что такое рекомбинантные технологии

Что такое генная инженерия и зачем вмешиваться в природу организмов

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

Содержание:

Генная инженерия — это современное направление биотехнологии, объединяющее знания, приемы и методики из целого блока смежных наук — генетики, биологии, химии, вирусологии и так далее — чтобы получить новые наследственные свойства организмов.

Перестройка генотипов происходит путем внесения изменений в ДНК (макромолекулу, обеспечивающую хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов) и РНК (одну из трех основных макромолекул, содержащихся в клетках всех живых организмов).

Если внести в растение, микроорганизм, организм животного или даже человека новые гены, можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал. С этой целью сегодня генная инженерия используется во многих сферах. Например, на ее основе сформировалась отдельная отрасль фармацевтической промышленности, представляющая собой одну из современных ветвей биотехнологии.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

История развития

Истоки

Основы классической генетики были заложены в середине XIX века благодаря экспериментам чешского-австрийского биолога Грегора Менделя. Открытые им на примере растений принципы передачи наследственных признаков от родительских организмов к их потомкам в 1865 году, к сожалению, не получили должного внимания у современников, и только в 1900 году Хуго де Фриз и другие европейские ученые независимо друг от друга «переоткрыли» законы наследственности.

Параллельно с этим шел процесс формирования знаний о ДНК. Так, в 1869 году швейцарский биолог Фридрих Мишер открыл факт существования макромолекулы, а в 1910 году американский биолог Томас Хант Морган обнаружил на основе характера наследования мутаций у дрозофил, что гены расположены линейно на хромосомах и образуют группы сцепления. В 1953 году было сделано важнейшее открытие — американец Джон Уотсон и британец Фрэнсис Крик установили молекулярную структуру ДНК.

На подъеме

К концу 1960-х годов генетика активно развивалась, а ее важными объектами стали вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов, а в 1970-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК.

Генная инженерия как отдельное направление исследовательской работы зародилась в США в 1972 году, когда в Стэнфордском университете ученые Пол Берг, Стэнли Норман Коэн, Герберт Бойер и их научная группа внедрили новый ген в бактерию кишечной палочки (E. coli), то есть создали первую рекомбинантную ДНК.

Техника ПЦР была впервые разработана в 1980-х годах американским биохимиком Кэри Маллисом. Будущий лауреат Нобелевской премии по химии (1993 года), обнаружил в специфический фермент — ДНК-полимеразу, который участвует в репликации ДНК. Этот фермент буквально считывает отрезки цепи нуклеотидов молекулы и использует их в качестве шаблона для последующего копирования генетической информации.

Новая эра

В 1996 году методом пересадки ядра соматической клетки в цитоплазму яйцеклетки на свет появилось первое клонированное млекопитающее — овца Долли. Это событие стало революционным в истории развития генной инженерии, потому что впервые стало возможным серьезно говорить о создании клонов и выращивании живых организмов на основе молекул.

Технологии генной инженерии

Генная инженерия за короткий срок оказала огромное влияние на развитие различных молекулярно-генетических методов и позволила существенно продвинуться на пути познания генетического аппарата.

Так, появилась технология CRISPR — инструмент редактирования генома. В 2014 году MIT Technology Review назвал его «самым большим биотехнологическим открытием века». Он основан на защитной системе бактерий, которые производят специальные ферменты, позволяющие им защищаться от вирусов.

«Каждый раз, когда бактерия убивает вирус, она разрезает остатки его генома, будь то ДНК или РНК, и сохраняет их внутри последовательности CRISPR, как в архив. Как только вирус атакует снова, бактерия использует информацию из «архива» и быстро производит защитные белки Cas9, в которых заключены фрагменты генома вируса. Если вдруг эти фрагменты совпадают с генетическим материалом нынешнего атакующего вируса, Cas9 как ножницами разрезает захватчика, и бактерия снова в безопасности», — поясняет Алевтина Федина, медицинский директор Checkme.

