что такое реактор рбмк
Реактор большой мощности канальный
Из Википедии — свободной энциклопедии
Главный конструктор реакторной установки: НИКИЭТ, академик Доллежаль Н. А.
Научный руководитель проекта: ИАЭ им. И. В. Курчатова, академик Александров А. П.
Генеральный проектировщик (ЛАЭС): ГСПИ-11 (ВНИПИЭТ), Гутов А. И.
Главный конструктор турбоустановки: ХТГЗ, «Турбоатом», Косяк Ю. Ф.
Разработчик металлоконструкции: ЦНИИПСК, Мельников Н. П.
Головная материаловедческая организация: «Прометей», Капырин Г. И.
Проектировщик и изготовитель электромеханического оборудования СУЗ, КТО: КБ завода «Большевик», Клаас Ю. Г.
На данный момент серия этих реакторов включает в себя три поколения. Головной реактор серии — 1-й и 2-й блоки Ленинградской АЭС.
Реактор большой мощности канальный
Элемент о котором идёт речь в статье является радиоактивным, или излучает большую дозу радиации!
Реактор большой мощности канальный (РБМК) — серия энергетических ядерных реакторов, разработанных в Советском Союзе. Реактор РБМК канальный, гетерогенный, графито-водный, кипящего типа, на тепловых нейтронах. Теплоноситель — кипящая вода. Главный конструктор реакторной установки: НИКИЭТ, академик Доллежаль Н. А.
Тип реактора
Назначение реактора
Технические параметры
Теплоноситель
Топливо
Разработка
Научная часть
Предприятие-разработчик
Конструктор
Строительство и эксплуатация
Эксплуатация
Построено реакторов
Научный руководитель проекта: ИАЭ им. И. В. Курчатова, академик Александров А. П.
Генеральный проектировщик (ЛАЭС): ГСПИ-11 (ВНИПИЭТ), Гутов А. И.
Главный конструктор турбоустановки: ХТГЗ, «Турбоатом», Косяк Ю. Ф.
Разработчик металлоконструкции: ЦНИИПСК, Мельников Н. П.
Головная материаловедческая организация: «Прометей», Капырин Г. И.
Проектировщик и изготовитель электромеханического оборудования СУЗ, КТО: КБ завода «Большевик», Клаас Ю. Г.
На данный момент серия этих реакторов включает в себя три поколения. Головной реактор серии — 1-й и 2-й блоки Ленинградской АЭС.
Содержание
История создания и эксплуатации [ ]
Проект [ ]
Реактор первой в мире АЭС (АМ-1 («Атом Мирный»), Обнинская АЭС, 1954 год) был уран-графитовым канальным реактором с водяным теплоносителем. Отработка технологий уран-графитовых реакторов производилась на промышленных реакторах, в том числе реакторах «двойного» назначения (двухцелевых реакторах), на которых, помимо «военных» изотопов, производилась электроэнергия, а тепло использовалось для отопления близлежащих городов.
Центральный зал РБМК-1000, Ленинградская АЭС
С 1960-х годов в СССР начата разработка чисто энергетических реакторов типа будущего РБМК. Некоторые конструкторские решения отрабатывались на опытных энергетических реакторах «Атом Мирный Большой»: АМБ-1 (1964 год) и АМБ-2 (1967 год), установленных на Белоярской АЭС.
Разработка собственно реакторов РБМК началась с середины 60-х годов и опиралась, в значительной мере, на большой и успешный опыт проектирования и строительства промышленных уран-графитовых реакторов. Основные преимущества реакторной установки виделись создателями в:
Работы над проектом начались в ИАЭ (РНЦ КИ) и НИИ-8 (НИКИЭТ) в 1964 году. В 1965 году проект получил название Б-190, а разработка технического проекта была поручена конструкторскому бюро завода «Большевик», так как изначально планировалось, что завод станет головным по изготовлению оборудования для этого типа реакторов. В 1966 году технический проект реактора был представлен на НТС Минсредмаша. Проект не был утвержден из-за ряда технических замечаний и предложений, и дальнейшая работа над проектом была поручена НИИ-8 (НИКИЭТ), руководимому Доллежалем.
Первое поколение [ ]
15 апреля 1966 года главой Минсредмаша Е. П. Славским было подписано задание на проектирование Ленинградской атомной электростанции в 70 км по прямой к западу от Ленинграда в 4 км от поселка Сосновый Бор. В начале сентября 1966 года проектное задание было закончено.
