Что такое ширина прямоугольника
Прямоугольник
Прямоугольник — параллелограмм, у которого все углы прямые.
Частным случаем прямоугольника является квадрат.
Свойства прямоугольника
1. Так как прямоугольник – это параллелограмм, то все свойства параллелограмма верны и для прямоугольника.
Помимо этого:
2. Стороны прямоугольника являются его высотами.
3. Диагонали прямоугольника равны.
4. Квадрат диагонали прямоугольника равен сумме квадратов двух его соседних сторон.
5. Около любого прямоугольника можно описать окружность, при этом диагональ прямоугольника равна диаметру описанной окружности.
Признаки параллелограмма
Параллелограмм является прямоугольником, если выполняется любое из условий:
1. Диагонали параллелограмма равны.
2. Квадрат диагонали параллелограмма равен сумме квадратов соседних сторон.
3. Все углы параллелограмма равны.
Площадь прямоугольника
Смотрите также таблицу-шпаргалку «Площади простейших фигур» здесь.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Прямоугольник, свойства, признаки и формулы
Прямоугольник, свойства, признаки и формулы.
Прямоугольник – это четырехугольник, у которого все углы прямые (каждый из углов равен 90 градусам).
Прямоугольник (понятие, определение):
Прямоугольник – это четырехугольник, у которого все углы прямые (каждый из углов равен 90 градусам).
Прямоугольник – это четырехугольник, у которого каждый угол является прямым.
Прямоугольник – это четырехугольник, у которого две противоположные стороны равны между собой и все четыре угла равны между собой и каждый из них составляет 90 градусов.
Рис. 1. Прямоугольник
В свою очередь четырёхугольник (греч. τετραγωνον) – это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки.
Длинную сторону прямоугольника называют длиной прямоугольника, а короткую – шириной прямоугольника.
Свойства прямоугольника:
1. Прямоугольник является параллелограммом – его противоположные стороны попарно параллельны.
Рис. 2. Прямоугольник
2. Противоположные стороны прямоугольника равны.
Рис. 3. Прямоугольник
3. Стороны прямоугольника являются его высотами.
4. Прилегающие стороны прямоугольника всегда перпендикулярны.
Рис. 4. Прямоугольник
5. Каждый угол прямоугольника прямой и равен 90 градусам. Сумма всех углов прямоугольника составляет 360 градусов.
Рис. 5. Прямоугольник
6. Диагонали прямоугольника равны.
Рис. 6. Прямоугольник
Рис. 7. Прямоугольник
8. Квадрат диагонали прямоугольника равен сумме квадратов двух его смежных сторон (что вытекает из теоремы Пифагора).
Рис. 8. Прямоугольник
9. Диагонали прямоугольника делятся точкой пересечения пополам.
10. Около любого прямоугольника можно описать окружность. Диагональ прямоугольника является диаметром описанной окружности.
АС и BD – диаметр описанной окружности и диагональ прямоугольника
11. Точка пересечения диагоналей называется центром прямоугольника и является центром описанной окружности.
12. Прямоугольник может содержать вписанную окружность и только одну, если все его стороны равны, т.е. он является квадратом.
Признаки прямоугольника:
– если диагонали параллелограмма равны, то он является прямоугольником;
– если квадрат диагонали параллелограмма равен сумме квадратов смежных сторон, то он (параллелограмм) является прямоугольником;
– если углы параллелограмма равны, то он является прямоугольником.
Формулы прямоугольника:
Пусть a – длина прямоугольника, b – ширина прямоугольника, d – диагональ и диаметр описанной окружности прямоугольника, R – радиус описанной окружности прямоугольника, P – периметр прямоугольника, S – площадь прямоугольника.
Формула стороны прямоугольника (длины и ширины прямоугольника):
,
,
,
.
Формула диагонали прямоугольника:
,
Формулы периметра прямоугольника:
Формулы площади прямоугольника:
Формула радиуса окружности, описанной вокруг прямоугольника:
.
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Мировая экономика
Справочники
Востребованные технологии
Поиск технологий
О чём данный сайт?
Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.
Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.
Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!
Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.
О Второй индустриализации
Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.
Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.
Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.
Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.
Прямоугольник. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).
Можно дать и другое определение прямоугольника.
Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.
Свойства прямоугольника
Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.
Длиной прямоугольника называется более длинная пара его сторон.
Шириной прямоугольника называется более короткая пара его сторон.
Диагональ прямоугольника
Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.
На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.
Для вычисления длины диагонали воспользуемся теоремой Пифагора:
Из равенства (1) найдем d:
Пример 1. Стороны прямоугольника равны . Найти диагональ прямоугольника.
Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя в (2), получим:
Ответ:
Окружность, описанная около прямоугольника
Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):
Формула радиуса окружности описанной около прямоугольника
Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.
Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть
Подставляя (3) в (2), получим:
Пример 2. Стороны прямоугольника равны . Найти радиус окружности, описанной вокруг прямоугольника.
Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя в (4), получим:
Ответ:
Периметр прямоугольника
Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.
Периметр прямоугольника вычисляется формулой:
где \( \small a \) и \( \small b \) − стороны прямоугольника.
Пример 3. Стороны прямоугольника равны . Найти периметр прямоугольника.
Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя в (5), получим:
Ответ:
Формулы сторон прямоугольника через его диагональ и периметр
Выведем формулу вычисления сторон прямоугольника, если известны диагональ \( \small d \) и периметр \( \small P \) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие \( \small \frac P2>d \) (это следует из неравенства треугольника).
Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:
(6) |
(7) |
Из формулы (7) найдем \( \small b \) и подставим в (6):
(8) |
(9) |
Упростив (4), получим квадратное уравнение относительно неизвестной \( \small a \):
Вычислим дискриминант квадратного уравнения (10):
(11) |
Сторона прямоугольника вычисляется из следующих формул:
После вычисления \( \small a \), сторона \( \small b \) вычисляется или из формулы (12), или из (8).
Примечание. Легко можно доказать, что
Пример 4. Диагональ прямоугольника равна , а периметр равен
. Найти стороны прямоугольника.
Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант \( \small D \) из формулы (11). Для этого подставим ,
в (11):
Подставляя значения и
в первую формулу (12), получим:
Найдем другую сторону \( \small b \) из формулы (8). Подставляя значения и
в формулу, получим:
Ответ: ,
Признаки прямоугольника
Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.
Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.
Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.
Прямоугольник
Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам).
Примечание. В евклидовой геометрии для того, чтобы четырёхугольник был прямоугольником, достаточно, чтобы хотя бы три его угла были прямые. Четвёртый угол (в силу теоремы о сумме углов многоугольника) также будет равен 90°. В неевклидовой геометрии, где сумма углов четырёхугольника не равна 360° — прямоугольников не существует.
Содержание
Свойства
Площадь и стороны
Диагонали прямоугольника
Признаки
См. также
Планигон
Полезное
Смотреть что такое «Прямоугольник» в других словарях:
прямоугольник — прямоугольник … Орфографический словарь-справочник
прямоугольник — параллелограмм, четырехугольник, квадрат Словарь русских синонимов. прямоугольник сущ., кол во синонимов: 4 • квадрат (9) • … Словарь синонимов
«ПРЯМОУГОЛЬНИК» — термин, используемый в техническом анализе конъюнктуры финансовых рынков для обозначения движения цен, укладывающегося на графике в прямоугольник. Райзберг Б.А., Лозовский Л.Ш., Стародубцева Е.Б.. Современный экономический словарь. 2 е изд., испр … Экономический словарь
Прямоугольник — вид графика движения цены в виде треугольника, используемый в техническом анализе конъюнктуры финансовых рынков. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов
ПРЯМОУГОЛЬНИК — ПРЯМОУГОЛЬНИК, параллелограмм, все углы которого прямые … Современная энциклопедия
ПРЯМОУГОЛЬНИК — четырехугольник, у которого все углы прямые … Большой Энциклопедический словарь
ПРЯМОУГОЛЬНИК — ПРЯМОУГОЛЬНИК, четырехсторонняя геометрическая фигура (четырехугольник), внутренние углы которой являются прямыми, а противоположные стороны попарно параллельны и равны. Это особый случай ПАРАЛЛЕЛОГРАММА … Научно-технический энциклопедический словарь
ПРЯМОУГОЛЬНИК — ПРЯМОУГОЛЬНИК, прямоугольника, муж. (геом.). Четырехугольник, в котором все углы прямые. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ПРЯМОУГОЛЬНИК — ПРЯМОУГОЛЬНИК, а, муж. 1. Четырёхугольник, у к рого все углы прямые. 2. Название офицерского знака различия такой формы на петлицах в Красной Армии (с 1924 по 1943 г.). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
«ПРЯМОУГОЛЬНИК» — вид графика движения цены в виде треугольника, используемый в техническом анализе конъюнктуры финансовых рынков. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов
Прямоугольник
Прямоугольник — это четырехугольник, у которого каждый угол является прямым.
Квадрат — это частный случай прямоугольника.
Прямоугольник имеет две пары равных сторон. Длина наиболее длинных пар сторон называется длиной прямоугольника, а длина наиболее коротких — шириной прямоугольника.
Свойства прямоугольника
1. Прямоугольник — это параллелограмм.
2. Противоположные стороны равны.
AB = CD,\enspace BC = AD
3. Противоположные стороны параллельны.
AB \parallel CD,\enspace BC \parallel AD
4. Прилегающие стороны перпендикулярны друг другу.
AB \perp BC,\enspace BC \perp CD,\enspace CD \perp AD,\enspace AD \perp AB
5. Диагонали прямоугольника равны.
Следовательно, \triangle ABD = \triangle DCA по двум катетам ( AB = CD и AD — совместный).
Если обе фигуры — ABC и DCA тождественны, то и их гипотенузы BD и AC тоже тождественны.
Только у прямоугольника из всех фигур (только из параллелограммов!) равны диагонали.
6. Квадрат диагонали равен сумме квадратов двух прилежащих его сторон.
Это свойство справедливо в силу теоремы Пифагора.
7. Диагональ делит прямоугольник на два одинаковых прямоугольных треугольника.
\triangle ABC = \triangle ACD, \enspace \triangle ABD = \triangle BCD
8. Точка пересечения диагоналей делит их пополам.
9. Точка пересечения диагоналей является центром прямоугольника и описанной окружности.
10. Сумма всех углов равна 360 градусов.
\angle ABC + \angle BCD + \angle CDA + \angle DAB = 360^
11. Все углы прямоугольника прямые.
\angle ABC = \angle BCD = \angle CDA = \angle DAB = 90^
12. Диаметр описанной около прямоугольника окружности равен диагонали прямоугольника.
13. Вокруг прямоугольника всегда можно описать окружность.
Это свойство справедливо в силу того, что сумма противоположных углов прямоугольника равна 180^
\angle ABC = \angle CDA = 180^<\circ>,\enspace \angle BCD = \angle DAB = 180^
14. Прямоугольник может содержать вписанную окружность и только одну, если он имеет одинаковые длины сторон (является квадратом).