что такое радиус вращения точки
Метод вращения вокруг оси
Одним из наиболее эффективных методов определения метрических характеристик плоских фигур является вращение вокруг оси, в качестве которой обычно используют линию уровня или проецирующую прямую.
Способ вращения вокруг проецирующей прямой
Перемещение точки при её вращении вокруг проецирующей прямой является частным случаем параллельного перемещения и подчиняется следующим правилам.
Руководствуясь рассмотренными правилами, повернем отрезок CD в положение, параллельное фронтальной плоскости проекции. В качестве оси вращения i будем использовать горизонтально проецирующую прямую, проведенную через точку D.
При повороте отрезка положение точки D не изменится, поскольку она лежит на оси i. Точку C’ переместим по дуге окружности радиусом C’D’ в положение C’1 так, чтобы выполнялось условие C’1D’1 || X. Для нахождения точки C»1 из C» проведем прямую, параллельную оси X, до пересечения её с линией связи, восстановленной из т. C’1.
На следующем рисунке показан способ перевода отрезка в горизонтально проецирующее положение. Построения выполнены в два этапа и описаны ниже.
Сначала вращением вокруг оси i1 CD перемещают в положение C1D1, параллельное фронтальной плоскости проекции. После этого вращением вокруг оси i2 отрезок переводится в искомое положение C2D2, где он перпендикулярен горизонтальной плоскости проекции.
Расположение осей вращения выбирают исходя из удобства дальнейших построений. В нашей задаче горизонтально проецирующая прямая i1 проходит через точку D, а проекция i»2 фронтально проецирующей прямой i2 лежит на продолжении отрезка C»1D»1.
Способ вращения вокруг линии уровня
Действенным и наиболее рациональным приемом решения задач, в которых требуется определить натуральную величину угла, является способ вращения вокруг линии уровня.
Основные правила построения
Рассмотрим, как определить действительную величину угла между прямыми a и b, пересекающимися в точке A. Построения представлены на рисунке и выполнены согласно алгоритму, который описан ниже.
Научная электронная библиотека
Пиралова О. Ф., Ведякин Ф Ф.,
5.5. Способ вращения. Вращение вокруг проецирующей прямой
Сущность этого способа заключается в том, что система плоскостей проекций П2/П1 остается неподвижной, а положение геометрических элементов изменяется путем вращения вокруг одной или двух выбранных осей до нужного положения в данной системе. В качестве оси вращения в этом случае удобнее всего выбирать проецирующие прямые или прямые уровни, тогда точка будет вращаться в плоскостях, параллельных или перпендикулярных плоскостям проекций.
При вращении используются следующие элементы вращения:
– ось вращения – прямая, вокруг которой осуществляется вращение.
– плоскость вращения – плоскость, проходящая через вращаемую точку и перпендикулярная оси вращения (плоскость окружности, которую описывает точка при вращении).
– центр вращения – точка пересечения оси вращения и плоскости вращения.
– радиус вращения – кратчайшее расстояние от вращаемой точки до центра (оси) вращения. Радиус всегда перпендикулярен оси вращения.
– угол поворота – угол между начальным и конечным положением радиуса вращения.
При вращении системы точек вокруг одной оси все точки вращаются в плоскостях, параллельных между собой, поворачиваются на один и тот же угол в одном и том же направлении, поэтому вращение является частным случаем плоскопараллельного перемещения. Точки, находящиеся на оси вращения остаются неподвижными.
Способ вращения состоит в том, что данная геометрическая фигура вращается вокруг некоторой неподвижной оси до требуемого положения относительно неподвижных плоскостей проекций. При этом каждая точка фигуры, например точка А (рис. 5.13), описывает окружность, расположенную в плоскости β, перпендикулярной оси вращения i. Центр O этой окружности является точкой пересечения оси вращения с плоскостью β. Радиус окружности равен расстоянию точки А до оси i (|R| = |AO|).
При вращении точки вокруг оси, перпендикулярной горизонтальной плоскости проекций, ее фронтальная проекция перемещается перпендикулярно линиям связи, а горизонтальная – по окружности, центром которой является горизонтальная проекция оси вращения.