29 ноября 1966 года Советом Министров СССР принято постановление № 800—252 о строительстве первой очереди ЛАЭС, определена организационная структура и кооперация предприятий для разработки проекта и сооружения АЭС.
Первый энергоблок с реактором типа РБМК-1000 запущен в 1973 году на Ленинградской АЭС.
При строительстве первых энергетических АЭС в СССР бытовало мнение, что атомная станция является надёжным источником энергии, а возможные отказы и аварии — маловероятные или даже гипотетические события. Кроме того, первые блоки сооружались внутри системы среднего машиностроения и предполагали эксплуатацию организациями этого министерства. Правила по безопасности на момент разработки либо отсутствовали, либо были несовершенны. По этой причине на первых энергетических реакторах серий РБМК-1000 и ВВЭР-440 не было в достаточном количестве систем безопасности, что потребовало в дальнейшем серьёзной модернизации таких энергоблоков. В частности, в первоначальном проекте первых двух блоков РБМК-1000 Ленинградской АЭС не было гидробаллонов системы аварийного охлаждения реактора (САОР), количество аварийных насосов было недостаточным, отсутствовали обратные клапаны (ОК) на раздаточно-групповых коллекторах (РГК) и пр. В дальнейшем, в ходе модернизации, все эти недостатки были устранены.
Дальнейшее строительство блоков РБМК предполагалось осуществлять для нужд Министерства энергетики и электрификации СССР. Учитывая меньший опыт работы Минэнерго с АЭС, в проект были внесены существенные изменения, повышающие безопасность энергоблоков. Кроме того, были внесены изменения, учитывающие опыт работы первых РБМК. В том числе были применены гидробаллоны САОР, функцию аварийных электронасосов САОР стали выполнять 5 насосов, применены обратные клапаны в РГК, сделаны другие доработки. По этим проектам были построены энергоблоки 1, 2 Курской АЭС и 1, 2 Чернобыльской АЭС. На этом этапе закончилось строительство энергоблоков РБМК-1000 первого поколения (6 энергоблоков).
Второе поколение [ ]
Дальнейшее совершенствование АЭС с РБМК началось с проработки проектов второй очереди Ленинградской АЭС (энергоблоки 3, 4). Основной причиной доработки проекта стало ужесточение правил безопасности. В частности, была внедрена система баллонной САОР, САОР длительного расхолаживания, представленная 4 аварийными насосами. Система локализации аварии была представлена не баком-барботером, как ранее, а башней локализации аварий, способной аккумулировать и эффективно препятствовать выбросу радиоактивности при авариях с повреждением трубопроводов реактора. Были сделаны другие изменения. Основной особенностью третьего и четвёртого энергоблоков Ленинградской АЭС стало техническое решение о расположении РГК на высотной отметке, превышающей высотную отметку активной зоны. Это позволяло в случае аварийной подачи воды в РГК иметь гарантированный залив активной зоны водой. В дальнейшем это решение не применялось.
После строительства энергоблоков 3, 4 Ленинградской АЭС, находящейся в ведении Министерства среднего машиностроения, началось проектирование реакторов РБМК-1000 для нужд Минэнерго СССР. Как отмечалось выше, при разработке АЭС для Минэнерго, в проект вносились дополнительные изменения, призванные повысить надёжность и безопасность АЭС, а также увеличить её экономический потенциал. В частности, при доработке вторых очередей РБМК был применён барабан-сепаратор (БС) большего диаметра (внутренний диаметр доведён до 2,6 м), внедрена трёхканальная система САОР, первые два канала которых снабжались водой от гидробаллонов, третий — от питательных насосов. Увеличено количество насосов аварийной подачи воды в реактор до 9 штук и внесены другие изменения, существенно повысившие безопасность энергоблока (уровень исполнения САОР удовлетворял документам, действовавшим в момент проектирования АЭС). Существенно увеличились возможности системы локализации аварий, которая была рассчитана на противодействие аварии, вызванной гильотинным разрывом трубопровода максимального диаметра (напорный коллектор главных циркуляционных насосов (ГЦН) Ду 900). Вместо баков-барботеров первых очередей РБМК и башен локализации 3 и 4 блоков ЛАЭС, на РБМК второго поколения Минэнерго были применены двухэтажные бассейны-локализаторы, что существенно повысило возможности системы локализации аварий (СЛА). Отсутствие гермооболочки компенсировалось стратегией применения системы плотно-прочных боксов (ППБ), в которых располагались трубопроводы контура многократной принудительной циркуляции теплоносителя. Конструкция ППБ, толщина стен рассчитывались из условия сохранения целостности помещений при разрыве находящегося в нём оборудования (вплоть до напорного коллектора ГЦН Ду 900 мм). ППБ не охватывался БС и пароводяные коммуникации. Также при строительстве АЭС реакторные отделения строились дубль-блоком, что означает, что реакторы двух энергоблоков находятся по существу в одном здании (в отличие от предыдущих АЭС с РБМК, в которых каждый реактор находился в отдельном здании). Так были исполнены реакторы РБМК-1000 второго поколения: энергоблоки 3 и 4 Курской АЭС, 3 и 4 Чернобыльской АЭС, 1 и 2 Смоленской АЭС (итого, вместе с 3 и 4 блоком Ленинградской АЭС, 8 энергоблоков).