Уникальное открытие состоялось в 2011 году, когда биологи Дженнифер Дудна и Эммануэль Шарпантье обнаружили, что белок Cas9 можно обмануть. Если дать ему искусственную РНК, синтезированную в лаборатории, то он, найдя в «архиве» соответствие, нападет на нее. Таким образом, с помощью этого белка можно резать геном в нужном месте — и не просто резать, а еще и заменять другими генами.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

Теоретически, технология CRISPR может позволить редактировать любую генетическую мутацию и излечивать заболевание, которое она вызывает. Но практические разработки CRISPR в качестве терапии еще только в начальной стадии, и многое еще непонятно.

Есть и другие методы генной инженерии, например, ZFN и TALEN.

Где и как применяется генная инженерия

Медицина

Уже сейчас активно применяется инсулин человека (хумулин), полученный посредством рекомбинантных ДНК. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали. С 1982 года компании США, Японии, Великобритании и других стран производят генно-инженерный инсулин.

Кроме того, несколько сотен новых диагностических препаратов уже введены в медицинскую практику. Среди лекарств, находящихся в стадии клинического изучения, препараты, потенциально лечащие артрозы, сердечно-сосудистые заболевания, онкологию и СПИД. Среди нескольких сотен генно-инженерных компаний 60% заняты именно разработкой и производством лекарственных и диагностических средств.

«В медицине среди достижений генной инженерии сегодня можно выделить терапию рака, а также другие фармакологические новинки — исследования стволовых клеток, новые антибиотики, прицельно бьющие по бактериям, лечение сахарного диабета. Правда, пока все это на стадии исследований, но результаты многообещающие», — говорит Алевтина Федина.

Сельское хозяйство

В сельском хозяйстве одна из важнейших задач генной инженерии — получение растений и животных, устойчивых к вирусам. В настоящее время уже есть виды, способные противостоять воздействию более десятка различных вирусных инфекций.

Еще одна задача связана с защитой растений от насекомых-вредителей. Путем генетической модификации растений можно уменьшить интенсивность обработки полей пестицидами. Например, трансгенные растения картофеля и томатов стали устойчивы к колорадскому жуку, растения хлопчатника — к разным насекомым, в том числе и к хлопковой совке.

Использование генной инженерии позволило сократить применение инсектицидов (препаратов для уничтожения насекомых) на 40–60%.

Благодаря генной инженерии зерновые культуры стали более устойчивы к климатическим условиям, кроме того появилась возможность увеличить количество витаминов и полезных веществ в продукте. Например, можно обогатить рис витамином «А» и выращивать его в тех регионах, где люди имеют массовую нехватку этого элемента.

С помощью генной инженерии пытаются решить и экологические проблемы. Так, уже созданы особые сорта растений с функцией очистки почвы. Они поглощают цинк, никель, кобальт и иные опасные вещества из загрязненных промышленными отходами почв.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

Скотоводство

В Кемеровской области работа генетиков позволила получить устойчивое к вирусу лейкоза племенное поголовье высокопродуктивных животных. Для проведения эксперимента кузбасские ученые отобрали здоровых коров черно-пестрой породы массой до 500 кг. Животным трансплантировали модифицированные эмбрионы, устойчивые к вирусу лейкоза. В середине сентября 2020 года родилось 19 телят с измененными генами.

«В месячном возрасте была проведена оценка, которая показала, что телята отличаются от своих сверстников только устойчивостью к вирусу. Пять особей отобрали для дальнейшей селекционной работы. Это позволит закрепить наследственные признаки устойчивости к вирусу лейкоза у последующих поколений», — пояснила руководитель проекта, доктор биологических наук, профессор кафедры зоотехнии Кузбасской ГСХА Татьяна Зубова.

По словам Зубовой, лейкоз крупного рогатого скота — вирусная хронически неизлечимая болезнь, при которой возникают поражение кроветворной системы и новообразования. Данное заболевание наносит значительный ущерб генофонду пород и мясной промышленности в целом, потому что мясо зараженных животных запрещено употреблять в пищу. Единственным доступным методом борьбы с лейкозом ранее было только уничтожение зараженного скота.

Этот успех позволяет говорить о том, что в дальнейшем будет возможно редактировать гены крупного рогатого скота и от других болезней.

