что такое радиус орбиты
Формулы радиуса орбиты, орбитальной скорости и пер
Формулы для расчета радиуса орбиты, скорости орбитального движения и периода планет.
При расчетах используются величины:
— радиус орбиты R (при условном круговом движении) в а.е.
— период T (земной год)
— орбитальная скорость V а.е./год
1. Соотношение радиуса и скорости.
для Юпитера 5.2 х 2.75 х 2.75 = 39.325
скорость 2 х 3.14 х 5.2 : 11.86 = 2.75 а.е. / год
Теперь, если взять, например, орбитальную скорость Земли за единицу,
то орбитальная скорость Земли относительно скорости Марса 1.2328.
тогда: радиус обриты Марса есть 1.2328 х 1.2328 = 1.52 а.е.
а период орбиты Марса 1.52 = 1.2328 = 1.8739 в земных годах
что в упрощенной записи :
Vз : V м (Vз :V м ) 2 = R (Vз :V м ) 2 х R = T
R V2 = const (получается от преобразований третьего закона Кеплера)
4. Квадрат движения.
Для понимания сути движения планет интересно сделать ещё и такое построение.
Все планеты СС одновременно движутся по своим орбитам. Если взять некий общий отрезок времени,то каждая из планет пройдет за это время по орбите своё раcстояние.
Если на основе этого расстояния, построить квадрат, то площадь этого квадрата для каждой планеты будет пропорциональна орбитальной скорости.
И, если площадь этого квадрата умножить на радиус орбиты, то для всех планет получится одинаковое число, выражающее объём.
И получиться некая константа трехмерного пространства.
Это можно выразить так:
Квадрат расстояния пройденной каждой планетой за общую единицу времени обратно пропорционален радиусам их орбит или произведение радиуса обриты на квадрат расстояния для всех планет за общую единицу времени есть величина одинаковая.
5. Период соединения.
Есть ещё одна формула которая позволяет вычислить через какое время произойдет соединение планет планеты.
Т1 х Т2 / Т2-Т1
6. И, конечно, каждая планета за одну единицу времени проходит угол (сектор), который по отношению к земному, обратно пропорционален периодам.
Формулы могут применяться и для расчета параметров движения спутников.
На рисунке: Таблица соотношения параметров планет Солнечной системы относительно Земли.
3. ОРБИТЫ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ.
ОРБИТЫ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ. ВЫВОД СПУТНИКОВ НА ОРБИТУ
Траектория движения ИСЗ называется орбитой. Во время свободного полета спутника, когда его бортовые реактивные двигатели выключены, движение происходит под воздействием гравитационных сил и по инерции, причем главной силой является притяжение Земли.
Если считать Землю строго сферической, а действие гравитационного поля Земли — единственной силой, воздействующей на спутник, то движение ИСЗ подчиняется известным законам Кеплера: оно происходит в неподвижной (в абсолютном пространстве) плоскости, проходящей через центр Земли, — плоскости орбиты; орбита имеет форму эллипса (рис 3.1) или окружности (частный случай эллипса).
При движении спутника полная механическая энергия (кинетическая и потенциальная) остается неизменной, вследствие чего при удалении спутника от Земли скорость его движения уменьшается.
Уравнение эллиптической орбиты спутника Земли в полярной системе координат определяется формулой
В случае эллиптической орбиты точкой перигея называют точку орбиты, соответствующую наименьшему значению радиус-вектора r = rп, точкой апогея — точку, соответствующую наибольшему значению r = ra (рис. 3.2).
Земля находится в одном из фокусов эллипса. Входящие в формулу (3.1) величины связаны соотношениями:
Расстояние между фокусами и центром эллипса составляет ае, т. е. пропорционально эксцентриситету. Высота спутника над поверхностью Земли
где R — радиус Земли. Линия пересечения плоскости орбиты с плоскостью экватора (а — а на рис. 3.1) называется линией узлов, угол i между плоскостью орбиты и плоскостью экватора — наклонением орбиты. По наклонению различают экваториальные (i = 0°), полярные (i = 90°) и наклонные орбиты,(0°
Какие бывают околоземные орбиты?