После Чернобыльской аварии [ ]
До аварии на Чернобыльской АЭС в СССР существовали обширные планы строительства таких реакторов, однако после аварии планы по сооружению энергоблоков РБМК на новых площадках были свёрнуты. После 1986 года были введены в эксплуатацию два реактора РБМК: РБМК-1000 Смоленской АЭС (1990 год) и РБМК-1500 Игналинской АЭС (1987 год). Ещё один реактор РБМК-1000 5-го блока Курской АЭС находился в стадии достройки и к 2012 году было достигнуто
85 % готовности, однако строительство было окончательно прекращено.
Характеристики РБМК [ ]
Характеристика | РБМК-1000 | РБМК-1500 | РБМКП-2400 | |
---|---|---|---|---|
Тепловая мощность реактора, МВт | 3200 | 4800 | 5400 | 4250 |
Электрическая мощность блока, МВт | 1000 | 1500 | 2000 | 1500 |
КПД блока (брутто), % | 31,25 | 31,25 | 37,04 | 35,3 |
Давление пара перед турбиной, атм | 65 | 65 | 65 | 65? |
Температура пара перед турбиной, °C | 280 | 280 | 450 | |
Размеры активной зоны, м: | ||||
— высота | 7 | 7 | 7,05 | 7 |
— диаметр (ширина×длина) | 11,8 | 11,8 | 7,05×25,38 | 14 |
Загрузка урана, т | 192 | 189 | 220 | |
Обогащение, % 235 U | ||||
— испарительный канал | 2,6-3,0 | 2,6-2,8 | 1,8 | 2-3,2 |
— перегревательный канал | — | — | 2,2 | — |
Число каналов: | ||||
— испарительных | 1693-1661 [6] | 1661 | 1920 | 1824 |
— перегревательных | — | — | 960 | — |
Среднее выгорание, МВт·сут/кг: | ||||
— в испарительном канале | 22,5 | 25,4 | 20,2 | 30-45 |
— в перегревательном канале | — | — | 18,9 | — |
Размеры оболочки твэла (диаметр×толщина), мм: | ||||
— испарительный канал | 13,5×0,9 | 13,5×0,9 | 13,5×0.9 | — |
— перегревательный канал | — | — | 10×0,3 | — |
Материал оболочек твэлов: | ||||
— испарительный канал | Zr + 2,5 % Nb | Zr + 2,5 % Nb | Zr + 2,5 % Nb | — |
— перегревательный канал | — | — | Нерж. сталь | — |
Число ТВЭЛов в кассете (ТВС) | 18 | 18 | ||
Количество кассет (ТВС) | 1693 | 1661 |
Конструкция [ ]
РБМК-1000 [ ]
Схема энергоблока АЭС с реактором типа РБМК
Тепловыделяющая сборка реактора РБМК: 1 — дистанционирущая проставка 2 — оболочка твэл 3 — таблетки ядерного топлива
Основу активной зоны РБМК-1000 составляет графитовый цилиндр высотой 7 м и диаметром 11,8 м, сложенный из блоков меньшего размера, который выполняет роль замедлителя. Графит пронизан большим количеством вертикальных отверстий, через каждое из которых проходит труба давления (также называемая технологическим каналом (ТК)). Центральная часть трубы давления, расположенная в активной зоне, изготовлена из сплава циркония с ниобием (Zr + 2,5 % Nb), обладающего высокой механической и коррозионной устойчивостью, верхние и нижние части трубы давления — из нержавеющей стали. Циркониевая и стальные части трубы давления соединены сварными переходниками.