С прицелом на человека

В 2009 году группа ученых под руководством молодого исследователя Джея Нейтца из Вашингтонского университета сумели с помощью генной терапии вернуть обезьянам способность различать оттенки зеленого и красного, которой они были лишены от рождения.

В область сетчатки глаза двух подопытных обезьян был введен безвредный вирус, несущий недостающий ген фоточувствительного рецептора. Вскоре после процедуры обе обезьяны начали различать оттенки красного и зеленого на сером фоне. Два года наблюдения не выявили у них каких-либо нарушений, поэтому ученые не исключают, что данную методику уже вскоре можно будет применять у людей, страдающих дальтонизмом.

Ученые шагнули еще дальше и уже пробуют выращивать в теле животных органы для трансплантации людям. Для минимизации риска отторжения тканей животным вводят специальные гены. Этими опытами занимается научная лаборатория Рослинского института в Великобритании, которая представила миру овцу Долли.

В 2019 году британские ученые вывели кур, яйца которых содержат два вида человеческих белков, способных противодействовать артриту и некоторым видам онкологических заболеваний. В яйцах содержится человеческий белок под названием IFNalpha2a, обладающий мощными противовирусными и противораковыми свойствами, а также человеческий и свиной вариант белка под названием макрофаг-CSF, который планируют использовать для создания препарата, стимулирующего самостоятельное заживление поврежденных тканей.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

Изменение ДНК человека

Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы.

14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей наследственным иммунодефицитом, обусловленным мутацией в гене аденозиндезаминазы (АDA), были пересажены ее собственные лимфоциты.

Работающая копия гена ADA была введена в клетки крови с помощью модифицированного вируса, в результате чего клетки получили возможность самостоятельно производить необходимый белок. Через шесть месяцев количество белых клеток в организме девочки поднялось до нормального уровня.

После этого область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения различных заболеваний. Уже сегодня с помощью генной терапии можно лечить диабет, анемию и некоторые виды онкологии.

Генная терапия

Генная терапия — введение, удаление или изменение генетического материала, в частности ДНК или РНК, в клетке пациента для лечения определенного заболевания.

Существует три основных стратегии использования генной терапии:

Наиболее часто применяемый метод включает вставку «терапевтического» гена для замены «ненормального» или «вызывающего болезнь».

В 2015 году впервые была проведена процедура изменения ДНК человека с целью продления молодости клеток, когда американке Элизабет Пэрриш 44 лет ввели в организм препарат, влияющий на ДНК, а в 2018 году китайский ученый Хэ Цзянькуй заявил, что с его помощью у двух детей-близнецов якобы изменены гены для выработки у них иммунитета к вирусу ВИЧ, носителем которого являлся их отец.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

Все это, с одной стороны, выглядит грандиозно и обнадеживает, но с другой, — вызывает опасения, ведь генетические манипуляции, теоретически, возможно использовать не только в благих и мирных целях.

После эксперимента с ДНК близнецов в Китае, ЮНЕСКО выступила с инициативой о запрете изменения генов у новорожденных до того момента, пока достоверно не будет доказана безопасность таких манипуляций.

Этическая сторона вопроса

В 1997 году ЮНЕСКО выпустила Всеобщую декларацию о геноме человека и его правах, рекомендовав мораторий на генетическое вмешательство в зародышевую линию человека, а в декабре 2015 года на международном саммите по геномному редактированию человека изменение гаметоцитов и эмбрионов для генерации наследственных изменений у людей было объявлено безответственным.

Российское сообщество генетиков в большинстве своем считает, что такие эксперименты на данный момент преждевременны и требуют более глубокого исследования и обсуждений.

«Вопрос клонирования уже давно стоит на горизонте. Этично ли выращивать клонов, чтобы потом забирать их органы для трансплантации человеку… Большой вопрос. Само собой, это абсолютно нормально, что нет единой точки зрения, ведь смысл подобных дискуссий как раз в том, чтобы найти правильные формулировки и отрегулировать потенциально спасительное, но при этом очень опасное знание», — говорит Алевтина Федина.

Страх неизвестности

Вариантов развития событий в области генной инженерии существует множество, и далеко не все они изучены и, в принципе, известны. Поэтому они должны быть последовательно зафиксированы и регламентированы.

