что такое радиоактивный изотоп
Радиоактивные изотопы
Радиоакти́вные изото́пы — изотопы, ядра которых нестабильны и испытывают радиоактивный распад. Большинство известных изотопов радиоактивны (стабильными являются лишь около 300 из более чем 3000 нуклидов, известных науке). У любого химического элемента есть хотя бы несколько радиоактивных изотопов, в то же время далеко не у всех элементов есть хотя бы один стабильный изотоп; так, все известные изотопы всех элементов, которые в таблице Менделеева идут после свинца, радиоактивны.
Поскольку бета-распад любого типа не изменяет массовое число A изотопа, среди изотопов с одинаковым значением массового числа (изобаров) существует как минимум один бета-стабильный изотоп, отвечающий минимуму на зависимости избытка массы атома от заряда ядра Z при данном A (изобарической цепочке); бета-распады происходят по направлению к этому минимуму. Обычно для изотопов с нечётным A такой минимум один, тогда как для чётных значений A бета-стабильных изотопов может быть 2 и даже 3. Лёгкие бета-стабильные изотопы стабильны также и по отношению к другим видам радиоактивного распада и, таким образом, являются абсолютно стабильными (если не принимать во внимание до сих пор никем не обнаруженный распад протона, предсказываемый многими современными теориями-расширениями Стандартной Модели). Начиная с А=36 на чётных изобарических цепочках появляется второй минимум. Бета-стабильные ядра в локальных минимумах изобарических цепочек способны испытывать двойной бета-распад в глобальный минимум цепочки, хотя периоды полураспада по этому каналу очень велики (10 19 лет и более). Тяжёлые бета-стабильные ядра могут испытывать альфа-распад (начиная с A≈140), кластерный распад и спонтанное деление.
Полезное
Смотреть что такое «Радиоактивные изотопы» в других словарях:
Радиоактивные изотопы — см. Изотопы радиоактивные EdwART. Словарь терминов МЧС, 2010 … Словарь черезвычайных ситуаций
РАДИОАКТИВНЫЕ ИЗОТОПЫ — нестабильные (см.) хим. элементов, обладающие различными видами радиоактивности. Широко используются в научных исследованиях, в промышленности, измерительных и контрольных приборах, индикаторах, сельском хозяйстве, медицине и т. д … Большая политехническая энциклопедия
радиоактивные изотопы — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN radioactive species … Справочник технического переводчика
Радиоактивные изотопы — неустойчивые изотопы химических элементов, которые в процессе радиоактивного распада, сопровождающегося ионизирующим излучением, самопроизвольно превращаются в другие изотопы (обычно другого элемента). Различают Р. и. природные и искусственные,… … Словарь военных терминов
РАДИОАКТИВНЫЕ ИЗОТОПЫ — неустойчивые изотопы хим. элементов, к рые самопроизвольно превращаются в другие нуклиды. Различают Р. и. природные (ок. 300) и искусственные (св. 1500), получаемые в лабораторных условиях в результате разл. ядерных реакций. Р. и. используются в… … Большой энциклопедический политехнический словарь
ИЗОТОПЫ — (от изо. и греческого topos место), разновидности химических элементов, у которых ядра атомов (нуклидов) отличаются числом нейтронов, но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе химических … Современная энциклопедия
Изотопы — (от изо. и греческого topos место), разновидности химических элементов, у которых ядра атомов (нуклидов) отличаются числом нейтронов, но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе химических … Иллюстрированный энциклопедический словарь
ИЗОТОПЫ — (от изо. и греч. topos место) разновидности химических элементов, у которых ядра атомов отличаются числом нейтронов, но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе элементов. Различают… … Большой Энциклопедический словарь
ИЗОТОПЫ КОС МОГЕНН ЫЕ — стабильные и радиоактивные изотопы, образующиеся в природных объектах под действием космического излучения, напр., по схеме: XАz + Р → YAZ + an + bр, в которой А = A1+ an + (b 1)р; Z = Z1.+ (b 1)p, где ХAz исходное ядро, Р быстрый… … Геологическая энциклопедия
изотопы — ов; мн. (ед. изотоп, а; м.). [от греч. isos равный и topos место] Спец. Разновидности одного и того же химического элемента, различающиеся массой атомов. Радиоактивные изотопы. Изотопы урана. ◁ Изотопный, ая, ое. И. индикатор. * * * изотопы (от… … Энциклопедический словарь
Радиоактивный изотоп
Нукли́д (лат. nucleus — «ядро») — вид атомов, характеризующийся определёнными массовым числом, атомным номером и энергетическим состоянием их ядер, и имеющий время жизни, достаточное для наблюдения. Официальное рекомендуемое определение термина по IUPAC Compendium of Chemical Terminology, 2nd Edition, 1997 (Краткий справочник терминов ИЮПАК, 2-е издание): A species of atom, characterized by its mass number, atomic number and nuclear energy state, provided that the mean life in that state is long enough to be observable.