Реактор РБМК работает по одноконтурной схеме. Циркуляция теплоносителя осуществляется в контуре многократной принудительной циркуляции (КМПЦ). В активной зоне вода, охлаждающая твэлы, частично испаряется и образующаяся пароводяная смесь поступает в барабаны-сепараторы. В барабан-сепараторах происходит сепарация пара, который поступает на турбоагрегат. Остающаяся вода смешивается с питательной водой и с помощью главных циркуляционных насосов (ГЦН) подается в активную зону реактора. Отсепарированный насыщенный пар (температура
284 °C) под давлением 70—65 кгс/см 2 поступает на два турбогенератора электрической мощностью по 500 МВт. Отработанный пар конденсируется, после чего, пройдя через регенеративные подогреватели и деаэратор, подается с помощью питательных насосов (ПЭН) в КМПЦ.
Реакторы РБМК-1000 установлены на Ленинградской АЭС, Курской АЭС, Чернобыльской АЭС, Смоленской АЭС.
Авария на ЧАЭС [ ]
Основная статья: Авария на Чернобыльской АЭС
РБМК-1500 [ ]
В РБМК-1500 мощность повышена за счёт увеличения удельной энергонапряжённости активной зоны путём увеличения мощности ТК (топливных каналов) [прояснить] в 1,5 раза при сохранении его конструкции. Это достигается интенсификацией теплосъёма с твэлов при помощи применения в ТВК [прояснить] специальных интенсификаторов теплообмена (турбулизаторов) [11] в верхней части обеих ТВС. Всё вместе это позволяет сохранить прежние габариты и общую конструкцию реактора. [12] [13]
В процессе эксплуатации выяснилось, что из-за высоких неравномерностей энерговыделения, периодически возникающие повышенные (пиковые) мощности в отдельных каналах приводят к растрескиванию оболочек твэлов. По этой причине мощность была снижена до 1300 МВт.
Данные реакторы были установлены на Игналинской АЭС (Литва).
РБМК-2000, РБМК-3600, РБМКП-2400, РБМКП-4800, (прежние проекты) [ ]
В силу общей особенности конструкции реакторов РБМК, в которой активная зона, подобно кубикам, набиралась из большого числа однотипных элементов, идея дальнейшего увеличения мощности напрашивалась сама собой.
РБМК-2000, РБМК-3600 [ ]
В проекте РБМК-2000 увеличение мощности планировалось за счёт увеличения диаметра топливного канала, числа твэлов в кассете и шага трубной решётки ТК. При этом сам реактор оставался в прежних габаритах. [14]
РБМКП-2400, РБМКП-4800 [ ]
Основная статья: РБМКП-2400
В проектах РУ РБМКП-2400 и РБМКП-4800 активная зона имеет вид не цилиндра, а прямоугольного параллелепипеда. Для достижения температуры пара в 450 °C реакторы оснащены пароперегревательными каналами, а оболочки ТВЭЛов изготавливаются из нержавеющей стали. Чтобы канальные трубы не поглощали слишком много нейтронов, их можно оставить циркалоевыми ru en (Zr+Sn), а между ТВС и стенкой канала поставить кожух с насыщенным паром. Реакторы разделены на секции для остановки отдельных частей, а не всего реактора. [16]
МКЭР (современные проекты) [ ]
Проекты РУ МКЭР являются эволюционным развитием поколения реакторов РБМК. В них учтены новые, ужесточившиеся требования безопасности и устранены главные недостатки прежних реакторов данного типа.
Ожидаемый КПД — 35,2 %, срок службы 50 лет, обогащение 2,4 %.
Достоинства [ ]
Недостатки [ ]
Практика эксплуатации [ ]
[33] В общей сложности было сдано в эксплуатацию 17 энергоблоков с РБМК. Срок окупаемости серийных блоков второго поколения составил 4-5 лет.
Согласно базе данных PRIS МАГАТЭ, кумулятивный КИУМ по всем действующим энергоблокам составляет для РБМК — 69,71 %; для ВВЭР — 71,54 % (данные по Российской Федерации с начала ввода блока по 2008 год; учтены только действующие блоки).
Распухание графита [ ]
В 2011 году очередное обследование состояния реактора первого энергоблока ЛАЭС выявило преждевременное искривление графитовой кладки, вызванное радиационным распуханием графита и его последующим растрескиванием. [34] В 2012 году, на 37-м году эксплуатации, реактор был остановлен в связи с достижением предельных величин смещения кладки. В течение 1,5 лет были найдены технологические решения, позволившие уменьшить деформацию кладки путем пропилов в графите, компенсирующих распухание и формоизменение. [35]
В 2013 году реактор вновь был запущен, однако увеличивающиеся темпы накопления дефектов потребовали проведения практически ежегодных работ по коррекции кладки. Тем не менее удалось сохранить работоспособность реактора вплоть до окончания планового срока службы в 2018 году. [36] Уже в 2013 году аналогичные работы понадобилось начать на втором энергоблоке Курской АЭС, в 2014 году на втором энергоблоке ЛАЭС, в 2015 на первом энергоблоке Курской АЭС.