Естественно, больше всего опасений вызывают плохие сценарии развития событий. Как правило, все начинается с помощи людям и изобретения новых лекарств. Но потом человек может прийти к желанию сделать своего ребенка светловолосым и зеленоглазым или создать армию универсальных солдат, не боящихся боли и не ведающих страха.

Олег Долгицкий, социальный философ, отмечает, что современное общество настолько неоднородно в культурном и экономическом плане, что любые методы, способные существенно изменить геном, могут создать условия не только для классового, но и видового расслоения, где представители «первого мира» смогут существенно продлевать свою жизнь и не бояться никаких болезней, в отличие от менее богатых людей. Это является серьезнейшей почвой для конфликтов и столкновений.

Эксперты убеждены, что генная инженерия — это будущее медицины. Возможность избавить младенца от пожизненного гнета заболевания, излечить людей от рака, найти лекарство против ВИЧ — за всем этим будет стоять генная инженерия. При этом желание человека изменить, например, цвет глаз или предотвратить наследственное заболевание, несмотря на все риски, будет только расти. И похоже, что остановить этот процесс уже не представляется возможным.

Источник

рекомбинантная технология

рекомбинантная технология
Технология получения белков с использованием ДНК и генно-инженерных процедур.
[Англо-русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.]

Тематики

Смотреть что такое «рекомбинантная технология» в других словарях:

рекомбинантная структура — Термин рекомбинантная структура Термин на английском Recombinant structure Синонимы Аббревиатуры Связанные термины доставка генов, нанофармакология, векторы на основе наноматериалов Определение Гибридная (англ. recombination рекомбинация)… … Энциклопедический словарь нанотехнологий

Вакцина против вируса гепатита B — Основная статья: Гепатит В Вакцина против вируса гепатита B иммунобиологический препарат, группа вакцин против гепатита В, от разных производителей. Хотя вакцинация лишь один из нескольких способов предупреждения заболеваний,… … Википедия

наномедицина — Термин наномедицина Термин на английском nanomedicine Синонимы молекулярная наномедицина Аббревиатуры Связанные термины «двуликие» частицы, абляция, доставка генов, антитело, бактериофаг, бактериохлорофилл, белки, биодеградируемые… … Энциклопедический словарь нанотехнологий

нанофармакология — Термин нанофармакология Термин на английском nanopharmacology Синонимы Аббревиатуры Связанные термины адгезия, доставка генов, антитело, бактериофаг, белки, биологическая мембрана, гипертермия, ДНК, капсид, квантовая точка, кинезин, клетка … Энциклопедический словарь нанотехнологий

векторы на основе наноматериалов — Термин векторы на основе наноматериалов Термин на английском nanomaterial based vectors Синонимы наноконтейнеры для направленной доставки веществ Аббревиатуры Связанные термины доставка генов, антитело, бактериофаг, биодеградируемые полимеры,… … Энциклопедический словарь нанотехнологий

доставка генов — Термин доставка генов Термин на английском gene delivery Синонимы Аббревиатуры Связанные термины биодеградируемые полимеры, биологическая мембрана, генная инженерия, геном, ДНК, капсид, клетка, липосома, РНК, нанокапсула, нанокапсулирование,… … Энциклопедический словарь нанотехнологий

Хронология изобретений — Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

Изобретения человека — Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

Изобретения — Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

Источник

Рекомбинантный белок: методы получения и применение

Белок является важным компонентом всех организмов. Каждая его молекула состоит из одной или нескольких полипептидных цепей, состоящих из аминокислот. Хотя информация, необходимая для жизни, кодируется ДНК или РНК, рекомбинантные белки выполняют широкий спектр биологических функций в организмах, включая ферментативный катализ, защиту, поддержку, движение и регуляцию. По своим функциям в организме эти вещества можно разделить на разные категории, такие как антитела, ферменты, структурный компонент. Учитывая важные функции такие соединения интенсивно изучались и широко применялись.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии Вам будет интересно: Что такое в русском языке управление? Особенности и нормы управления в русском языке

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

В прошлом основным способом получения рекомбинантного белка было его выделение из природного источника, что, как правило, неэффективно и отнимает много времени. Недавние достижения в области биологических технологий молекул позволили клонировать ДНК, кодирующую определенный набор веществ, в вектор экспрессии веществ, таких как бактерии, дрожжи, клетки насекомых и клетки млекопитающих.