Содержание
Общее описание
Из определения нуклида следует, что это совокупность одинаковых атомов с определённым числом протонов (Z) и нейтронов (N), с ядром, находящимся в определённом энергетическом состоянии (основном состоянии или одном из изомерных состояний). Сумма A = Z + N представляет собой массовое число, а число протонов Z — атомный номер. Для обозначения нуклида элемента (E) используют запись вида: , причём индексы Z и N могут опускаться. Распространённым является обозначение E-A (например, углерод-12, уран-238). Для нуклидов, представляющих собой метастабильные возбуждённые состояния (изомеры), используют букву m в верхнем правом индексе, например 180m Ta. Если существует более одного возбуждённого изомерного состояния с данными A и Z, то для них (в порядке возрастания энергии) используют индексы m1, m2 и т. д. либо последовательность букв m, n, p, q,… Некоторые нуклиды имеют традиционные собственные названия (см. список таких названий).
Нуклиды, имеющие одинаковый атомный номер (обладающие одинаковым числом протонов) называются изотопами. Применение термина изотоп в единственном числе вместо термина нуклид хотя и, строго говоря, неверно, однако широко распространено. Относительная атомная масса нуклида округлённо равна его массовому числу, только для углерода-12 она по определению точно равна 12.
Классификация
Нуклиды делятся на стабильные и радиоактивные (радионуклиды). Стабильные нуклиды не испытывают спонтанных радиоактивных превращений из основного состояния ядра. Радионуклиды путём радиоактивных превращений переходят в другие нуклиды. В зависимости от типа распада, образуются либо другой нуклид того же самого элемента (при нейтронном или двухнейтронном распаде), либо нуклид другого элемента (распады, изменяющие заряд ядра без вылета нуклонов, т. е. бета-распад, электронный захват, позитронный распад, все виды двойного бета-распада), либо два или несколько новых нуклидов (альфа-распад, протонный распад, кластерный распад, спонтанное деление).
Среди радионуклидов выделяются короткоживущие и долгоживущие. Радионуклиды, существующие на Земле с момента её формирования, часто называют природными долгоживущими; такие нуклиды имеют период полураспада, превышающий 5·10 8 лет. Для каждого элемента были искусственно получены радионуклиды; для элементов с номером (т. е. числом протонов), близким к одному из «магических чисел», количество известных нуклидов может доходить до нескольких десятков. Наибольшим количеством известных нуклидов — по 34 — обладают платина и осмий (без учёта изомерных состояний). Некоторые элементы имеют лишь один стабильный нуклид (например, золото и кобальт), а максимальным числом стабильных нуклидов — 10 — обладает олово. У многих элементов все нуклиды радиоактивны (все элементы, имеющие атомный номер больше, чем у свинца, а также технеций и прометий). Общее число известных нуклидов всех элементов превышает 3100 (без учёта изомеров; на сегодня известно около 1000 нуклидов в основных состояниях, для которых существуют одно или несколько метастабильных возбуждённых состояний с периодом полураспада, превышающим 0,1 мкс).