Крупные аварии на энергоблоках с РБМК [ ]
[37] Наиболее серьёзные инциденты на АЭС с реакторами РБМК:
Причины аварии 1986 года были и остаются предметом горячих споров. Различные группы исследователей приходили к различным заключениям о причинах аварии. Официальная правительственная комиссия СССР назвала в качестве главной причины действия персонала, нарушавшие технологический регламент. Данной точки зрения также придерживается главный проектировщик — НИКИЭТ. Комиссия Госатомнадзора СССР пришла к выводу о том, что главной причиной аварии являлась неудовлетворительная конструкция реактора. С учётом доклада Госатомнадзора СССР свои выводы об аварии скорректировало МАГАТЭ. После аварии 1986 проведена большая научно-техническая работа по модернизации безопасности реактора и его управления.
Авария 1991 года в машинном зале второго блока ЧАЭС была вызвана отказами оборудования, не зависящими от реакторной установки. В процессе аварии вследствие пожара произошло обрушение кровли машинного зала. В результате пожара и обрушения кровли были повреждены трубопроводы подпитки реактора водой, а также заблокирован в открытом положении паросбросный клапан БРУ-Б. Несмотря на многочисленные отказы систем и оборудования, сопровождавшие аварию, реактор проявил хорошие свойства самозащищённости (благодаря своевременным действиям оперативного персонала в части подпитки КМПЦ по нештатной схеме), что предотвратило разогрев и повреждение топлива.
Разрыв одного канала на третьем блоке ЛАЭС в 1992 году был вызван дефектом клапана.
Состояние на 2018 год [ ]
[40] Основная статья: Список АЭС с реакторами РБМК
По состоянию на 2018 год эксплуатируется 10 энергоблоков с РБМК на трёх АЭС: Ленинградской, Курской, Смоленской. По политическим причинам (в соответствии с обязательствами Литвы перед Евросоюзом) остановлено два энергоблока на Игналинской АЭС. Также остановлено три энергоблока (№ 1, 2, 3) на Чернобыльской АЭС [41] ; ещё один блок (№ 4) ЧАЭС был разрушен в результате аварии 26 апреля 1986 года.
Список сокращений, терминология РБМК [ ]
Советский реактор РБМК: 35 лет после Чернобыльской катастрофы
Тридцать пять лет назад на АЭС Форсмарк в Швеции сработала система предупреждения о радиационной опасности. После расследования было установлено, что источником радиации была не сама электростанция, а нечто, находящееся за её пределами. В итоге, с учётом направления господствующих ветров, было выяснено, что радиация пришла с советской территории. Советское правительство, после некоторых политических распрей, признало, что источником радиационного заражения была Чернобыльская атомная электростанция, на которой произошла авария.
Причины катастрофы были тщательно исследованы и сейчас у нас есть достаточно хорошее понимание того, что тогда случилось. Возможно, самый важный урок, который человечество вынесло из Чернобыльской катастрофы, заключается в том, что её причиной нельзя назвать недочёты конкретного реактора, или неправильные действия персонала в зале управления АЭС, или особенности отдельно взятого тоталитарного режима. Причиной происшествия такого масштаба стала целая цепь событий.
В пользу этой идеи говорит тот факт, что оставшиеся реакторы серии РБМК, включая три установки на Чернобыльской АЭС, функционировали без заметных проблем с 1986 года, а девять из них работают до сих пор. В ходе международного расследования причин возникновения Чернобыльской катастрофы в соответствующих отчётах МКГЯБ постоянно говорится о недостаточном уровне «культуры безопасности».
Анализ обстоятельств, которые привели к созданию четвёртого энергоблока Чернобыльской АЭС и к последующему его использованию, потенциально опасному, может дать человечеству множество знаний о предотвращении катастроф. Это — история о том, какую важную роль культура безопасности играет в отраслях промышленности, где цена аварий измеряется человеческими жизнями.