Проще говоря, рекомбинантные белки транслируются продуктами экзогенной ДНК в живых клетках. Их получение обычно содержит два основных этапа:

В настоящее время производство такой структуры является одним из самых мощных методов, используемых в медицине и биологии. Состав имеет широкое применение в исследованиях и биотехнологии.

Медицинское направление

Рекомбинантные белки обеспечивают важные методы лечения различных заболеваний, таких как диабет, рак, инфекционные заболевания, гемофилия и анемия. Обычные составы таких веществ включают антитела, гормоны, интерлейкины, ферменты и антикоагулянты. Существует растущая потребность в рекомбинантных составах для терапевтического применения. Они позволяют расширить методики лечения.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии Вам будет интересно: Глаголы говорения в русском языке: общая характеристика, примеры

рекомбинантные белки, полученные с помощью генной инженерии, играют ключевую роль на рынке терапевтических лекарств. В настоящее время больше всего терапевтических веществ продуцируется в клетках млекопитающих, поскольку их составы способны производить высококачественные вещества, подобные природным. Кроме того, многие одобренные рекомбинантные терапевтические белки вырабатываются в кишечной палочке благодаря хорошей генетике, быстрому росту и высокопродуктивному производству. Это также несет положительный эффект при разработке лекарственных средств на основе этого вещества.

Проведение исследований

Получение рекомбинантных белков строится на разных методах. Вещества помогают выяснить основные и фундаментальные принципы организма. Эти молекулы могут быть использованы для идентификации и определения местоположения вещества, кодируемого конкретным геном, и для раскрытия функции других генов в различных клеточных активностях, таких как передача сигналов клетками, метаболизм, рост, репликация и гибель, транскрипция, трансляция и модификация рассматриваемых в статье составов.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

Таким образом, обозреваемый состав часто используются в молекулярной биологии, клеточной биологии, биохимии, структурных и биофизических исследованиях и многих других областях науки. При этом получение рекомбинантных белков имеет международную практику.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии Вам будет интересно: Дисклеймер – это попытка уйти от ответственности

Такие составы являются полезными инструментами в понимании межклеточных взаимодействий. Они доказали свою эффективность в нескольких лабораторных методах, таких как ИФА и иммуногистохимия (IHC). Рекомбинантные белки могут быть использованы для разработки ферментных анализов. При использовании в сочетании с парой соответствующих антител клетки могут применяться в качестве стандартов, для применения новых технологий.

Биотехнологии

Рекомбинантные белки, содержащие аминокислотную последовательность, также используются в промышленности, производстве продуктов питания, сельском хозяйстве и биоинженерии. Например, в животноводстве ферменты могут добавляться в пищу, чтобы повысить питательную ценность кормовых ингредиентов, снизить затраты и отходы, поддержать здоровье кишечника животных, улучшить производительность и улучшить окружающую среду.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

Кроме того, молочнокислые бактерии (ЛАБ) долгое время использовались для производства ферментированных пищевых продуктов, и недавно ЛАБ была разработана для экспрессии рекомбинантных белков содержащих аминокислотную последовательность, которые могут найти широкое применение, например, для улучшения пищеварения человека, животных и питания.

Однако такие вещества также имеют ограничения:

В целом, достижения в области биотехнологии увеличили и способствовали производству рекомбинантных белков для различных применений. Хотя они все еще имеют некоторые недостатки, вещества важны в медицине, исследованиях и биотехнологии.

Связь с болезнями

рекомбинантный белок вред для человека не несет никакой. Это лишь составная часть общей молекулы при разработке конкретного препарата или элемента питания. Многие медицинские исследования показали, что принудительная экспрессия белка FGFBP3 (сокращенно BP3) в лабораторном штамме мышей с ожирением показала значительное снижение их жировой массы, несмотря на генетическую предрасположенность к употреблению.