Радиоактивные изотопы
Поскольку бета-распад любого типа не изменяет массовое число A нуклида, среди нуклидов с одинаковым значением массового числа (изобаров) существует как минимум один бета-стабильный нуклид, отвечающий минимуму на зависимости избытка массы атома от заряда ядра Z при данном A (изобарической цепочке); бета-распады происходят по направлению к этому минимуму (β−-распад — с увеличением Z, β+-распад и электронный захват — с уменьшением Z), спонтанные переходы в обратном направлении запрещены законом сохранения энергии. Для нечётных A такой минимум один, тогда как для чётных значений A бета-стабильных нуклидов может быть 2 и даже 3. Большинство лёгких бета-стабильных нуклидов стабильны также и по отношению к другим видам радиоактивного распада и, таким образом, являются абсолютно стабильными (если не принимать во внимание до сих пор никем не обнаруженный распад протона, предсказываемый многими современными теориями-расширениями Стандартной Модели).
Начиная с А = 36 на чётных изобарических цепочках появляется второй минимум. Бета-стабильные ядра в локальных минимумах изобарических цепочек способны испытывать двойной бета-распад в глобальный минимум цепочки, хотя периоды полураспада по этому каналу очень велики (1019 лет и более) и в большинстве случаев, когда такой процесс возможен, он экспериментально не наблюдался. Тяжёлые бета-стабильные ядра могут испытывать альфа-распад (начиная с A ≈ 140), кластерный распад и спонтанное деление.
Большинство радионуклидов получаются искусственным путём, однако существуют и природные радионуклиды, к которым относятся:
радионуклиды с большими периодами полураспада (>5·107 лет, например уран-238, торий-232, калий-40), которые не успели распасться с момента нуклеосинтеза за время существования Земли, 4,5 млрд лет;
* радиогенные радионуклиды — продукты распада вышеуказанных долгоживущих радионуклидов (например, радон-222 и другие радионуклиды из рядов радия, тория и актиния);
* космогенные радионуклиды, возникающие в результате действия космического излучения (тритий, углерод-14, бериллий-7 и др.).
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
1000 нм. (Для регистрации спектров в области радиоактивный изотоп аргона 37Аг и испускается электрон. По причине исключительно слабого взаимодействия нейтрино с веществом такие процессы будут происходить чрезвычайно редко. Поэтому установка для обнаружения солнечных нейтрино выглядит весьма необычно. Представьте себе большое количество специальных цистерн, наполненных прозрачной жидкостью перхлорэтиленом (С2С14). Количества этой жидкости достаточно, чтобы, например, заполнить большой бассейн для плавания. В таком гигантском количестве перхлорэтилена можно ожидать образования около десятка изотопов аргона ежедневно из-за захвата солнечных нейтрино ядрами 37С1, входящими в состав жидкости. Оказывается, что средства современной экспериментальной физики позволяют обнаружить это ничтожно малое количество вновь образовавшихся изотопов аргона.
Наверное, нет на земле такого человека, который не слышал бы об изотопах. Но далеко не все знают, что это такое. Особенно пугающе звучит словосочетание «радиоактивные изотопы». Эти непонятные химические элементы нагоняют ужас на человечество, но на самом деле они не так страшны, как это может показаться на первый взгляд.
Определение
Чтобы разобраться с понятием радиоактивных элементов, необходимо для начала сказать, что изотопы – это образцы одного и тот же химического элемента, но с разной массой. Что это значит? Вопросы исчезнут, если для начала мы вспомним строение атома. Состоит он из электронов, протонов и нейтронов. Число первых двух элементарных частиц в ядре атома всегда постоянно, тогда как нейтроны, имеющие собственную массу, могут встречаться в одном и том же веществе в разных количествах. Это обстоятельство и порождает разнообразие химических элементов с разными физическими свойствами.