Во время наших прямых трансляций (а транслируем мы космические запуски) у людей часто возникают вопросы вида: «А что такое геостационарная орбита?», «А на какой высоте находится МКС?», «Орбита «Молния»? Это как!?». Мы решили перевести для вас замечательный каталог орбит NASA, а начнём как раз с околоземных орбит!
Когда спутник достигает высоты ровно в 42164 километров от центра Земли (около 36 000 километров от поверхности Земли), он попадает в своеобразное орбитально «яблочко», место, где скорость его вращения вокруг Земли совпадает со скоростью вращения Земли вокруг своей оси. Поскольку эти скорости одинаковы, аппарат «зависает» вдоль одной долготы, хотя и может дрейфовать с севера на юг. Такая высокая орбита называется геосинхронной.
Спутник на круговой геосинхронной орбите непосредственно над экватором (эксцентриситет и наклонение равны нулю) будет иметь геостационарную орбиту, которая не перемещается относительно Земли вообще. Он всегда находится прямо над одним и тем же местом на поверхности Земли.
Геостационарная орбита чрезвычайно важна для мониторинга погоды, поскольку спутники на этой орбите обеспечивают постоянное наблюдение одной и той же области планеты. Когда вы заходите на любимый сайт проверить погоду и смотрите на спутниковые снимки своего родного города, изображение, которое вы видите, пришло от спутника на геостационарной орбите. Каждые несколько минут геостационарные спутники, такие как аппараты Geostationary Operational Environmental Satellite (GOES), отправляют информацию об облаках, водяном паре и ветре, и этот почти постоянный поток информации служит основой для большинства метеорологических наблюдений и прогнозирования.
Спутники на геостационарной орбите вращаются непосредственно над экватором, постоянно находясь над одной и той же областью. Это положение позволяет спутникам наблюдать за погодой и другими явлениями, которые часто меняются. Credit: NASA/Marit Jentoft-Nilsen and Robert Simmon.
Поскольку геостационарные спутники всегда находятся в одном месте, они также могут быть полезны для телефонной, теле- и радиосвязи. Созданные и запущенные NASA и управляемые Национальным управлением океанических и атмосферных исследований (NOAA), спутники GOES обеспечивают связь с поисково-спасательными маяками, которые помогают находить суда и самолеты, терпящие крушение.
Наконец, многие спутники на высокой орбите контролируют солнечную активность. Спутники GOES несут на себе большой набор инструментов для исследования «космической погоды»: они получают изображения Солнца и отслеживают магнитные и радиационные уровни в космосе вокруг аппаратов.
Есть и другие орбитальные «яблочки», расположенные непосредственно за пределами высокой околоземной орбиты — это точки Лагранжа. В точках Лагранжа земное притяжение компенсирует притяжение Солнца. Все, что находится в этих точках, притягивается к Земле и к Солнцу с одинаковой силой. Это такой баланс, в котором нам не нужно тратить топливо, чтобы удерживать орбиту аппарата постоянной.
Из пяти точек Лагранжа в системе Солнце-Земля только последние две, называемые L4 и L5, являются стабильными. Спутник в трех других точках подобен шару, оставленному на вершине крутого холма: любое небольшое возмущение выталкивает спутник из точки Лагранжа, словно мяч, который при малейшем взаимодействии скатится по холму вниз. Спутники в этих трех точках нуждаются в постоянной корректировке, чтобы оставаться сбалансированными. Аппараты в последних двух точках Лагранжа больше похожи на шар в глубокой тарелке: даже если их немного подтолкнуть, они вернутся в точку Лагранжа (в центр тарелки в нашей аналогии).
Точки Лагранжа — это специальные места, где спутник останется неподвижным относительно Земли, пока и спутник и Земля вращаются вокруг Солнца. L1 и L2 расположены выше дневных и ночных сторон Земли соответственно. L3 находится по обратную сторону Солнца, напротив Земли. L4 и L5 — в 60° впереди и позади Земли на одной орбите. Credit: NASA/Robert Simmon.
Ближайшие к Земле точки Лагранжа находятся примерно в 5 раз дальше, чем Луна. L1 находится между Солнцем и Землей и всегда обращена к дневной стороне Земли. L2 находится напротив солнца, всегда на ночной стороне. Credit: NASA/Robert Simmon.
Первая точка Лагранжа расположена между Землей и Солнцем, что позволяет спутникам в этой точке постоянного наблюдать за нашей звездой. Солнечная и гелиосферная обсерватория (SOHO), спутник НАСА и Европейского космического агентства, которому поручено контролировать Солнце, обращается вокруг первой точки Лагранжа примерно в 1,5 миллионах километров от Земли.
Вторая точка Лагранжа находится примерно на том же расстоянии от Земли, но расположена за Землей относительно Солнца — Земля всегда находится между второй точкой Лагранжа и звездой. Поскольку Солнце и Земля находятся на одной линии, спутники в этом месте нуждаются только в одном тепловом щите, который будет блокировать тепло и свет, исходящие от Солнца и Земли. Это хорошее место для космических телескопов, в том числе для будущего космического телескопа им. Джеймса Уэбба (запуск ожидается в 2021 году). В этой же точке, например, работал зонд WMAP (Wilkinson Microwave Anisotropy Probe), исследовавший реликтовое излучение Вселенной с 2001 по 2009 год — именно его наблюдения помогли значительно продвинуться в теории тёмной материи и тёмной энергии.
Третья точка Лагранжа находится по другую сторону Солнца от Земли, так что Солнце всегда находится между ней и Землей. Без специальных ретрансляторов спутник в таком положении не сможет общаться с Землей — Солнце заблокирует прямые сигналы.
Крайне стабильные четвертая и пятая точки Лагранжа находятся на орбите Земли вокруг Солнца, на 60 градусов впереди и позади нашей планеты. Двойная солнечная обсерватория (STEREO) на своём пути к противоположным сторонам Солнца проходили именно четвертую и пятую точки Лагранжа — это позволяет создавать стереоскопические изображения звезды.
5 июля 2009 года два аппарата Двойной солнечной обсерватории (STEREO) на пути к точкам L4 и L5 сделали эти снимки солнечного пятна 1024. Виды Солнца в 60 градусов позади (на изображении — слева) и впереди (справа) от орбиты Земли показывают области поверхности Солнца, которые иначе были бы скрыты от зрения. Credit: NASA/STEREO.
Ближе к Земле спутники начинают вращаться быстрее. Стоит отметить две средние околоземные орбиты: полусинхронная орбита и Молния.
Полусинхронная орбита представляет собой околокруговую орбиту (с низким эксцентриситетом) на высоте 26 560 километров от центра Земли (около 20 200 км над поверхностью). Один полный оборот вокруг планеты на такой орбите происходит за 12 часов. Однако пока полусинхронный спутник вращается, Земля под ним тоже движется вокруг своей оси. Ежедневно такой аппарат пролетает над одними и теми же двумя точками на экваторе. Эта орбита является постоянной и очень предсказуемой. Именно она используется спутниками глобальной системы позиционирования (GPS).
Вторая известная средняя орбита Земли — орбита Молнии. Впервые она была использована Советским Союзом, а её особенность помогает наблюдать за высокими широтами. Геостационарная орбита полезна и удобна для постоянного наблюдения, но спутники на геостационарной орбите «подвешены» над экватором, поэтому они плохо работают в отдаленных северных или южных районах, которые всегда находятся на краю обзора геостационарных аппаратов. Орбита Молния является удобной альтернативой.
Орбита Молния сочетает в себе высокое наклонение (63,4°) с высоким эксцентриситетом (0,722), чтобы максимизировать время наблюдений в высоких широтах. Каждый оборот длится 12 часов, поэтому медленная, высотная часть орбиты повторяется в одном и том же месте каждую день и ночь. В настоящее время этот тип орбиты используют российские спутники связи и аппараты Sirius (Адаптированное цитирование книги «Основы космических систем» Винсента Л. Писакана, 2005 г.)
У Молнии высокий эксцентриситет: спутник движется по очень вытянутому эллипсу, ближе к одному из краёв которого находится Земля. Поскольку такой аппарат ускоряется силой притяжения нашей планеты, спутник движется очень быстро, когда он приближается к Земле. Когда он отдаляется, его скорость замедляется, поэтому он проводит больше времени на вершине своей орбиты, наиболее удаленной от Земли. Один полный оборот на такой орбите занимает 12 часов, но две трети этого времени аппарат видит лишь одно полушарие. Как и в случае полусинхронной орбиты, аппарат на Молнии проходит один и тот же путь каждые 12 часов. Это может быть полезно для связи на крайнем севере или юге.
Низкая околоземная орбита
Большинство научных спутников и множество метеорологических спутников находятся на почти круговой низкой околоземной орбите. Наклонение спутника зависит от того, с какой целью он запускается. Спутник TRMM, например, был запущен в 1997 году для мониторинга осадков в тропиках. Поэтому он имел относительно низкое наклонение (35 градусов) и оставался вблизи экватора, исправно выполняя свою миссию вплоть до 2015 года.
Низкое наклонение орбиты TRMM (всего 35° от экватора) позволяло его инструментам концентрироваться на тропиках. На этом изображении показана половина наблюдений, которые TRMM производил за один день. Credit: NASA/TRMM.
Многие спутники программы NASA по наблюдению за Землёй имеют почти полярную орбиту. На этой сильно наклоненной орбите спутник перемещается вокруг Земли от полюса к полюсу, совершая один оборот примерно за 99 минут. На одной половине орбиты спутник наблюдает дневную сторону Земли. На полюсе он пересекает ночную сторону.
Пока спутники летят наверху, Земля под ними тоже поворачивается. К тому времени, когда спутник снова перейдет в «дневную» область, он уже будет находиться над районом, прилегающим к той области, которую он наблюдал во время прошлого оборота. В течение суток полярные орбитальные спутники успевают рассмотреть большую часть Земли дважды: один раз при дневном свете и один раз в темноте.
Аппараты на солнечной синхронной орбите пересекают экватор примерно в одно и то же местное время каждый день (и ночь). Эта орбита позволяет проводить последовательные научные наблюдения, при этом угол между Солнцем и поверхностью Земли остается относительно постоянным. На этих иллюстрациях показаны 3 последовательные оборота солнечно-синхронного спутника с экваториальным временем пересечения 13:30. Последняя орбита спутника обозначена темно-красной линией, а предыдущие — более светлыми. Credit: NASA/Robert Simmon.
В то время как «яблочко» геосинхронных спутников находится над экватором (это место позволяет им оставаться в одной и той же позиции над Землёй), у полярно-орбитальных спутников есть своё «яблочко», которое позволяет наблюдать одну и ту же область. Эта орбита синхронизирована по Солнцу, что означает, что всякий раз, когда спутник пересекает экватор, локальное солнечное время на земле всегда одно и то же. Например, для спутника Terra это всегда около 10:30 утра, в это время спутник пересекает экватор в Бразилии. Когда спутник сделает полный оборот вокруг Земли через 99 минут, он пересечёт экватор в Эквадоре или Колумбии, примерно в те же 10:30 по местному времени.
Солнечно-синхронная орбита крайне важна для науки, потому что она удерживает угол падения солнечного света на поверхность Земли более-менее постоянным, хотя угол и будет меняться вместе со сменой времён года. Это постоянство означает, что ученые в течение нескольких лет могут сравнивать изображения одной и той же области в одно и то же время года, не беспокоясь слишком сильно об изменениях углов теней и освещения, которые могли бы создавать иллюзии изменений. Без солнечно-синхронной орбиты было бы очень сложно отслеживать изменения с течением времени. Было бы просто невозможно собрать информацию, необходимую для изучения изменений климата.
Что такое орбита планеты?
Знаете ли вы, что такое орбита планеты? География (6 класс) дала нам понятие о строении Солнечной системы, но многие наверняка так и не поняли, что же это такое, для чего она нужна и что будет, если планета изменит свою орбиту.
Понятие орбиты
Основные характеристики орбиты – период обращения и радиус. Средний радиус – это средняя величина между минимальным значением диаметра орбиты и
максимальным. Период обращения – это тот отрезок времени, который необходим небесному телу для того, чтобы полностью пролететь вокруг звезды.Чем больше
расстояние, разделяющее звезду и планету, тем больше будет период обращения, поскольку воздействие гравитации звезды на окраине системы гораздо слабее, чем в ее центре.
Поскольку абсолютно круглой не может быть ни одна орбита, в течение планетарного года планета бывает на различном удалении от звезды. Место, где
планета ближе всего расположена к звезде, принято называть периастром. Точка, самая далекая от светила, напротив, именуется апоастром. Для Солнечной системы это
перигелий и афелий соответственно.
Элементы орбиты
Что такое орбита планеты, понятно. Что же представляют ее элементы? Существует несколько элементов, которые принято выделять у орбиты. Именно по этим параметрам ученые определяют вид орбиты, характеристики движения планеты и некоторые другие несущественные для обывателя параметры.
Орбиты солнечной системы
Итак, обращение вокруг звезды – это то, что называют орбитой планеты. В нашей Солнечной системе орбиты всех планет направлены в том же направлении, в котором
вращается Солнце. Такое движение объясняют теорией происхождения Вселенной: после Большого взрыва пратоплазма двигалась в одну сторону, вещества с течением
времени уплотнялись, но их движение не изменилось.
Вокруг собственной оси планеты движутся аналогично вращению Солнца. Исключением из этого являются лишь Венера и Уран, которые вокруг своей оси вращаются в
своем собственном уникальном режиме. Возможно, некогда они подверглись воздействию небесных тел, которые изменили направление их обращения вокруг своей оси.
Плоскость движения в Солнечной системе
Как уже было сказано, орбиты планет в Солнечной системе находятся почти на одной плоскости, близкой к плоскости орбиты Земли. Зная, что такое орбита планеты,
можно предположить, что причина, по которой планеты движутся в практически одной плоскости, вероятнее всего, все та же: некогда вещество, из которого теперь
состоят все тела в Солнечной системе, было единым облаком и вращалось вокруг своей оси под влиянием внешней гравитации. С течением времени вещество
разделилось на то, из которого образовалось Солнце, и то, которое долгое время было пылевым диском, вращающимся вокруг светила. Пыль постепенно образовала
планеты, а направление вращения осталось прежним.
Орбиты других планет
На эту тему сложно рассуждать. Дело в том, что мы знаем, что такое орбита планеты, но до недавнего времени мы не знали, существуют ли вообще планеты у других звезд.
Лишь недавно, используя новейшую аппаратуру и современные методы наблюдения, ученые смогли вычислить наличие планет у других звезд. Такие планеты называют
экзопланетами. Несмотря на невероятную мощность современного оборудования, заснять или увидеть удалось лишь единицы экзопланет, и наблюдение за ними удивило
ученых.
Дело в том, что эти немногие планеты словно совсем не знакомы с тем, что такое орбита планеты. География утверждает, что все тела движутся по извечным
законам. Но похоже что у других звезд законы нашей системы не действуют. Там приближенными к звезде оказались такие планеты, которые, казалось ученым, могут
существовать только на самой окраине системы. И ведут себя эти планеты совсем не так, как им следовало бы себя вести согласно расчетам: они и вращаются не в ту
сторону, что их звезда, и орбиты их лежат в различных плоскостях и имеют слишком вытянутые орбиты.
Внезапная остановка планеты
Собственно говоря, внезапная, ни с чем не связанная остановка вращения Земли просто нереальна. Но допустим, что это произошло.
Несмотря на остановку всего тела, его отдельные элементы не смогут также резко остановиться. А значит, магма и ядро продолжат по инерции свое движение. До полной
остановки вся начинка земли успеет провернуться не один раз, полностью ломая кору Земли. Это вызовет мгновенный выброс громадного количества лавы, громаднейшие
разломы и возникновение вулканов в крайне неожиданных местах. Таким образом, почти моментально на Земле перестанет существовать жизнь.
Кроме того, даже если удастся остановить мгновенно и «начинку», остается еще атмосфера. Она-то продолжит инерционное вращение. А это скорость порядка 500 м/с.
Такой «ветерок» сметет с поверхности все живое и неживое, унося вместе с самой атмосферой в Космос.
Постепенная остановка вращения
Если вращение вокруг своей оси прекратится не внезапно, а в течение длительного времени, минимальный шанс уцелеть существует. В результате исчезновения
центробежной силы океаны устремятся к полюсам, тогда как суша окажется на экваторе. В этой ситуации сутки будут равняться году, а смена сезонов будет соответствовать и наступлению времени суток: утро – весна, день – лето и т.д. Температурный режим будет гораздо более экстремальным, поскольку ни океаны, ни движение атмосферы не будут его смягчать.
Что будет, если Земля сойдет с орбиты?
Если же предположить, что планета просто остановилась в пространстве, прекратив движение вокруг Солнца, то произойдет следующее. Под действием притяжения Солнца наша планета направится к нему. Догнать его она не сможет, поскольку Солнце тоже не стоит на одном месте. Но пролетит она достаточно близко от светила, чтобы солнечный ветер уничтожил атмосферу, испарил всю влагу и сжег всю сушу. Пустой сгоревший шарик полетит дальше. Достигнув орбит дальных планет, Земля повлияет на их движение. Оказавшись вблизи планет-гигантов, Земля, скорее всего, будет разорвана на мелкие кусочки.
Таковы сценарии вероятных событий при остановке Земли. Впрочем, ученые на вопрос «может ли планета сойти с орбиты» отвечают однозначно: нет. Она более или
менее успешно существовала более 4.5 миллиардов лет, и в обозримом будущем нет ничего, что могло бы ей помешать продержаться еще столько же.
Закон Кеплера
Форма Земли
Сейчас нам сложно представить, что раньше люди верили, будто Земля плоская. У греков, например, плоскость просто парила в воздухе и была окружена ледниками. А в Индии верили, что планета покоится на трех слонах, которые стоят на черепахе. Впрочем, кое-кто до сих пор так думает. Доказательств того, что наша планета на самом деле не плоская — много, но вот вам парочка, чтобы можно было поддержать светскую беседу.
Гравитация
Гравитация всегда притягивает все в сторону центра масс. Наша Земля — сферической формы, а центр масс сферы находится как раз в ее центре.
Гравитация притягивает все объекты на поверхности в направлении ядра Земли, то есть вниз, независимо от их местоположения — что мы всегда и наблюдаем.
Если представить, что Земля плоская, то гравитация должна будет притягивать все, что на поверхности, к центру плоскости. То есть если вы окажетесь у края плоской Земли, гравитация будет тянуть вас не вниз, а к центру диска.
Чтобы доказать свою точку зрения, сторонникам плоской Земли придется поискать на планете место, где вещи падают не вниз, а вбок.
Если бы Земля была плоской, да еще и со слонами и черепахой, то при лунном затмении мы бы видели не равномерно растущую тень, а примерно такую картину:
Но, пожалуй, это сильно отличается от реальности.
На плоскую Землю свет от Солнца падал бы, как свет от фонаря. То есть высокие объекты в противоположном от Солнца направлении после заката оставались бы в тени.
А на шарообразной Земле небоскребы или горы будут освещены Солнцем после заката или перед рассветом.
Именно это вы увидите, если застанете рассвет или закат в горах — или посмотрите на фотографии.
Окей, Земля все-таки не плоская — с этим разобрались. Но и шаром ее назвать нельзя: Земля имеет форму эллипсоида.
Эллипсоид — это такой приплюснутый шар, в сечении у которого эллипс. Именно по траектории эллипса вращаются все спутники.
Эллипс
Эллипс — это замкнутая прямая на плоскости, частный случай овала. У эллипса две оси симметрии — горизонтальная и вертикальная, которые состоят из двух полуосей.
А еще у эллипса два фокуса — это такие точки, сумма расстояний от которых до любой точки P(x,y) является постоянной величиной.