Рис. 5.13. Пример вращения точки вокруг оси,
перпендикулярной плоскости
При вращении точки вокруг оси, перпендикулярной фронтальной плоскости проекций, ее горизонтальная проекция перемещается перпендикулярно линиям связи, а фронтальная – по окружности, центром которой является фронтальная проекция оси вращения (рис. 5.14).
Рассмотрим вращение точки A(A1,A2,А3) вокруг горизонтально проецирующей прямой i (i1,i2,i3).
При вращении точка описывает окружность, плоскость которой β(β2) перпендикулярна оси i (i1,i2,i3). Поскольку i ⊥ П1, а β(β2) ⊥ i, β(β2) // П1 и угол поворота проецируется на П1 в натуральную величину.
Рассмотрим вращение точки A(A1,A2,А3) вокруг горизонтально проецирующей прямой i (i1,i2,i3).
При вращении точка описывает окружность, плоскость которой β(β2) перпендикулярна оси i (i1,i2,i3). Поскольку i ⊥ П1, а β(β2) ⊥ i, β(β2) // П1 и угол поворота проецируется на П1в натуральную величину.
Таким образом, при вращении вокруг горизонтально проецирующей прямой i(i1,i2) проекции точки A1, А’1, А»1, А»’1 перемещаются по окружности ℓ1 с центром в точке О1 и радиусом R = R1 = ОА = O1A1, фронтальные проекции A2, А’2, А»2, А»’2 перемещается по проекции фронтального следа плоскости β2 в пределах отрезка [А2,А»2].
Рассмотрим вращение точки A(A1,A2,А3) вокруг горизонтально проецирующей прямой i(i1,i2,i3).
Рис. 5.14. Пример вращения точки А вокруг
горизонтально проецирующей прямой i (i ⊥ П1)
При вращении точка описывает окружность, плоскость которой β(β2) перпендикулярна оси i(i1,i2,i3). Поскольку i ⊥ П, а β(β2) ⊥ i, β(β2) // П1 угол поворота проецируется на П1в натуральную величину.
Таким образом, при вращении вокруг горизонтально проецирующей прямой i(i1,i2) проекции точки A1, А’1, А»1, А»’1перемещаются по окружности ℓ1 с центром в точке О1 и радиусом R = R1= ОА = O1A1, фронтальные проекции A2, А’2, А»2, А»’2 перемещается по проекции фронтального следа плоскости β2 в пределах отрезка [А2, А»2].
Если точка А вращается вокруг оси i ⊥ П1, то плоскость β, в которой располагается окружность, описываемая точкой, становится горизонтальной плоскостью уровня (β || П1).
Следовательно, окружность, описываемая точкой А в пространстве, спроецируется на плоскость П1 без искажения, а на плоскость П2 – в отрезок прямой A2 А»2, совпадающей с фронтальным следом плоскости β2.
Таким образом, вращение точки A вокруг горизонтально проецирующей прямой i(i1,i2) на комплексном чертеже (рис. 5.15.а) изображено следующим образом:
1) горизонтальная проекция A1, точки А перемещается по окружности радиуса | R | = | АО | = | А1О1 |;
2) фронтальная проекция А2 точки А перемещается по прямой, перпендикулярной линиям связи (вырожденная фронтальная проекция β2 плоскости β ║П1);
3) угол поворота φ° горизонтальной проекции A1 точки А равен углу поворота точки в пространстве.
Рис. 5.15. Вращение точки А вокруг горизонтально проецирующей (а)
и фронтально проецирующей (б) прямых
Вращение точки A вокруг фронтально проецирующей прямой i(i1,i2) на комплексном чертеже (рис. 5.15.б) изображено следующим образом:
4) фронтальная A2, точки А перемещается по окружности радиуса R = | АО | = | А2О2 |;
5) горизонтальная проекция А1 точки А перемещается по прямой, перпендикулярной линиям связи (вырожденная горизонтальная проекция β1 плоскости β ║П2);
6) угол поворота φ° фронтальной проекции точки А равен углу поворота точки в пространстве.
Способом вращения тоже можно решать все основные на преобразование комплексного чертежа.
Задача 1. Преобразовать прямую общего положения в линию уровня.
Для того чтобы прямую общего положения ℓ(ℓ1, ℓ2) преобразовать, например, во фронталь, ее необходимо вращать около оси i ⊥ П1 (рис. 5.16).