Теперь мы можем дать научное определение исследуемому понятию. Итак, изотопы – это совокупный набор похожих по свойствам химических элементов, но имеющих разную массу и физические свойства. Согласно более современной терминологии, они носят название плеяды нуклеотидов химического элемента.
Немного истории
В начале прошлого века ученые обнаружили, что у одного и того же химического соединения в разных условиях могут наблюдаться разные массы ядер электронов. С чисто теоретической точки зрения, такие элементы можно было посчитать новыми и начать заполнять ими пустые клеточки в периодической таблице Д. Менделеева. Но свободных ячеек в ней всего девять, а новые элементы ученые открывали десятками. К тому же и математические подсчеты показали, что обнаруженные соединения не могут считаться ранее не известными, ведь их химические свойства полностью соответствовали характеристикам уже существующих.
После длительных обсуждений было решено назвать эти элементы изотопами и помещать их в одну клеточку с теми, ядра которых содержат с ними одинаковое количество электронов. Ученым удалось определить, что изотопы – это всего лишь некоторые вариации химических элементов. Однако причины их возникновения и длительность жизни изучались еще почти целое столетие. Даже в начале XXI века утверждать, что человечество знает абсолютно все об изотопах, нельзя.
Стойкие и нестойкие вариации
Каждый химический элемент имеет несколько изотопов. Из-за того, что в их ядрах есть свободные нейтроны, они не всегда вступают в стабильные связи с остальными составляющими атома. Через некоторое время свободные частицы покидают ядро, из-за чего меняется его масса и физические свойства. Так образуются другие изотопы, что ведет в конце концов к образованию вещества с равным количеством протонов, нейтронов и электронов.
Те вещества, которые распадаются очень быстро, называются радиоактивными изотопами. Они выпускают в пространство большое количество нейтронов, образующих мощное ионизирующее гамма-излучение, известное своей сильной проникающей способностью, которая негативно влияет на живые организмы.
Более стойкие изотопы не являются радиоактивными, поскольку количество выделяемых ими свободных нейтронов не способно образовывать излучения и существенно влиять на другие атомы.
Достаточно давно учеными была установлена одна важная закономерность: у каждого химического элемента есть свои изотопы, стойкие или радиоактивные. Интересно, что многие из них были получены в лабораторных условиях, а их присутствие в естественном виде невелико и не всегда фиксируется приборами.
Распространение в природе
В естественных условиях чаще всего встречаются вещества, масса изотопа которых напрямую определяется его порядковым числом в таблице Д. Менделеева. К примеру, водород, обозначаемый символом Н, имеет порядковый номер 1, а его масса равна единице. Изотопы его, 2Н и 3Н, в природе встречаются крайне редко.
Даже человеческий организм имеет некоторое количество радиоактивных изотопов. Попадают они внутрь через пищу в виде изотопов углерода, который, в свою очередь, впитывается растениями из почвы или воздуха и переходит в состав органических веществ в процессе фотосинтеза. Поэтому и человек, и животные, и растения излучают определенный радиационный фон. Только он настолько низкий, что не мешает нормальному функционированию и росту.
Источниками, которые способствуют образованию изотопов, выступают внутренние слои земного ядра и излучения из космоса.
Как известно, температура на планете во многом зависит от ее горячего ядра. Но только совсем недавно стало понятно, что источником этого тепла выступает сложная термоядерная реакция, в которой участвуют радиоактивные изотопы.
Распад изотопов
Поскольку изотопы – это нестойкие образования, можно предположить, что они по прошествии времени всегда распадаются на более постоянные ядра химических элементов. Это утверждение верно, поскольку ученым не удалось обнаружить в природе огромного количества радиоактивных изотопов. Да и большинство из тех, которые были добыты в лабораториях, просуществовали от пары минут до нескольких дней, а потом снова превратились в обычные химические элементы.
Но есть в природе и такие изотопы, которые оказываются очень устойчивыми к распаду. Они могут существовать миллиарды лет. Образовались такие элементы в те далекие времена, когда земля еще формировалась, а на ее поверхности не было даже твердой коры.
Радиоактивные изотопы распадаются и вновь образуются очень быстро. Поэтому с той целью, чтобы облегчить оценку стойкости изотопа, учеными было принято решение рассматривать категорию периода его полураспада.
Период полураспада
Не всем читателям может быть сразу понятно, что имеется в виду под этим понятием. Определим же его. Период полураспада изотопа – это время, за которое перестанет существовать условная половина взятого вещества.
Это не означает, что оставшаяся часть соединения будет уничтожена за такое же количество времени. Применительно к этой половине необходимо рассматривать иную категорию – период времени, за который исчезнет ее вторая часть, то есть четверть изначального количества вещества. И такое рассмотрение продолжается до бесконечности. Можно предположить, что время полного распада изначального количества вещества посчитать просто невозможно, поскольку этот процесс практически бесконечен.
Однако ученые, зная период полураспада, могут определить, какое количество вещества существовало вначале. Эти данные успешно используются в смежных науках.
В современном научном мире понятие полного распада практически не используется. Относительно каждого изотопа принято указывать время его полураспада, которое варьирует от нескольких секунд до многих миллиардов лет. Чем меньше показатель полураспада, там большее излучение исходит от вещества и тем выше его радиоактивность.
Обогащение ископаемых
В некоторых отраслях науки и техники использование относительно большого количества радиоактивных веществ считается обязательным. Но при этом в естественных условиях таких соединений совсем немного.
Известно, что изотопы – это нераспространенные варианты химических элементов. Количество их измеряется несколькими процентами от самой стойкой разновидности. Именно поэтому ученым необходимо проводить искусственное обогащение ископаемых материалов.
За годы исследований удалось узнать, что распад изотопа сопровождается цепной реакцией. Освобожденные нейтроны одного вещества начинают влиять на другое. В результате этого тяжелые ядра распадаются на более легкие и получаются новые химические элементы.
Это явление получило название цепной реакции, в результате которой можно получить более стойкие, но менее распространенные изотопы, которые в дальнейшем используются в народном хозяйстве.
Применение энергии распада
Также учеными было выяснено, что в ходе распада радиоактивного изотопа выделяется огромное количество свободной энергии. Ее количество принято измерять единицей Кюри, равной времени деления 1 г радона-222 за 1 секунду. Чем выше этот показатель, тем больше энергии выделяется.
Это стало поводом для разработки способов использования свободной энергии. Так появились атомные реакторы, в которые помещается радиоактивный изотоп. Большая часть энергии, выделяемой им, собирается и превращается в электричество. На основании этих реакторов создаются атомные станции, которые дают самое дешевое электричество. Уменьшенные варианты таких реакторов ставят на самоходные механизмы. Учитывая опасность аварий, чаще всего такими машинами выступают подводные лодки. В случае отказа реактора количество жертв на подлодке будет легче свести к минимуму.
Изотопы в медицине
В мирных целях распад радиоактивных изотопов научились использовать в медицине. Направив излучение на пораженный участок организма, можно приостановить течение болезни или помочь пациенту полностью излечиться.
Но чаще радиоактивные изотопы используют для диагностики. Все дело в том, что их движение и характер скопления проще всего зафиксировать по излучению, которое они производят. Так, в организм человека вводится определенное неопасное количество радиоактивного вещества, а по приборам медики наблюдают, как и куда оно попадет.
Таким образом проводят диагностику работы головного мозга, характера раковых опухолей, особенности работы желез внутренней и внешней секреции.