▍Анатомия катастрофы
За два года до аварии на Чернобыльской АЭС, в ночь на 3 декабря 1984 года, в индийском городе Бхопал погибло более двух тысяч человек. Тогда на близлежащем химическом заводе компании Union Carbide India Ltd случился выброс смертельно опасного вещества — метилизоцианата. В последующие годы умерло ещё более тысячи человек, а общее число пострадавших составило около полумиллиона.
Резервуар E610 — источник смертоносного газа
Заражённые почва и грунтовые воды вокруг завода, теперь заброшенного, до сих пор представляют опасность, но люди продолжают жить в тех местах.
К катастрофе в Бхопале привели низкий уровень технического обслуживания оборудования, неисправные средства защиты, а также — отсутствие культуры безопасности. Всё это вместе позволило воде проникнуть через неисправные вентили в резервуар с метилизоцианатом, что привело, в результате экзотермической реакции, к образованию смертоносного газа. Американская компания-владелец завода (теперь она называется The Dow Chemical Company) не очистила место аварии после закрытия завода в 1986 году. Теперь эта задача возложена на местные власти.
Катастрофа 1986 года в Чернобыле во многом похожа на аварию в Бхопале. В частности — недостаточным уровнем культуры безопасности. Всё началось ещё на этапе проектирования реактора РБМК (реактор большой мощности канального типа), когда, ради экономии, было решено использовать природный уран, а не обогащённый уран-235. Это означало увеличение размеров реактора, что привело к принятию решения о том, что в конструкции реактора не нужен корпус, который имеется у реакторов других типов (например — у корпусных водо-водяных энергетических реакторов, ВВЭР). Корпус РБМК оказался бы слишком большим и слишком дорогим.
В РБМК имеется множество систем обеспечения безопасности, включая применение независимых петель контура охлаждения реактора, использования системы аварийного охлаждения реактора (САОР) и системы аварийного отключения реактора (SCRAM). Но там не было чего-то такого, что не дало бы операторам реактора по собственному усмотрению отключить все эти системы безопасности. В результате то, что должно было стать простым испытанием турбогенератора в режиме выбега (что предусматривало использование кинетической энергии, запасённой во вращающемся роторе турбогенератора, для выработки электроэнергии, необходимой для питания циркуляционных насосов в аварийной ситуации), превратилось в катастрофу.
▍Игры с реактивностью реактора
У каждого легководного реактора, где для охлаждения ядра реактора используется обычная вода, есть два основных параметра, которые позволяют узнать о том, в каком режиме работает реактор — в номинальном, или нет, отклоняясь от него в большую или меньшую сторону. Они имеют отношение к реактивности реактора — к количеству нейтронов с определённой скоростью (температурой нейтронов), присутствующих в некий момент времени в нейтронном эффективном сечении используемого в реакторе топлива.
В случае с ураном-235 необходимы так называемые тепловые нейтроны, но в ходе цепной ядерной реакции производится множество более быстрых нейтронов (их называют «быстрыми нейтронами»). Быстрые нейтроны могут быть замедлены до состояния тепловых нейтронов с использованием замедлителей нейтронов. Это повышает реактивность реактора. Для снижения реактивности реактора используются поглотители нейтронов, которые могут быть представлены водой и управляющими стержнями, которые часто делают из карбида бора.
В большинстве легководных реакторов обычная вода используется и для замедления нейтронов, и для поглощения нейтронов. А это значит, что если реактивность реактора возрастает, повышается скорость закипания воды, что увеличивает количество пара. Появление пара означает ухудшение возможностей замедления нейтронов, а это, в свою очередь, приводит к уменьшению количества имеющихся тепловых нейтронов, что создаёт цикл отрицательной обратной связи. Это — то, что называется отрицательным паровым коэффициентом реактивности.
Верхняя часть реактора РБМК Ленинградской АЭС
У интересующего нас реактора РБМК второго поколения много общего с прототипом ядерного реактора первого поколения, в котором используется графитовый замедлитель. Собственно говоря, в РБМК графит тоже использовался в роли замедлителя нейтронов. Хотя это позволяло применять природный уран, это ещё и означало то, что РБМК работал с положительным паровым коэффициентом реактивности. Когда вода в контуре охлаждения реактора закипала и в ней возникали пузырьки, её возможности по поглощению нейтронов ухудшались, а эффект замедления нейтронов не менялся, что создавало возможность возникновения бесконтрольной ядерной реакции.
Эта неоднозначная особенность была признана приемлемой, так как она позволяла реакторам РБМК выдавать тепловую мощность, значительно превышающую ту, которую обеспечивали западные реакторы того времени. Предполагалось, что у хорошо обученного персонала не будет проблем с управлением реактором РБМК.