Рис. 5.16. Преобразование прямой линии общего положения
во фронтальную (фронталь) прямую
Для решения задачи необходимо:
1) выбрать две точки А(А1А2) и В(В1В2), принадлежащие прямой ℓ;
2) провести ось вращения i(i1,i2) перпендикулярно П1 через точку В(В1В2) прямой ℓ(ℓ1, ℓ2);
3) при вращении прямой ℓ вокруг оси i точка В прямой останется неподвижной, так как принадлежит оси, а точка А будет вращаться по правилам, рассмотренным выше;
4) угол поворота α° точки А и ее горизонтальной проекции А1 определяется между положением проекций А1В1 и А’1В’1.
Когда прямая ℓ займет положение параллельное П2, ее горизонтальная проекция ℓ’1 расположится перпендикулярно линиям связи.
Для определения положения проекции А’2 необходимо из А’1 провести вертикальную линию связи до пересечения с горизонтальной линией связи из фронтальной проекции А2. Пересечение этих двух линий связи определит новое положение проекции точки А’2.
Соединив между собой новые проекции точек, получим В’2А’2 натуральную величину прямой ℓ, что является решением первой задачи на преобразование комплексного чертежа.
Для преобразования прямой ℓ общего положения в горизонталь, ее необходимо вращать около оси i, перпендикулярной П2 и проходящей через какую-либо точку прямой (рис. 5.17).
Рис. 5.17. Преобразование прямой линии общего положения
в горизонтальную (горизонталь) прямую
Для преобразования, заданной прямой, необходимо:
1) выбрать две точки А(А1А2) и В(В1В2), принадлежащие прямой ℓ;
2) провести ось вращения i (i1,i2) перпендикулярно П2 через точку В(В1В2) прямой ℓ(ℓ1, ℓ2);
3) при вращении прямой ℓ вокруг оси i точка В прямой остаётся неподвижной, так как принадлежит оси, и новое её положение будет с ней совпадать В2 ≡ В’2, а точка А будет вращаться по правилам, рассмотренным выше;
4) угол поворота β° точки А и ее фронтальной проекции А2 определяется между положением проекций А2В2 и А’2В’2, когда прямая ℓ займет положение, параллельное П1, ее фронтальная проекция ℓ’2 расположится перпендикулярно линиям связи.
Для определения положения проекции А’1 необходимо из А’2 провести вертикальную линию связи до пересечения с горизонтальной линией связи из А1. Пересечение этих двух линий связи определит новое положение проекции точки А’1. Соединив между собой новые проекции точек, получим В’1А’1 натуральную величину прямой ℓ, что является решением первой задачи на преобразование комплексного чертежа.
3адача 2. Преобразовать линию общего положения в проецирующую прямую (рис.5.18).
Рис. 5.18. Преобразование прямой линии общего положения
в горизонтально проецирующую
Вторую задачу на преобразование комплексного чертежа решать без решения первой задачи нельзя. Поэтому, если дана прямая общего положения, то для решения второй задачи необходимо выполнить два последовательных преобразования: вначале преобразовать ее в линию уровня (см. первую задачу), а затем линию уровня преобразовать в проецирующую (рис. 5.18, 5.19). Если линия уровня является фронталью, то ее можно преобразовать в горизонтально проецирующую прямую вращением около оси i’ перпендикулярной П2 (рис. 5.18). В рассматриваемом случае необходимо ось вращения провести через точку А’’. Во фронтальной плоскости проекций А’2 ≡ i’2 ≡ А’’2. Для определения нового положения точки В необходимо В’2 повернуть вокруг i’2 до положения В’’2. Соединив между собой новые проекции точек, получим В’’2А’’2, прямую перпендикулярную горизонтальной плоскости проекций (горизонтально проецирующую), что является решением второй задачи на преобразование комплексного чертежа.
Рис. 5.19. Преобразование прямой общего положения
во фронтально-проецирующую
Если линия уровня является горизонталью, то ее можно преобразовать во фронтально проецирующую прямую вращением около оси i’ перпендикулярной П1 (рис. 5.19). В рассматриваемом случае необходимо ось вращения провести через точку А’’.
В горизонтальной плоскости проекций А’1 ≡ i’1 ≡ А’’1. Для определения нового положения точки В необходимо В’1 повернуть вокруг i’1 до положения В’’1. Соединив между собой новые проекции точек, получим В’’1А’’1, прямую перпендикулярную фронтальной плоскости проекций (фронтально проецирующую), что является решением второй задачи на преобразование комплексного чертежа.