Применение в археологии
Известно, что в живых организмах всегда есть радиоактивный углерод-14, полураспад изотопа которого равен 5570 лет. Кроме того, ученные знают, какое количество этого элемента содержится в организме до момента его смерти. Это значит, что все спиленные деревья излучают одинаковое количество радиации. Со временем интенсивность излучения падает.
Это помогает археологам определить, как давно умерло дерево, из которого построили галеру или любой другой корабль, а значит, и само время строительства. Этот метод исследования получил название радиоактивного углеродного анализа. Благодаря ему ученым легче установить хронологию исторических событий.
Радиоактивные изотопы
Описание презентации по отдельным слайдам:
Описание слайда:
РАДИОАКТИВНЫЕ ИЗОТОПЫ
получение и применение
Описание слайда:
Определение
Изото́пы (от др.-греч. ισος — «равный», «одинаковый», и τόπος — «место») — разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём), и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N).
Описание слайда:
Открытие изотопов
Первое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906—1907 годах выяснилось, что продукт радиоактивного распада урана — ионий и продукт радиоактивного распада тория — радиоторий имеют те же химические свойства, что и торий, но отличаются от него атомной массой и характеристиками радиоактивного распада. Было обнаружено позднее, что у всех трёх продуктов одинаковы оптические и рентгеновские спектры. Такие вещества, идентичные по химическим свойствам, но различные по массе атомов и некоторым физическим свойствам, по предложению английского учёного Содди с 1910 г. стали называть изотопами.
Описание слайда:
Изотопы в природе
Считается, что изотопный состав большинства элементов на Земле одинаков во всех материалах. Некоторые физические процессы в природе приводят к нарушению изотопного состава элементов (природное фракционирование изотопов, характерное для лёгких элементов, а также изотопные сдвиги при распаде природных долгоживущих изотопов). Постепенное накопление в минералах ядер — продуктов распада некоторых долгоживущих нуклидов используется в ядерной геохронологии. Особое значение имеют процессы образования изотопов углерода в верхних слоях атмосферы под воздействием космического излучения. Эти изотопы распределяются в атмосфере и гидросфере планеты, вовлекаются в оборот углерода живыми существами (животными и растениями). Изучение распределения изотопов углерода лежит в основе радиоуглеродного анализа.
Описание слайда:
Получение радиоактивных изотопов.
Получают радиоактивные изотопы в атомных реакторах и на ускорителях элементарных частиц. В настоящее время производством изотопов занята большая отрасль промышленности.
Описание слайда:
Применение в биологии и медицине
Одним из наиболее выдающихся исследований, проведенных с помощью меченых атомов, явилось исследование обмена веществ в организмах. Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Слагающие его атомы заменяются новыми.
Лишь железо, как показали опыты по изотопному исследованию крови, является исключением из этого правила. Железо входит в состав гемоглобина красных кровяных шариков. При введении в пищу радиоактивных атомов железа было обнаружено, что они почти не поступают в кровь. Только в том случае, когда запасы железа в организме иссякают, железо начинает усваиваться организмом.
Если не существует достаточно долго живущих радиоактивных изотопов, как, например, у кислорода и азота, меняют изотопный состав стабильных элементов. Так, добавлением к кислороду избытка изотопа было установлено, что свободный кислород, выделяюнщйся при фотосинтезе, первоначально входил в состав воды, а не углекислого газа.
Описание слайда:
Описание слайда:
Описание слайда:
Описание слайда:
Описание слайда:
Прибор для обнаружения ядра искусственно полученного трансуранового элемента – менделевия 101 Md
Описание слайда:
Исследование сварных швов с помощью γ-излучения.
Облучение продуктов сельского хозяйства для увеличения их урожайности
Описание слайда:
Распределение в листьях помидора радиоактивного фосфора, внесенного в удобрения
Перчаточный бокс для работы с радиоактивными веществами
Описание слайда:
Гамма-терапевтический аппарат.
Исследование щитовидной железы с помощью радиоактивного йода
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.