Результаты таких опытов показывают, что белок FGFBP3 может предложить новую терапию для устранения нарушений, связанных с метаболическим синдромом, таких как диабет 2 типа и ожирение печени. Но поскольку BP3 является природным белком, а не искусственным лекарственным средством, клинические испытания рекомбинантного человеческого BP3 могут начаться после заключительного раунда доклинических исследований. На, то есть причины связанные с безопасностью проведения таких исследований. Рекомбинантный белок вред для человека не несет и по причине его ступенчатой обработки и очистки. Изменения происходят и на молекулярном уровне.

В экспериментах с проверкой концепции исследователи из Университета Алабамы в Бирмингеме под руководством доктора медицинских наук Х.Лонг Чжэна, профессора Роберта Б. Адамса и директора отдела лабораторной медицины на кафедре патологии в школе UAB Медицины, выдвинули на первый план потенциальную терапию редкого, но смертельного нарушения свертываемости крови, TTP.

Результаты этого исследования впервые демонстрируют, что переливание тромбоцитов, нагруженных rADAMTS13, может быть новым и потенциально эффективным терапевтическим подходом к тромбозу артерий, связанному с врожденным и иммуноопосредованным TTP.

Рекомбинантный белок — это не только питательное вещество, но и лекарственное средство в составе разрабатываемого препарата. Это лишь не многие направления, которые сейчас задействуются в медицине и относящиеся к исследованию всех его структурных элементов. Как показывает международная практика, структура вещества дает возможность на молекулярном уровне бороться со многими серьезными проблемами в организме человека.

Разработка вакцин

Рекомбинантный белок — это определенный набор молекул, которые можно моделировать. Подобное свойство используется и при разработке вакцин. Новая стратегия вакцинации, также известная как использование специальной рекомбинантной вирусной инъекции, может обеспечить защиту миллионов цыплят, которым угрожает серьезное респираторное заболевание, сообщили исследователи из Университета Эдинбурга и Института Пирбрайта. Эти вакцины используют безвредные или слабые версии вируса или бактерии для введения микробов в клетки организма. В этом случае эксперты использовали рекомбинантные вирусы с разными белками спайков в качестве вакцин для создания двух версий безвредного вируса. Существует много различных лекарственных препаратов построенных на это связи.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

Рекомбинантный белок торговые названия и аналоги имеет следующие:

В основном это противоопухолевые препараты, но есть и другие направления в лечении, связанные с этим активным веществом.

Согласно новому исследованию, опубликованному в научном журнале Nature Communications, новая вакцина, также называемая LASSARAB, предназначенная для защиты людей как от лихорадки Ласса, так и от бешенства, показала многообещающие результаты в доклинических исследованиях. Кандидат на инактивированную рекомбинантную вакцину использует ослабленный вирус бешенства.

Исследовательская группа вставила генетический материал вируса Ласса в вектор вируса бешенства, чтобы вакцина экспрессировала поверхностные белки как у Ласса, так и клеток бешенства. Эти поверхностные составы вызывают иммунный ответ против возбудителей инфекций. Затем такая вакцина была инактивирована для «уничтожения» живого вируса бешенства, использованного для изготовления носителя.

Методы получения

Есть несколько систем производства вещества. Общий метод получения рекомбинантного белка строится на получении из синтеза биологического материала. Но есть и другие способы.

В настоящее время существует пять основных систем экспрессии:

Последний вариант особенно подходит для экспрессии трансмембранных белков и токсичных составов. В последние годы вещества, которые трудно экспрессировать обычными внутриклеточными способами, успешно интегрируются в клетках in vitro. В Беларуси получение рекомбинантных белков получило широкое применение. Есть ряд государственных предприятий, занимающихся этим вопросом.

Бесклеточная технология может легко и контролируемо добавлять разнообразные не встречающиеся в природе аминокислоты для достижения сложных процессов модификации, которые трудно решить после обычной рекомбинантной экспрессии. Подобные методы имеют высокую ценность для применения и потенциал для доставки лекарств и разработки вакцин с использованием вирусоподобных частиц. Большое количество мембранных белков было успешно экспрессировано в свободных клетках.