Задача 3. Преобразовать чертеж так, чтобы плоскость общего положения Σ(ΔАВС) после поворота стала проецирующей (рис. 5.20).
Рис. 5.20. Преобразование плоскости Σ(ΔАВС) во фронтально-проецирующую
При решении таких задач необходимо знать, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную к другой плоскости. Таким образом, если какую-либо прямую, принадлежащую плоскости Г, преобразовать в проецирующую, то плоскость Г тоже станет проецирующей.
Для того чтобы плоскость преобразовать во фронтально проецирующую, ее необходимо вращать вокруг оси i ⊥ П1, а в качестве вспомогательной линии уровня взять горизонталь. Для решения этой задачи можно использовать плоскость треугольника ΔАВС. Если плоскость Г(ΔАВС) вращать вокруг оси i ⊥ П1, то горизонталь (h), принадлежащая плоскости, может быть повернута в положение, перпендикулярное плоскости П2, при этом плоскость Г станет фронтально проецирующей (рис. 5.20).
Построения новой горизонтальной проекции А’1В’1С’1 треугольника ΔАВС в плоскости нужно провести горизонталь (А111), которую одним поворотом сделать проецирующей прямой. За ось вращения i можно принять горизонтально проецирующую прямую, которую для удобства решения, провести через точку (А), принадлежащую плоскости. В горизонтальной плоскости проекций П1 проекции исходного и нового положения точки А и оси вращения совпадают А1 ≡ А’1 ≡ i1. При повороте точек В1 и С1 вокруг i1 величина их угла поворота равна величине угла поворота горизонтальной проекции горизонтали h1. В результате поворота треугольник ΔА’В’С’ оказывается перпендикулярным П2 и поэтому его фронтальная проекция В’2А2С’2 вырождается в прямую линию, построение которой необходимо выполнить по правилам, рассмотренным выше.
Фронтальные проекции начального и нового положений точки А совпадают А2 ≡ А’2. Положения точек В2 и С2 определяются в пересечении вертикальных и горизонтальных линий связи соответствующих точек. Для определения положения В’2 необходимо из В’1провести вертикальную, а из В2 горизонтальную линии связи. Для определения положения С’2 необходимо из С’1 провести вертикальную, а из С2 горизонтальную линии связи. Новые положения точек плоскости Г во фронтальной плоскости проекций П2 находятся на одной прямой, что подтверждает условие перпендикулярности Г ⊥ П2 и решение третьей задачи на преобразование комплексного чертежа.
Для того чтобы плоскость Σ преобразовать в горизонтально проецирующую, её необходимо вращать вокруг оси i ⊥ П2, а в качестве вспомогательной линии уровня взять фронталь (рис. 5.21).
В качестве плоскости Σ можно использовать треугольник ΔDEK.
Если плоскость Σ (DEK) вращать вокруг оси i ⊥ П2, то фронталь (f), принадлежащая плоскости, может быть повернута в положение, перпендикулярное плоскости П1, при этом плоскость Σ станет горизонтально проецирующей (рис. 5.21).
Рис. 5.21. Преобразование плоскости Σ (ΔАВС) в горизонтально- проецирующую
Для построения новой горизонтальной проекции D’2E’2K’2 треугольника ΔDEK в плоскости нужно провести фронталь, которую одним поворотом сделать проецирующей прямой. За ось вращения i можно принять фронтально проецирующую прямую, которую для удобства решения, провести через точку (D), принадлежащую плоскости.
Во фронтальной плоскости проекций П2 проекции исходного и нового положения точки D и оси вращения совпадают D2 ≡ D’2 ≡ i2. При повороте точек E2 и K2 вокруг i2 величина их угла поворота равна величине угла поворота фронтальной проекции фронтали f2.
В результате поворота треугольник D’E’K’ оказывается перпендикулярным П1 и поэтому его горизонтальная проекция D’1 E11 K’2 вырождается в прямую линию, построение которой необходимо выполнить по правилам, рассмотренным выше.
