расталкивать.
Поскольку 0,007 гораздо меньше 1, электромагнетизм – слабое взаимодействие, и остаётся таким на всех расстояниях, измеренных нами.
Кстати, для этой величины 0,007 есть историческое название; её называют постоянной тонкой структуры (поскольку она задаёт размер небольших отличий в энергиях различных конфигураций атомов), и обычно обозначают α:
Это одна из наиболее точно измеренных величин природы. Часто люди записывают её примерно равной 1/137 (и многие годы некоторые учёные думали, что число 137 какое-то особенное), но если делать это совсем точно, тогда придётся записать 1/137,0359990…
Так почему же тот факт, что α гораздо меньше 1, говорит о том, что это взаимодействие надо записать в слабые, а не в сильные?
Почему то, что α 2 × α 2 /8;
энергия взаимодействия (потенциальная) двух частиц равна –mc 2 × α 2 /2;
• связывающая энергия B позитрониума (сумма энергии движения и энергии взаимодействия) равна mc 2 × α 2 /4;
• энергия массы позитрониума 2 mc 2 – B; и поскольку второе гораздо меньше первого, то масса атома оказывается всего лишь немногим меньшей, чем сумма масс электрона и позитрона.
Короче говоря, из-за того, что α гораздо меньше 1, существуют три важнейших, связанных между собой факта:
Все эти утверждения верны вне зависимости от того, насколько велика или мала масса электрона; они зависят только от малой величины α.
Всё это вместе значит, что для описания этого похожего на атом состояния Эйнштейновская специальная теория относительности не важна. Законы движения Ньютона достаточно хорошо подходят для предсказаний, вплоть до деталей, не больших, чем α – то есть, с точностью в 1% или лучше. И, как мы увидим далее, это значит, что система относительно проста. Её можно описать, используя квантовую механику с достаточно простой математикой, без участия квантовой теории поля, которая была бы необходима, если бы была важна СТО. Математика атома водорода такая же, как у позитрониума, и она настолько простая, что физики знакомятся с ней в институте, на первых уроках по квантовой механике.
Об этом можно думать ещё одним полезным, хотя и менее известным способом. Нужно помнить, что электроны, как и все элементарные частицы, в реальности являются квантами – крохотными возмущениями квантовых полей. Они больше похожи на волны, чем на мелкие шарики. Соответственно, они вибрируют, как и все волны: у них есть частота вибраций. Время, проходящее от одной вибрации до другой – которое я люблю поэтически называть «сердцебиением» – равно hc/m. Если α мало, тогда время, требуемое свету на то, чтобы пересечь атомоподобное состояние, гораздо больше, в 1/α раз, чем сердцебиение частиц, которое оно содержит. В этом смысле позитроний довольно большой. И поскольку сами частицы перемещаются гораздо медленнее света, у частиц на пересечение этого атомоподобного состояния уходит ещё больше времени – что-то в районе 1/α 2 сердцебиений.
Что было бы, если бы α была бы примерно равной 1?
Теперь представим, что α постепенно растёт и приближается к 1. Что случится с позитрониумом?
Рис. 1
С увеличением α взаимодействие (на любом расстоянии) между электроном и позитроном становится сильнее, и поскольку они притягиваются сильнее, то частицы в атомоподобном состоянии сдвигаются ближе. Частицы движутся быстрее, приближаясь к скорости света. Энергия движения частиц растёт, величина энергии взаимодействия растёт, как растёт и энергия связи – и приближается к 2m. Соответственно, масса атомоподобного состояния уже не равна примерно 2m. Размер атомоподобного состояния становится меньше; время, требуемое на пересечение его светом, время, требуемое на пересечение его частицами, и время, проходящее между двумя сердцебиениями частиц, начинают сравниваться между собой.
Усиление взаимодействия электрона и позитрона приводит к более частому появлению виртуальных фотонов; присутствие большего количества энергии в атоме облегчает превращение виртуального фотона в виртуальные электрон и позитрон. Когда это происходит, становится трудно сказать, какой электрон реален, а какой виртуален, поскольку между двумя электронами тоже действуют мощные силы, как и между электроном и любым из позитронов. Это может привести к тому, что частица, бывшая реальной, станет виртуальной, и сделает виртуальную частицу реальной – и обратно. А в это время виртуальные электроны и позитроны также могут испускать или поглощать фотоны, которые могут быть и виртуальными, и реальными.
Само разделение между реальными и виртуальными частицами становится сложнее провести. Реальные частицы должны быть правильно ведущими себя возмущениями квантовых полей. Но атомоподобное состояние настолько мало, что у электрона и позитрона на его пересечение уходит всего одно сердцебиение, а в этот момент мощные взаимодействия уже принудят их изменить направление. Как мы можем казать, что такая частица похожа на хорошо себя ведущее возмущение? Хорошо себя ведущая волна должна волноваться некоторое время – несколько сердцебиений – перед тем, как на неё начнут оказывать влияние внешние силы. А тут наш электрон, хотя он и больше похож на реальную частицу, чем на виртуальную, всё же сильно искажается, и уже не подходит под определение «реальной частицы». И этот электрон вообще может существовать недолго. За появлением виртуальной электрон-позитронной пары может последовать аннигиляция бывшего реального электрона с новообразованным позитроном, после чего останется возможно реальный/возможно виртуальный электрон.
Так что, вместо того, что у нас есть малое α – простая система с массой чуть меньше 2m, состоящая из электрона и позитрона, движущихся со скоростями гораздо меньше световой – при приближении α к 1 мы обнаруживаем чрезвычайно сложную систему, в которой множество частиц движется с околосветовыми скоростями, с массой, сильно отличающейся от 2m (см. рис. 1). Невозможно сказать, сколько частиц находится внутри – будем ли мы считать только реальные? Если да, каким образом точно отличить почти реальные от почти виртуальных? Количество реальных частиц может постоянно меняться.
Кстати, электрическое взаимодействие между двумя электронами слабое из-за того, что α мало. То же самое верно для взаимодействий между двумя элементарными частицами, поскольку заряды всех известных частиц находятся в промежутке от –e до e – к примеру, заряд верхних кварков равен 2/3 e. Вы можете заинтересоваться взаимодействием между электроном и ядром урана, поскольку заряд ядра урана равен 92 e. Да, в этом случае взаимодействие оказывается весьма сильным! Но в этом случае проявляется лишь часть эффектов, описанных мною для сильных взаимодействий, поскольку изменение заряда только одного из взаимодействующих объектов (в частности, тяжёлого) не увеличивает вероятность обнаружения виртуальных электрон-позитронных пар. Это изменится, только если заряд самого электрона станет гораздо больше, чем e! Так что даже атом урана остаётся значительно проще протона.
Насколько сильны другие известные взаимодействия природы? Мы увидели, что у электрических взаимодействий сила равна α – по крайней мере, на микроскопическом, атомном и субатомном уровне. И на таких расстояниях, вплоть до миллионной миллионных долей метра, α постоянна. Она не зависит от r, и в частности поэтому является такой удобной мерой. Но на самом деле сила взаимодействия может меняться с расстоянием, что всё усложняет. Для электромагнетизма это не так важно, этот эффект очень мал. Но для других сил это важно.
Но и для ещё меньших расстояний
Обратите внимание, что оно в несколько раз больше, чем электромагнитная сила! Слабое взаимодействие по своей сути вовсе не слабое – см. рис. 2. Предупреждение: я не включаю сюда тонкости, связанные со взаимодействием слабого и электромагнитного взаимодействий на таких малых расстояниях, а также с очень медленным изменением силы, которое становится заметным на куда как меньших дистанциях.
Слабое взаимодействие выглядит таким слабым, при наблюдении его на примере физики ядер, атомов и повседневной жизни, огромная масса частицы W. Если бы частица W не имела массы, то воздействие «слабого» ядерного взаимодействия было бы сильнее, чем у электрического! Это ещё один контекст, в котором поле Хиггса, придающее частице W её массу, играют важную роль в наших жизнях!
Учитывая силу сильного ядерного взаимодействия, почему же мы не сталкиваемся с ним в повседневной жизни? Это связано с тонкостями того, каким образом оно так плотно упаковывает кварки, глюоны и антикварки в протоны и нейтроны, что мы никогда не наблюдаем их отдельно. Всё это сильно отличается от того, как слабое электромагнитное взаимодействие позволяет электронам легко убегать из атомов, допуская такие явления, как статическое электричество (куда входят и молнии) и электрический ток (в том числе и по проводам).
Сила гравитации
Что насчёт гравитации? Для известных нам частиц гравитация удивительно слаба. Для двух неподвижных частиц массы m гравитация будет иметь величину
Где GN — гравитационная константа Ньютона. Сравните это с электрической силой, у которой α = ke 2 / ℏ c. Роли k и e электрических сил здесь играют GN и m. Отмечу, что я использую формулу Ньютона для гравитации, но пока αгравитация мало по сравнению с 1, эйнштейновская формула притяжения двух объектов будет по сути той же.
Это единица, перед которой стоит 37 нулей и десятичный разделитель! А для двух электронов
Что, поскольку масса электрона примерно в 2000 раз меньше массы протона, в 4 миллиона раз слабее. Даже для пары верхних кварков, которые почти в 200 раз тяжелее протона, и масса которых наибольшая среди масс всех известных частиц, сила гравитации будет равной
Это примерно в 100 000 000 000 000 000 000 000 000 000 000 раз меньше электрического взаимодействия двух верхних кварков. Поэтому на рис. 2 гравитация не отображена.
Если подумать, эта удивительная слабость гравитации объясняет, почему вы (используя электрические силы, питающие ваши мускулы и удерживающие ваше тело) можете так свободно двигаться, несмотря на то, что вас притягивает целая огромная Земля. Это даже объясняет, как Земля может во столько раз превышать по размерам атом; гравитация хочет сжать Землю, но целостность атомов, чьи электрические силы сопротивляются сжатию, этому мешает. Если бы гравитационные силы были гораздо сильнее, или электрические – слабее, гравитация сжала бы Землю до гораздо меньшего размера и гораздо большей плотности.
Гравитация настолько слаба, что удивительно, что мы её вообще открыли. Почему же она стала первой известной людям силой? Потому, что это единственная сила, выживающая на очень дальних расстояниях в обычной материи.
Взаимодействие Хиггса?
Поле Хиггса порождает взаимодействие сходное со слабым ядерным взаимодействием в том, что у него очень малая дистанция воздействия, и что оно становится неэффективным на расстояниях, больших по сравнению с ℏ c / Mh
> 2 \times 10^ <-18>м) \\ α_ <Хиггс>= (mc^2 /4 \pi v)^2 \; (для \; r
Где v = 246 ГэВ, это постоянное значение поля Хиггса, существующее во всей Вселенной. (На самом деле, строго говоря в формуле есть ещё один квадратный корень из 2, но давайте упростим для улучшения понимания).
Но будьте осторожны! Схожесть с гравитацией может сбить с толку. Эта формула точно работает для известных элементарных частиц – объектов, получающих свою массу от поля Хиггса. Она работает для электронов, мюонов и кварков. Она не работает для протонов, нейтронов, атомов или вас! Оттого, что масса протона (и нейтрона, а следовательно, и атома, а следовательно, и ваша) не полностью порождается полем Хиггса. Это отличается от формулы для гравитации, которая верна для всех медленных объектов! Вместо этого в случае обычной атомной материи нам нужно было бы заменить формулу похожей, но имеющей спереди другой множитель, свой для каждого атома. Но качественно зависимость от расстояния осталась бы схожей.
Кроме того, написанная мною формула предполагает существование только одного поля Хиггса и одной частицы Хиггса (что пока ещё не доказано, но является простейшей возможностью, соответствующей полученным данным). Если это не так, формула усложнится, хотя и сохранит схожую форму.
Рис. 2
Так что, хотя каждый атом Земли взаимодействует через Хиггса с каждым другим атомом Земли, эта сила настолько крохотна, даже для соседних атомов, а особенно – для далеко отстоящих, что её эффекта обнаружить невозможно. Поэтому нам пришлось напрямую найти частицу Хиггса, чтобы подтвердить существование поля Хиггса; мы не могли искать создаваемую им силу так, как мы можем наблюдать электрические или магнитные силы и подтверждать таким способом существование электрических и магнитных полей.
Когда же мы сможем наблюдать действие этой силы? Её воздействие будет впервые обнаружено либо при рассеянии частиц W и Z друг с другом (что рано или поздно будет проделано, не напрямую, в столкновениях протонов в Большом адронном коллайдере) или во взаимодействиях верхнего кварка и верхнего антикварка (что можно наблюдать на электрон-позитронном коллайдере – кстати, свою первую работу по физике частиц я написал именно об этом явлении).