Экспрессия составов

Рекомбинантный белок CFP10-ESAT 6 вырабатывается и применяется для создания вакцин. Такой туберкулезный аллерген позволяет усилить иммунитет и выработать антитела. В общем, молекулярные исследования включают изучение любого аспекта белка, такого как структура, функция, модификации, локализация или взаимодействия. Чтобы исследовать, как конкретные вещества регулируют внутренние процессы, исследователям обычно требуются средства для производства функциональных соединений, представляющих интерес и пользу.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

Учитывая размер и сложность белков, химический синтез не является жизнеспособным вариантом для этого начинания. Вместо этого, живые клетки и их клеточные механизмы обычно используются как фабрики для создания и конструирования веществ на основе предоставленных генетических шаблонов. Система экспрессии рекомбинантных белков в дальнейшем вырабатывает необходимую структуру для создания лекарства. Далее происходит отбор необходимого материала для разной категории препаратов.

В отличие от белков, ДНК легко конструировать синтетически или in vitro, используя хорошо зарекомендовавшие себя методы рекомбинантной. Следовательно, ДНК-матрицы специфических генов, с добавленными репортерными последовательностями или последовательностями аффинных меток или без них, могут быть сконструированы в качестве матриц для экспрессии обозреваемого вещества. Такие составы, полученные из таких ДНК-матриц, и называются рекомбинантными белками.

Традиционные стратегии экспрессии вещества включают трансфекцию клеток с помощью ДНК-вектора, который содержит матрицу, и последующее культивирование клеток с тем, чтобы они транскрибировали и транслировали желаемый белок. Обычно клетки затем лизируют для экстракции экспрессированного состава для последующей очистки. Белок рекомбинантный CFP10-ESAT6 обрабатывается таким образом и проходит систему очистки от возможного образования токсинов. Только после этого он поступает для синтезирования в вакцину.

Как прокариотические, так и эукариотические in vivo системы экспрессии молекулярных веществ широко используются. Выбор системы зависит от типа белка, требований к функциональной активности и желаемого выхода. Эти системы экспрессии включают млекопитающих, насекомых, дрожжей, бактерий, водорослей и клеток. У каждой системы есть свои преимущества и проблемы, и выбор правильной системы для конкретного применения важен для успешной экспрессии обозреваемого в статье вещества.

Экспрессия из млекопитающих

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии Вам будет интересно: Расстояние от Краснодара до Сочи. Особенности поездки по маршруту

Применение рекомбинантных белков позволяет разрабатывать вакцины и лекарства разного уровня. Для этого может задействоваться этот метод получения вещества. Системы экспрессии млекопитающих могут быть использованы для продуцирования белков из животного мира, которые имеют наиболее нативную структуру и активность благодаря своей физиологически релевантной среде. Это приводит к высоким уровням посттрансляционной обработки и функциональной активности. Системы экспрессии млекопитающих могут использоваться для производства антител, сложных белков и соединений для использования в функциональных анализах на основе клеток. Тем не менее, эти преимущества в сочетании с более жесткими условиями культуры.

Системы экспрессии млекопитающих можно использовать для получения белков временно или через стабильные клеточные линии, где конструкция экспрессии интегрирована в геном хозяина. В то время как такие системы могут использоваться в нескольких экспериментах, временная продукция может генерировать большое количество вещества за одну-две недели. Биотехнология рекомбинантных белков такого типа пользуется высоким спросом.

Эти преходящие, высокопродуктивные системы экспрессии млекопитающих используют суспензионные культуры и могут давать выход грамм на литр. Кроме того, эти белки имеют больше нативного фолдинга и посттрансляционных модификаций, таких как гликозилирование, по сравнению с другими системами экспрессии.

Экспрессия из насекомого

Методы получения рекомбинантного белка не ограничиваются только млекопитающими. Есть и более продуктивные способы в плане стоимости производства, хоть и выхода вещества на 1 литр обрабатываемой жидкости значительно ниже.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

Клетки насекомых можно использовать для экспрессии белка высокого уровня с модификациями, подобными системам млекопитающих. Существует несколько систем, которые можно использовать для получения рекомбинантного бакуловируса, который затем можно применять для извлечения, представляющего интерес вещества в клетках насекомых.