Горизонтальные проекции начального и нового положений точки D совпадают D1 ≡ D’1. Положения точек E1 и K1 определяются в пересечении вертикальных и горизонтальных линий связи соответствующих точек. Для определения положения E’1 необходимо из E1 провести горизонтальную, а из E’2 вертикальную линии связи. Для определения положения К’1 необходимо из К1 провести горизонтальную, а из К’2 вертикальную линии связи. Новые положения точек плоскости Σ в горизонтальной плоскости проекций П1 расположены на одной прямой, что подтверждает условие перпендикулярности Σ ⊥ П1и решение третьей задачи на преобразование комплексного чертежа.
Поверхности вращения
Поверхностью вращения называется поверхность, образованная вращением образующей вокруг неподвижной оси (рис. 1). Эта поверхность определяется на чертеже заданием образующей и оси вращения.
Каждая точка образующей I описывает при своем вращении окружность, лежащую в плоскости, перпендикулярной оси вращения, с центром на оси. Эти окружности называются параллелями. Наибольшая из этих параллелей называется экватором, наименьшая — горлом.
Плоскость, проходящую через ось поверхности вращения, называют меридианальной. Линию ее пересечения с поверхностью — меридианом. Меридиан, параллельный фронтальной плоскости проекций, называется главным меридианом. Все меридианы равны между собой.
На чертеже ось вращения II располагают перпендикулярно к одной из плоскостей проекций, например горизонтальной. Тогда все параллели проецируются на эту плоскость в истинную величину. Экватор и горло определят горизонтальный очерк поверхности. Фронтальным очерком такой поверхности будет главный меридиан, то есть меридиан, расположенный во фронтальной плоскости.
Точки на поверхностях вращения могут быть построены с помощью параллелей, то есть окружностей на поверхности.
Цилиндром вращения называется поверхность, образованная вращением прямой вокруг параллельной ей оси.
Если ось цилиндра перпендикулярна горизонтальной плоскости проекций, то горизонтальные проекции точек, лежащих на его поверхности, будут расположены на окружности, в которую спроецируется цилиндр на горизонтальную плоскость Н (рис. 2).
Задача. Найти недостающие проекции точек М и К (рис. 2)
Для того, чтобы найти горизонтальную проекцию точки М, проведем линию связи от фронтальной проекции М(m’) до пересечения с горизонтальной проекцией цилиндра (окружностью). Задача имеет два ответа: точки m1 и m2.
Однозначно определить положение фронтальной проекции точки К по одной только горизонтальной проекции k невозможно. По линии связи, проведенной от горизонтальной проекции этой точки, на поверхности цилиндра может находиться бесчисленное множество точек. В этом случае необходима дополнительная информация о положении точки К.
При пересечении цилиндра вращения плоскостью, параллельной оси вращения, в сечении получаются две прямые — образующие (рис. 3).
Если секущая плоскость перпендикулярна оси вращения, в результате сечения получится окружность (рис. 4).
В общем случае, когда секущая плоскость наклонена к оси вращения цилиндра, в сечении получается эллипс (рис. 5).
Сечение цилиндра плоскостью
В общем случае построение линии пересечения поверхности плоскостью заключается в нахождении общих точек, то есть точек, принадлежащих одновременно секущей плоскости и поверхности.
Для нахождения этих точек применяют способ дополнительных секущих плоскостей:
Дополнительные плоскости проводят таким образом, чтобы они пересекали поверхность по наиболее простым линиям.
Нахождение точек линии пересечения начинают с определения характерных (опорных) точек. К ним относятся
Для более точного построения линии пересечения необходимо построить еще и дополнительные (промежуточные) точки.
Прямой круговой конус
Сечение конуса плоскостью
В зависимости от направления секущей плоскости в сечении конуса вращения могут получиться различные линии.
Если секущая плоскость наклонена к оси вращения конуса и не проходит через его вершину, в сечении конуса могут получиться эллипс, парабола или гипербола (рис. 8, в, г, д) — в зависимости от величины угла наклона секущей плоскости.
Для конуса наиболее простыми линиями являются прямые (образующие) и окружности.
Горизонтальную проекцию точки А найдем с помощью образующей. Проведем через точку А и вершину конуса S вспомогательную фронтально-проецирующую плоскость Р(Рv). Она пересекает конус по двум образующим SM и SN. Их фронтальные проекции совпадают. Строим горизонтальные проекции образующих. Затем проводим через точку а’ линию связи. На пересечении линии связи и горизонтальных проекций образующих определим горизонтальную проекцию точки. Задача имеет два ответа: точки а1 и а2 (рис. 9).
Горизонтальную проекцию точки В найдем, построив окружность, на которой она лежит. Для этого через точку проведем горизонтальную плоскость Т(Тv), которая пересекает конус по окружности радиуса r.
Строим горизонтальную проекцию этой окружности. Через точку b’ проведем линию связи до ее пересечения с окружностью. Задача также имеет два ответа — точки b1 и b2.
Рассмотрим пример построения проекций линии пересечения конуса фронтально — проецирующей плоскостью Р (PV). В этом случае в сечении получается эллипс (рис. 10).
Сначала определим характерные (опорные) точки.
Фронтальная проекция линии сечения совпадает с фронтальным следом плоскости PV. Нижняя точка 1 лежит на образующей AS, верхняя — 2 на образующей ВS. Эти точки определяют положение большой оси эллипса. Малая ось эллипса перпендикулярна большой оси.
Чтобы найти малую ось, разделим отрезок 1-2 на две равные части. Точки 3 и 4 определяют малую ось эллипса. Точки 5 и 6, расположенные на образующих CS и DS, являются точками границы видимости для профильной плоскости проекций. Проекции точек 1, 2, 5 и 6 находятся на соответствующих проекциях образующих. Чтобы найти проекции точек 3 и 4, проводим дополнительную секущую плоскость Т(Тv).
Она рассекает конус по окружности радиуса г. На этой окружности находятся проекции данных точек. Для точного построения необходимо определить дополнительные (случайные точки). Проекции этих точек находим аналогично точкам 3 и 4 или проводя через эти точки образующие. Соединяем полученные проекции точек. Определяем видимость. На горизонтальной плоскости все точки, лежащие на поверхности конуса, видимы. На профильной — точки 5, 3, 1, 4, 6 видимы, остальные — нет.
Шаровой поверхностью (или сферой) называется поверхность, образованная при вращении окружности вокруг своего диаметра.
Если шаровая поверхность пересекается плоскостью, то в сечении всегда получается окружность, которая может спроецироваться:
Чтобы построить проекции точки, лежащей на поверхности шара, необходимо через нее провести секущую плоскость, параллельную плоскости проекций, затем построить окружность, на которой находится эта точка.
Сечение шаровой поверхности плоскостью
Пересечем поверхность шара фронтально-проецирующей плоскостью Q(Qv) (рис. 12). Построение начинаем с определения характерных точек.
Точки 1 и 2 находятся на главном меридиане. Эти точки — концы малой оси эллипса, а также это самая высокая и самая низкая точки. Их горизонтальные и профильные проекции строим по фронтальным проекциям.
Точки 3 и 4 находятся на профильном меридиане и определяют видимость на профильной плоскости проекций. Горизонтальные проекции точек находим по профильным проекциям.
Точки 5 и 6 принадлежат экватору и являются точками границы видимости на горизонтальной проекции. Профильные проекции точек находим по горизонтальным проекциям.
Чтобы найти положение большой оси эллипса (точки 7 и 8) разделим отрезок 12 пополам. Фронтальные проекции точек (точки 7 и 8) совпадают с серединой этого отрезка. В этой же точке находится фронтальная проекция центра окружности сечения. На горизонтальную плоскость диаметр окружности проецируется без искажения. Поэтому точки 7 и 8 будут находиться на расстоянии R от центра окружности сечения (рис. 12).
Для большей точности строим несколько дополнительных точек.
Полученные точки соединяем плавной кривой линией с учетом ее видимости.
Тор — поверхность, полученная вращением окружности вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр.
Если ось вращения проходит вне окружности, то поверхность называется «открытый тор» или «тор — кольцо» (рис. 13); если ось касает тор» (рис. 15 — 16). Тор, изображенный на рис. 15, называется также «тор-яблоко», а на рис. 16 — «тор-лимон». Сфера — частный случай торовой поверхности.
рис. 13
рис. 14
рис. 15
рис. 16
Поверхности, образованные вращением кривых второго порядка:
двухполостный гиперболоид вращения — поверхность, образованная вращением гиперболы вокруг ее действительной оси (рис. 19).
рис. 17
рис. 18
рис. 19