что такое рупор в автозвуке
Про дудки и свистульки. Или как работает рупор на примере ВЧ-излучателя Edge EDPRO45T со съемной «дудкой»
Недавно в одном из разговоров был задан вопрос о том, как работает высокочастотник с рупорным оформлением. Появилась идея найти какой-нибудь излучатель со съемной «дудкой» и посмотреть, что он умеет с ней и без неё.
Как работает рупорный компрессионный излучатель
Название серьезное, но, по сути, мы имеем дело с обычным динамиком. Посмотрите на обратную сторону – обычная магнитная система.
Только в отличие от обычного динамика звуковая катушка толкает не дифузор, а металлическую мембрану. Мембрана находится внутри корпуса, и звуковые колебания излучаются не сразу в открытое пространство, а «проталкиваются» через небольшое отверстие (собственно, поэтому излучатель и называется компрессионным). На выходе этого отверстия как раз и ставится рупор.
Чтобы понять, для чего нужен рупор, вот вам наглядный пример. Выйдите на балкон и что-нибудь крикните. Пока соседи офигевают, продолжите эксперимент – возьмите какой-нибудь журнал из плотной бумаги, сверните его конусом, и крикните уже через него. Теперь срочно уходите с балкона, пока вам не вызвали «дурку», и делайте выводы.
Их, как минимум, два. Во-первых, с рупором стало громче. Значит, при той же подаваемой мощности можно получить более высокое звуковое давление. Во-вторых, с рупором изменился тембр голоса. Значит, формой «дудки» можно корректировать АЧХ. Для начала этого достаточно. Теперь смотрим то же самое на конкретном примере.
Строго говоря, когда мы снимаем пластиковую «дудку» с Edge EDPRO45T, то не полностью лишаемся рупора. Сама излучающая мемебрана находится глубоко внутри корпуса, так что правильней говорить – с коротким рупором и с большим рупором.
Итак, первым делом смотрим, влияет ли рупор на импеданс динамика. Синяя кривая – без накрученной «дудки», зеленая – всё в сборе.
Как видите, разница хоть и небольшая, но всё же есть. Причина в том, что рупор акустически нагружает излучающую мембрану. Воздушная масса в коротком рупоре и в длинном рупоре будет «сопротивляться» движению мембраны по-разному. Кстати, один из моментов – плавно ли закруглен выход рупора или же у него острые края. Это тоже вносит свои коррективы в поведение воздушной массы внутри рупора.
Теперь смотрим АЧХ по оси и под углом. Красная кривая – без накрученной «дудки», зеленая – всё в сборе:
Как видите, с рупором действительно получается громче, а заодно и АЧХ становится не такой корявой. Вот вам и подтверждение сказанного ранее — повышение эффективности и коррекция АЧХ.
Как превратить недостатки в достоинства
Раз уж динамики всё равно были у меня в руках, решил ещё немного поэкспериментировать. Ну не нравился мне этот горб в районе 2 кГц. Ничего хорошего для звука он не обещал. Включаю излучатель через простой фильтр первого порядка. Кто не понял – через обычный конденсатор. Смотрите, как это отразилось на АЧХ. На нижнем краю диапазона она немного опустилась, оставив все как есть наверху. Стало очень даже неплохо:
Зелёная кривая – собственная АЧХ излучателя
Синяя кривая – с включенным последовательно конденсатором 3,3 мкФ,
Фиолетовая кривая – с включенным последовательно конденсатором 4,7 мкФ:
Драйвер эффективно излучает, начиная уже с 1,5-2 кГц. Кстати, можно иметь этот вариант ввиду, если СЧ-динамики «глухие» и неохотно работают выше 1-2 кГц.
Комментарии 16
Строго говоря, громче рупор только в одном направлении. За счет сужения диаграммы направленности, все давление идет в одну зону. Плюсы — динамик акустически нагружен и работает в оптимальном режиме. Обратная сторона медали — трубные и жестяные призвуки (если не делать огромный рупор для устранения краевых эффектов), а потом горбатый рупорный звук приходится жестко корректировать фильтрами со всем вытекающими. Слушать тоже в нужно одной зоне, отраженка не работает, звук утомляющий.
В авто совсем не подходит, там важна максимально широкая дисперсия.
На практике пришел к выводу, что рупоры имеет смысл применять только в дальней зоне (дома, в больших помещениях). Там как раз минусы рупоров уходят, плюсы остаются.
А запись хорошая, мне понравилась. И оформлено здорово.
Чем меряете?
К слову, пищалки #F1 Status рупорные
Вообще-то там кольцевой излучатель. Как раз в отличие от классических купольных твитеров, где по центру купола наибольшие потери и искажения (изгибные деформации), здесь его нет, работает только зона, присоединенная к звуковой катушке, что и обеспечивает лучший контроль и отдачу.
Может, фазовыравнивающий колпачок за рупор приняли? Так в технических описаниях как раз и обозначено, что колпачок-игла предназначен для снижения турбулентности и работает как волновод. В даташите даже специально указано, что приняты конструктивные меры для борьбы с акустической компрессией на высокой мощности, то есть технически это полная противоположность рупорам.
По той же причине и от ферромагнитной жидкости в зазоре отказались. Эта конструкция именно максимально далека от рупоров. За счет чего и получили такой звук.
да, скан, да, кольцевой. Но и короткий рупор присутствует, иначе был бы плоский фланец позади диафрагмы. Чтобы получился «классический» кольцевой рупор, форму центрального тела поменять на пулевидную, и всё.
Очень яркий пример из мира «типа якобы SQ» — пищалки Audison Prima Ap1, вот там рупор ясно виден, как и фазовыравнивающее тело
Назначение скругленного фланца то же, что и у основания иглы — симметрирование нагрузки по краям излучателя и снижение краевых эффектов (все та же борьба с турбулентностью, что и у иглы), на подробных схемах это хорошо видно.
Там даже мотора называется симметричный )), хотя и немножко в другую тему, Patented Symmetrical Drive (SD-2) motor.
Нет, это не рупор, с компрессией здесь борьба во всех аспектах.
С плоским фланцем появилось бы взаимодействие с местом установки, а здесь условную скорость потока снижают непосредственно в твитере (с более предсказуемыми результатами). Делают правильно, ранние отражения наиболее значимы.
По аналогии вход-выход трубы ФИ делают максимально скругленным наружу (а классический ФИ имеет трубу с концами одинаковой длины и снаружи, и внутри ящика), и никаких препятствий у выхода трубы, поверхности максимально монотонные. А самые правильные рупоры тоже имеют снаружи максимально закругленный лопух, никаких резких изломов.
Эту образующую можно рассматривать и так и этак, присутствуют все эффекты. По поводу турбулентности, при такой амплитуде мембраны это сродни влиянию подставок для проводов
Про турбулентность — вообще термин применяется к воздушному потоку, амплитуда да, невелика, но скорость звука, т.е. продольная волна сжатия-разрежения и для НЧ и для ВЧ одна и та же, а вот влияние поверхностей для этих частот значительно выше, роль интерференции тоже возрастает с уменьшением периода.
Если я скажу диссипация, будет еще менее понятен физический смысл. Не нравится термин — хорошо, скажем, гладкая образующая (суть всё та же, любой излом прилегающей поверхности — зло, поэтому колпачок на конце — игла), основное назначение — фазовыравнивающее. Излучение приводится к максимально когерентному, то есть эффективному, виду.
Если имеете в виду, что потоком воздуха там не сдувает — да, в этом смысле турбулентности нет 🙂 Удельная эффективность твитеров выше, чем у НЧ динамиков. Вообще потоки делят на ламинарные (упорядоченные) и турбулентные (хаотичные), в данном случае термин оттуда. А турбулентность как причина потерь известна даже в оптике, если привязываете её к амплитуде и частотам.
Строго говоря, громче рупор только в одном направлении. За счет сужения диаграммы направленности, все давление идет в одну зону. Плюсы — динамик акустически нагружен и работает в оптимальном режиме. Обратная сторона медали — трубные и жестяные призвуки (если не делать огромный рупор для устранения краевых эффектов), а потом горбатый рупорный звук приходится жестко корректировать фильтрами со всем вытекающими. Слушать тоже в нужно одной зоне, отраженка не работает, звук утомляющий.
В авто совсем не подходит, там важна максимально широкая дисперсия.
На практике пришел к выводу, что рупоры имеет смысл применять только в дальней зоне (дома, в больших помещениях). Там как раз минусы рупоров уходят, плюсы остаются.
А запись хорошая, мне понравилась. И оформлено здорово.
Чем меряете?
Точно так и есть — «концентрация» звуковой энергии в узком «луче» и коррекция АЧХ )))
Комплекс Audiomatica Clio
Полезная штука в хозяйстве, себе бы такую )))
Кстати, про коррекцию АЧХ — у Bruel & Kjaer микрофонов сами вырезы на корпусе вокруг капсюля — индивидуальный корректор АЧХ.
слово «драйвер» было вставлено специально для поисковика Гугла.
динамики с акустической линзой считаются рупорными, или купольными?
купольными с линзой 🙂
Ачх +-5 дб получается? Кривовата
У рупоров внеосевая АЧХ резко заваливается наверху, а эти замеры явно на оси.
Что значит внеосевая? Диаграмму направленности рупора могу понять.
При замерах не на оси рупора (в направлениях 15, 30, 45 градусов от оси).
В данном случае правый горб на АЧХ при смещении микрофона в сторону будет быстро опускаться (у обычной акустики медленно).
Поэтому у рупоров часто вот такая картина и бывает. На оси слушать невозможно — мозг выгрызает звоном, а чуть в стороне АЧХ выравнивается и вроде ничего. Этим компенсируют узкую направленность. Для твитеров это особенно заметно.
Исторически так сложилось, что рупоры в силу высокой чувствительности брали к слабеньким по мощности ламповым однотактникам, то есть товар в элитном разделе (и высоком ценовом), отсюда и легенды о чудесном звуке. А по сути рупор — мегафон.
Что такое рупор?!
Доброго дня, господа!
Все чаще и чаще на просторах интернета начал натыкаться на рупорные короба. Информации по ним не так уж много, тем более программ и методик расчета. В основном многие берут уже готовый чертеж, ставят туда дин, а вот тут начинается: одни убеждают, что это полная чушь и данный тип оформления подходит больше к «домашке», другие — саб «валит». Мое мнение, что люди просто не особо хотели вникать, а взяли готовый чертеж и все. Но здесь расчет идет под конкретный динамик! Вот поэтому у одних он играе, у других, в таком же коробе нет!
Итак, автозвук, это колосальное поле для экспериментов! Любые утверждения любых людей основаннны собственно на личном опыте, ну и естественно на законах физики. ЗЯ, ФИ, ЧВ уже делали, разжеванно все до каши, а тут новое слово, новое оформление — РУПОР!.
Подпитавшись информацией из всемирной сети, скачал програмку Hornresp, начал юзать. Времени, что бы с ней разобраться ушло довольно таки не мало, но к результату пришел. В итоге получил предрупорную камеру — 60 л., длину рупора — 150 см, площади S1, S2 — 350 см2 и 1000 см2., пик получился (судя по графику) 33 Гц. Смоделировал макет короба:
Скажу сразу, почему то мне надоели уже однообразные прямоугольные формы коробов, и я решил пусть будет так!:)))
Собственно, к чему я это все пишу:
— ну, хочется услышать мнение опытных людей по моему макету. Хочется уже изведать и протестировать что то новенькое.
— быть может рупорное оформление все же имеет перспективу и мы все совместно поможем этому развитию!
Ребята, жду Ваших отзывов и предложений! Любых как положительных, так и отрицательных!
Рупор. Часть1 — расчет
Доброго всем дня, господа!
В данной статье будет много текста, фото и обозначений, поэтому кто лениться читать и вникать в суть прошу проходить мимо. Для тех, кому действительно интересно прошу нажать
Итак начнем! Все прекрасно знаю, какие типы оформления низкочастотных динамиков бывают (говорю о самых распространенных) — закрытый ящик, фазоинвенторный, банд-пасс 4-го и 6-го порядка, ну и набирающий огромную популярность в настоящее время четвертьволновой резонатор. Но…
Не так давно гуляя по просторам всемирной паутины наткнулся на новый тив — рупор (ну, по крайней мере для меня новый). И тут начались поиски всевозможной информации: способы расчета, чертежи, результаты и отзывы. Чем больше я искал, тем больше убеждался, что такого объема, как скажем про ЧВ и нет. Заглянул на всемилюбимый сайт D2 и что то конкретное найти не смог.
Я конечноже понимаю, что есть люди, которые проектировали рупора и несколько лет назат, но тем не менее считаю, что на данное время количество интересующихся людей высоко и продолжает расти.
Поднабравшись за несколько месяцев изучения информации, попробую описать методику расчета рупора. Часто встречаю коментарии, когда один пишет, что рупор «валит», другой, что это пустая трата времени, сил и денег. Давайте разбираться вместе:
Рупор по сути — это фазоинверторный короб, к которому прилегает расширяющийся в определенных пропорция и определенной длины порт. Рупор отыгрывает широкий диапазон частот, иногда это составляет 30-100 Гц. (не будем сейчас говорить о плюсах и минусах того или иного оформления) и имеет большой КПД.Расчитывать рупор необходимо под определенный динамик и проектировать короб под конкретный багажник. Нивкоем случае не брать какой попало чертеж, а потом говорить, что рупор — ерунда
Начнем: имеем. к примеру, динамик Kick PRO 300 и хотим под него рупор.
Для начала нам нужна программа. Я пользовался Hornresp и скачать ее можно скажем от сюда
Ок! Скачали, открыли и видим вот такое окно:
Пугаться большим количеством значений и чисел не нужно, сейчас разберем. Для начала работы нужно нажать кнопкуAdd на картинке ниже она выделена красным овалом.
Нажали, теперь окна у нас стали активными. Продолжаем работу с данными, выделенными ниже на картинке
Sd — это эффективная площадь динамика. Среднее значение для 12″ динамика составляет 480 см2. Вводим в это поле цифру 480
Cms — это жесткость механики подвеса. Не пугаемся, если не имеем такое значение. Дважды кликаем в окошке с циферками, появляется маленькое окошко, где не русскими словами программа спрашивает правильно ли мы ввели значение эффективной площади. Мы с ней соглашаемся и в новом появившемся окне вводим значение vas нашего динамика и жмем Ок.
Mmd — масса подвижки. Опять таки не пугаемся если сего значения нет. Как и в прошлом параметре, кликаем дважды по значению. Соглашаемся, что ввели правильно площадь и правильно расчитали жесткость и в оконцовке в пустой строчке вводим резонансную частоту динамика Fs
Re — сопротивление постоянному току. Именитые производители указывают данную цифру. Но если такого значения не имеем, то для 4-х омных динамиков данное значение будет чуть меньше сопротивления динамика и равно 3,6-3,8. Выбираем любоем из этого предела.
Bl — сила мотора. Дваэжды кликаем по этому окошку, соглашаем с тем, что правильно ввели параметры Re и Cms. В последнем окне вводим Qes — электрическую добротность.
Rms — это механическое сопротивление. Опять таки, дважды кликаем по окошку, соглашаемся с правильностью введения жесткости динамика и резонансной частоты. В конце ставим Qms — значение параметра механической добротности.
Le — индуктивность. В случае, когда производитель не указал этот параметр ставим 1.
Так, ввод неизменных параметров динамика закончен, переходим к следующей стадии. У любого рупора есть предрупорная камера. Итак займемся:
Работать будем с теми параметрами, которые красным овалом обведены на картинки сверху. Окошки с названием Vrc, Fr, Lrc, Tal делаем нулевые, т.е. ставим там 0. Vtc — а это уже объем нашей предрупорной камеры. От куда его взять? — элементарно, это рекомендуемый объем ФИ, которые даже неродивые производители указывают. Не боимся здесь ошибиться, дальше я попытаюсь объяснить, думаю поймете. Итак рекомендуемый объем для моего примерного динамика составляет 42,48 л. При вводе в программу данное значение нужно умножить на 1000, т.е. вносим 42480.
Atc — параметр, в нашем случае, не влияющий на расчет, поэтому, чтобы программа не ругалась поставим 1000.
Поздравляю! Мы заполнили параметры динамика и предрупорной камеры. Что же нам нужно еще? ах да! самое важное сам рупор.Ну чтож, на картинки ниже красным прямоугольнико выделены параметры с которыми будем работать.
Смотрим внимательно! Нам нужно оставить толко S1, S2, Con, а в остальных графах данного раздела должны стоять нолики, если это не так, вписываем 0 вручную:)
S1 — площадь сечения начало рупора. Т.е. это площадь того отверстия, через которое сообщается предрупорная камера и сам рупор.
S2 — площадь сечения выхода рупора.
В идеале площадь на выходе равна 1,5-2 эффективной площади динамика, а оптимальное соотношение площадей начала и конца рупора равно 1:3. Но с этими параметрами мы можем играть, позже объясню, поэтому я поставил значения равные 250 и 800 соответственно.
Con — длина рупора. Если в ЧВ мы унавали длину под определенную настройку, то здесь прошу не путать, здесь будем менять длину, чтобы попасть в желаемую настройку. Опираясь на теорию, отзывы людей и личный опыт, хочу сказать, что длину рупора лучше делать в пределах 150-180 см. Я поставил для начала 150.
Ну что же, УРА! Ввод параметров завершен, движемся дальше.
Жмем Tools — Loudspeaker Wizard.
И мы видим схематическое представление нашего рупора (выделено красным прямоугольником), а желтым цветом подчеркнуто System volume — это объем нашего рупора. Теперь давайте посмотрим на схематический график АЧХ. Для этого в нижнем левом углу давайте поставим Response
Что это за график скажете вы? Что за кардиограмма? Терпения мои друзья!
Давайте поставим галочку напротив Show Baseline — так мы сможем видеть наложения графиков, когда будем менять параметры. и еще поставим Combined как на картинке ниже
Сделали, график изменился на вот это
Видим, что при таких параметрах у нашего дина настройка вылезла на 40 Гц и играть он будет до 100-105 Гц. Не смотриче, что в этом участке провал, практика показала обратное. Я да же не знаю как объяснить, может программа что то не так представляет, либо я не так понимаю!:) Чем выше график, тем рупор громче, но тем меньше давка, тут уж кому что интереснее.
К примеру, для меня высоковата настрой — 40 Гц. Я начинаю играть с параметрами предрупорной камеры, сечением и длиной порта. т.е. изменять их и уже вижу как это отражается на графике. Путем манипуляций с длиной рупора я смог снизить настройку примерно до 32-33 Гц.
Меня это устраивает и я жму Save.
Теперь я знаю настройку своего рупора (расчетную), знаю его объем, объем предрупорной камеры, знаю площади сечения начала и выхода рупора, а так же его длину и теперь я могу приступать к моделированию короба.
Когда будете играть с площадями сечения, старайтесь соблюдать соотношение площадей 1:3.
Старался как можно более доступней довести до вас методику, поэтому сильно не обессуйте. В обще друзья пробуйте, только на экспериментах строится опыт!
Кому интересно, оставайтесь с нами, далее будет небольшая статья по моделированию рупоров.
Всем дочитавшим огромное спасибо за внимание!
Рупорная акустика и ее обзор
Рупорная акустика всегда была дороже обычной. И не удивительно, что самыми горячими поклонниками такой акустики являются те пользователи, которые когда-то владели традиционными колонками.
Ничего удивительного в этом нет. Искушенный слушатель всегда оценит общую гармонию, целостность восприятия и естественность звучания.
Акустика рупорная самому пользователю нравится в виду своей музыкальности и умения захватывать слушателя.
Что это такое
Акустические системы рупорные
Современная аудиоаппаратура способна воспроизводить весь диапазон требуемых частот. Этого бывает достаточно для передачи музыкальных композиций, но совершенно недостаточно для создания ощущения присутствия слушателя.
Как скажет вам любой меломан, есть что-то такое, которое отвечает за передачу не просто музыки, мелодии, но и за передачу эмоций исполнителя. Рупорная акустика как раз отлично с этим делом справляется.
Рупорная акустика устроена не так, как обычная. Динамик(см.Как выбрать динамики своими силами) в ней не совсем больших размеров и присоединяется он к рупору, увеличивающему громкость его звучания.
Это можно сравнить с тем случаем, когда человек, чтобы докричаться до собеседника на большом расстоянии, складывает руки рупором.
Рупорные акустические системы
Примечание. Если вы задумались о приобретении рупорной акустики в свой автомобиль, спешим предупредить: разница между хорошими и плохими рупорными динамиками очень существенная, чем это наблюдается в традиционных вариантах.
Дешевая рупорная акустика, изготовленная недобросовестным производителем, никак не может выступать в роли сравнения. Именно такие дешевые варианты и породили слухи о том, что якобы рупорная акустика хороша, но звук в них окрашивается.
Что касается качественных рупорных динамиков, то стоят они всегда дорого. В них всегда задействованы магниты Alnico и диафрагмы из экзотических металлов.
Собирается рупорная акустика всегда согласно строгим допускам и размерам. Одним словом, такая технология производства не может подразумевать никаких компромиссов и снижения затрат.
1000 евровый супертвиттер TAD
Приведем примеры. Двухдюймовый компрессионный драйвер TAD, используемый во всех моделях рупорной акустики Цезаро, стоит около 1 тысячи евро. В то же время, самый дорогой твиттер на сегодняшний день, это Скан Спик с бериллиевой диафрагмой и стоит он всего-то около 600 долларов.
Акустическая система свёрнутый рупор
Рупорная акустика для авто – это всегда уникальные изделия, выпущенные сериями. Имена некоторых золотыми буквами вписаны в историю автозвука.
Например, это японская рупорная акустика Максоник, выпускающаяся с 1932 года. Сегодня Максоник представляет всегда высокотехнологичные изделия.
При создании всегда применяются дорогие технологии с использованием магнитных систем в излучателях.
История
Примечание. Именно тогда инженер основывает компанию по производству рупорной акустики, которая и по сей день является мировым лидером. Компанию назвали Клипш, а динамики такого типа «клипшами».
Рупорная акустика Клипш
Магическое звучание рупорных систем
Примечание. Именно по этой причине рупорная акустика используется в большинстве своем для воспроизведения СЧ и ВЧ, но если подобрать себе колонки побольше, то и НЧ будут воспроизводится на самом высоком уровне.
Примечание. Интересно, что в последнее время довольно часто встречаются динамики, где только излучатели ВЧ выполнены в виде рупора. К примеру, те же АС серии Клипш Референц выполнены по данному образцу.
Самодельная рупорная акустика
В последнее время среди производителей рупорной акустики хотелось бы выделить отдельно итальянскую компанию Зингали. Инженеры этой фирмы создали оригинальный рупорный излучатель, который одновременно воспроизводит СЧ и ВЧ, а при этом еще и красиво выглядит.
Рупорная акустика в авто
Не стоит говорить, что все автомобильные традиционные АС не позволяют добиться высокого качества звучания. Дело не в чем-нибудь, а в тесном салоне.
Вот рупорные акустические системы дадут шанс значительно возвеличить звук, создать эффект присутствия (как будто сидишь в студии или на концерте). Объяснить все можно просто: рупор увеличивает расстояние, на которое распространяются звуковые волны, одновременно увеличивая плотность звука и придавая характерную мелодичность.
Технические решения размещения такой акустики в автомобиль могут быть разными:
Преимущества и недостатки рупорной акустики
Музыкальные композиции звучат намного детализировано и прозрачно | Корпуса под такие излучатели должны быть сделаны в очень сложной конструкции. Если подразумевается самодельное изготовление, то надо знать законы физики, геометрии и материаловедения |
Более артикулировано воспроизводятся диалоги | Полнодиапазонная система, каковой является рупорная акустика достаточно громоздка и требует много места |
Налицо передача эмоций исполнителя и «живость» музыки | |
Звук более ударный и динамичный |
На этом закончим наш обзор рупорных акустических систем. В последнее время их стали все чаще устанавливать в автомобили своими руками, с использованием пошаговых инструкций, полезных видео обзоров, чертежей и фото – материалов.
Цена на хорошую рупорную акустику очень высока, но ярых меломанов это не остановит.