Как уже было бесчисленное количество раз доказано, например, когда затонул Титаник, менеджеры и маркетологи регулярно берут верх над инженерами. Любая катастрофа, которой можно было бы избежать за счёт правильного обслуживания техники и тщательного обучения персонала, становится неизбежной в условиях отсутствия культуры безопасности.
▍Закон Мёрфи в действии
Когда было запланировано отключение четвёртого энергоблока Чернобыльской АЭС для обслуживания, было решено провести на нём эксперимент с турбогенератором, для чего была отключена САОР. Но, прямо перед тем, как было запланировано начать эксперимент, решено было оставить реактор в работающем состоянии ещё на 11 часов, так как энергосеть нуждалась в энергии, вырабатываемой энергоблоком. Эта задержка привела к тому, что персонал дневной смены, который и должен был проводить эксперимент, сменился сотрудниками вечерней смены. Им, как результат, из-за отключённой САОР, пришлось вручную регулировать вентили гидравлической системы реактора.
Когда на службу пришли работники ночной смены, ожидающие, что им придётся иметь дело с остановленным и остывающим реактором, им сообщили о том, что эксперимент должны проводить они. Это означало, что мощность реактора нужно было снизить, перейти с полной мощности к 700 — 1000 МВт (тепловых), а потом — прекратить подачу пара на турбину.
Схема контуров охлаждения РБМК
У реактора РБМК есть одна особенность, которая выражается в том, что он крайне нестабилен и сложен в управлении на низких уровнях мощности. Учитывая положительный паровой коэффициент реактивности, несовершенство конструкции управляющих стержней и образование, в качестве побочного продукта работы реактора, ксенона-135, поглощающего много нейтронов, мощность реактора упала менее чем до 100 МВт. Это привело к тому, что операторы начали убирать всё больше и больше управляющих стержней (включая стержни, имеющие отношение к автоматической системе управления) в попытке увеличить реактивность реактора. Это позволило реактивности медленно вырасти и дойти до уровней, близких к тем, которые требовались для проведения эксперимента.
Поток охлаждающей жидкости в ядре реактора был усилен для получения большего количества пара, но это понизило реактивность, поэтому два насоса были остановлены для того чтобы снова повысить реактивность реактора. В этой ситуации, когда практически все управляющие стержни были вынуты из реактора, и когда были отключены все системы безопасности, эксперимент свернули, несмотря на то что падение мощности, выдаваемой замедляемым генератором, привело к понижению давления воды, охлаждающей реактор. И, наконец, было принято решение воспользоваться системой аварийного отключения реактора, что привело бы к сравнительно быстрому вводу управляющих стержней в реактор для его остановки.
Стержни вытесняли воду из каналов, создавая пустоты, а графит на концах стержней способствовал повышению реактивности реактора. В результате роста реактивности в нижней части реактора теплоотдача реактора подскочила примерно до 30000 МВт (при номинальной теплоотдаче в 3000 МВт). Вода, охлаждающая реактор, немедленно закипела, циркониевая оболочка топливных стержней расплавилась, она прореагировала с паром, а в результате этой реакции выделился водород.
▍Конец эпохи РБМК
В наши дни всё ещё работают девять реакторов РБМК. Все они расположены в России. А три реактора, оставшиеся на Чернобыльской АЭС, были постепенно выведены из эксплуатации. Работающие реакторы РБМК усовершенствовали, учтя опыт катастрофы. А именно, речь идёт о следующих улучшениях:
Учитывая то, что реакторы типа РБМК и подобные им в наши дни совершенно не пользуются поддержкой общественности, в России будущее атомной электроэнергетики строится на реакторах типа ВВЭР. В частности, речь идёт о реакторе ВВЭР-1200, относящемуся к поколению 3+. В таких реакторах обычная вода используется для замедления нейтронов, для охлаждения реактора, а так же — для поглощения нейтронов. Такие реакторы, при создании которых соблюдаются международные стандарты безопасности, заменят в будущие годы оставшиеся на российских атомных электростанциях реакторы РБМК.
▍Всё дело — в культуре безопасности
Интересным противопоставлением идее о том, что реактор РБМК так опасен из-за положительного парового коэффициента реактивности, являются принципы, по которым построены реакторы CANDU (Canada Deuterium Uranium — тяжеловодные водо-водяные ядерные реакторы производства Канады). Эти реакторы привлекают к себе так мало внимания, что обычные люди, не являющиеся гражданами Канады, обычно не знают о том, что в Канаде есть атомная промышленность, и о том, что Канада экспортирует эти реакторы во многие страны.
При этом в реакторах CANDU изначально использовался природный уран и они отличаются положительным паровым коэффициентом реактивности. Но, несмотря на это, активные и пассивные системы защиты таких реакторов способны предотвратить нечто вроде тех ошибок персонала, которые были совершены в Чернобыле, или что-то вроде частичного расплавления активной зоны реактора (при отрицательном паровом коэффициенте реактивности) при аварии на АЭС Три-Майл-Айленд. В последнем случае оператор взял на себя управление системой безопасности, в результате события развивались по сценарию, напоминающему неудачный эксперимент в Чернобыле.
Похожие причины лежат в основе аварии на АЭС Фукусима-1, которая произошла в 2011 году в Японии. Об этом говорится в отчёте Национального парламента Японии. Низкий уровень культуры безопасности и широкое распространение коррупции, доходящей до высших правительственных кругов, привело к тому, что системы безопасности электростанции не поддерживались в актуальном состоянии. АЭС не вполне соответствовала стандартам устойчивости к землетрясениям. Она не была модернизирована в соответствии с рекомендациями американской регулирующей организации.
Разлив смеси угольной золы и воды из отстойника (угольная электростанция в Кингстоне, аэрофотоснимок)
Но, даже учитывая вышесказанное, происшествия на атомных электростанциях чрезвычайно редки, благодаря чему атомная энергетика входит в число самых безопасных форм генерирования электроэнергии (с учётом количества выработанной энергии). Пожалуй, даже большее беспокойство, чем отдельные инциденты, вызывает то, что низкая культура безопасности характерна не только для атомной промышленности. Похожая ситуация наблюдается и во многих других сферах, о чём красноречиво говорят авария в Бхопале и другие крупные техногенные катастрофы. В США за расследование происшествий в сфере химической промышленности отвечает Совет по химической безопасности и расследованию угроз (Chemical Safety and Hazard Investigation Board, CSB).
CSB занимается, помимо подготовки официальных отчётов, съёмкой документальных фильмов, которые можно найти на его YouTube-канале. Авторы этих материалов стремятся донести до сознания читателей и зрителей тот факт, что культура безопасности — это не что-то такое, что можно принимать как данность, или что-то такое, на что можно вообще не обращать внимания, не опасаясь каких-либо проблем. В США, несмотря на то, что режим там вовсе не тоталитарный, почему-то регулярно происходят промышленные катастрофы, которые убивают и калечат сотни человек.
Из отчётов CSB можно сделать вывод о том, что, хотя радиоактивные материалы и могут выглядеть довольно-таки страшными, не стоит недооценивать опасность чего-то, на первый взгляд, совершенно невинного, вроде древесных опилок или муки. И если хотя бы допускать существование опасных ситуаций — это уже будет первым шагом к тому, что кто-то сможет назвать худшим рабочим днём в своей жизни. У этого правила нет исключений.
▍В безопасности нет такого понятия, как «Я»
Никому не хотелось бы быть тем самым членом команды, которому приходится указывать другим на очевидные огрехи в безопасности, связанные с конструкцией каких-то устройств или с выполнением каких-то процедур. И, точно так же, никого не прельстит перспектива быть стукачом, который закладывает своих коллег, нарушающих правила техники безопасности. Но, в то же время, один человек не в состоянии склонить целую компанию или страну к совершенствованию процедур обеспечения безопасности.
Для того чтобы создавать и внедрять правила безопасности, для того, чтобы им следовать, не нужно прилагать непомерных усилий. Но, если безопасности уделяется мало внимания, значит — возникновение очередной катастрофы, которую легко можно было бы предотвратить, это — лишь вопрос времени, в чём бы такая катастрофа ни выражалась. Правила безопасности нельзя назвать чем-то невероятно привлекательным или вызывающим всеобщее восхищение. Но часто они представляют собой именно ту границу, которая отделяет скучный рабочий день от дня, в который завод сравняло с землёй взрывом, унёсшим множество жизней, или от дня аварии, в результате которой смесь угольной золы с водой превратила всё вокруг в пустыню.
Мы должны помнить не только о Чернобыле, но и о Бхопале, и о других подобных катастрофах, которые забрали уже очень много жизней и продолжат их забирать до тех пор, пока мы, как общество, не сделаем культуру безопасности частью повседневной жизни в каждом уголке Земли.
Как вы оцениваете уровень культуры безопасности, сложившийся в той сфере, в которой вы работаете?