Экспрессии рекомбинантных белков могут быть легко расширены и адаптированы к суспензионной культуре высокой плотности для крупномасштабного получения соединения молекул. Они более функционально похожи на нативный состав вещества млекопитающих. Хотя выход может составлять до 500 мг / л, производство рекомбинантного бакуловируса может занимать много времени и условия культивирования более сложные, чем прокариотические системы. Однако в более южных и теплых странах подобный метод считается более эффективным.

Бактериальная экспрессия

Производство рекомбинантных белков может быть налажено и при помощи бактерий. Эта технология намного отличается от описанных выше. Системы экспрессии бактериального белка популярны, потому что бактерии легко культивируются, быстро растут и дают высокие выходы рекомбинантного состава. Тем не менее, мультидоменные эукариотические вещества, экспрессируемые в бактериях, часто являются нефункциональными, потому что клетки не оборудованы для выполнения необходимых посттрансляционных модификаций или молекулярного сворачивания.

Кроме того, многие белки становятся нерастворимыми в виде молекул включения, которые очень трудно восстановить без жестких денатураторов и последующих громоздких процедур рефолдинга молекулярного состава. Такой метод по большей части считается еще во многом экспериментальным.

Бесклеточная экспрессия

Рекомбинантный белок содержащий аминокислотную последовательность стафилокиназы получается несколько иным путем. Он входит в состав многих видов инъекций, от чего требуется несколько систем перед использованием.

Бесклеточная экспрессия белка представляет собой синтез вещества in vitro с использованием совместимых с трансляцией экстрактов целых клеток. В принципе, целые клеточные экстракты содержат все макромолекулы и компоненты, необходимые для транскрипции, трансляции и даже посттрансляционной модификации.

Эти компоненты включают РНК-полимеразу, регуляторные белковые факторы, формы транскрипции, рибосомы и тРНК. При добавлении кофакторов, нуклеотидов и специфической матрицы генов эти экстракты могут синтезировать представляющие интерес белки за несколько часов.

Хотя они не являются устойчивыми для крупномасштабного производства, бесклеточные системы или системы экспрессии белка in vitro (IVT) имеют ряд преимуществ по сравнению с традиционными системами in vivo.

Бесклеточная экспрессия позволяет быстро синтезировать рекомбинантные составы без задействования клеточной культуры. Бесклеточные системы позволяют метить белки модифицированными аминокислотами, а также экспрессировать составы, которые подвергаются быстрой протеолитической деградации внутриклеточными протеазами. Кроме того, с помощью бесклеточного метода проще одновременно экспрессировать много разных белков (например, тестировать мутации белка путем экспрессии в небольшом масштабе из множества различных матриц рекомбинантных ДНК). В этом репрезентативном эксперименте для экспрессии белка каспазы-3 человека использовали систему IVT.

Выводы и перспективы на будущее

Производство рекомбинантного белка теперь можно рассматривать как зрелую дисциплину. Это результат многочисленных постепенных улучшений в очистке и анализе. В настоящее время программы по открытию лекарств редко останавливаются из-за невозможности продуцировать целевой белок. Параллельные процессы для экспрессии, очистки и анализа нескольких рекомбинантных веществ в настоящее время хорошо известны во многих лабораториях по всему миру.

что такое рекомбинантные технологии. Смотреть фото что такое рекомбинантные технологии. Смотреть картинку что такое рекомбинантные технологии. Картинка про что такое рекомбинантные технологии. Фото что такое рекомбинантные технологии

Белковые комплексы и растущий успех в создании солюбилизированных мембранных структур потребуют большего количества изменений, чтобы идти в ногу со спросом. Появление эффективных контрактных исследовательских организаций для более регулярного снабжения белками позволит перераспределить ресурсы науки для решения этих новых задач.

Дополнительно, параллельные рабочие процессы должны позволять создавать полные библиотеки обозреваемого вещества, чтобы обеспечить возможность идентификации новых целей и расширенного скрининга, наряду с традиционными проектами по обнаружению лекарств на основе малых молекул.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *