что такое пусковой момент
ПУСКОВОЙ МОМЕНТ
Смотреть что такое «ПУСКОВОЙ МОМЕНТ» в других словарях:
ПУСКОВОЙ МОМЕНТ — механический вращающий момент, развиваемый электродвигателем на валу при пуске. Пусковой момент всегда больше номинального момента двигателя … Большой Энциклопедический словарь
пусковой момент — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN starting momentaccelerating torquestarting torque … Справочник технического переводчика
пусковой момент — механический вращающий момент, развиваемый электродвигателем на валу при пуске. Пусковой момент всегда больше номинального момента двигателя. * * * ПУСКОВОЙ МОМЕНТ ПУСКОВОЙ МОМЕНТ, механический вращающий момент, развиваемый электродвигателем на… … Энциклопедический словарь
пусковой момент — paleidimo momentas statusas T sritis automatika atitikmenys: angl. starting torque vok. Anlaufmoment, n rus. момент при пуске, m; пусковой момент, m pranc. couple de démarrage, m … Automatikos terminų žodynas
Пусковой момент — Вращающий момент, развиваемый двигателем на валу в процессе пуска. П. м. является важным рабочим параметром двигателя; значение П. м. устанавливают при проектировании двигателя, исходя из условий его пускового режима … Большая советская энциклопедия
минимальный пусковой момент асинхронного двигателя с короткозамкнутым ротором (синхронного двигателя, синхронного компенсатора) — минимальный пусковой момент Минимальный вращающий момент, развиваемый асинхронным электродвигателем с короткозамкнутым ротором (синхронным двигателем, синхронным компенсатором) между нулевой частотой вращения и частотой вращения, соответствующий… … Справочник технического переводчика
начальный пусковой момент асинхронного двигателя с короткозамкнутым ротором (синхронного двигателя, синхронного компенсатора) — начальный пусковой момент Минимальный измеренный момент, развиваемый асинхронным двигателем с короткозамкнутым ротором (синхронным двигателем, синхронным компенсатором) в заторможенном состоянии при номинальных значениях напряжения и частоты… … Справочник технического переводчика
начальный пусковой момент (электродвигателя) — момент (электродвигателя) при неподвижном роторе — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия Синонимы момент… … Справочник технического переводчика
минимальный пусковой момент (электродвигателя переменного тока) — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва] Тематики электротехника, основные понятия EN pull up torque … Справочник технического переводчика
начальный пусковой момент двигателя — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN motor stall torque … Справочник технического переводчика
Пусковой момент асинхронного двигателя
Пусковой момент иногда называют еще моментом трогания или начальным моментом. При этом подразумевается, что напряжение и частота питающего напряжения приближены к номиналу, причем соединение обмоток выполнено правильно. В номинальном режиме работы данный двигатель будет работать именно так, как предполагали разработчики.
Численное значение пускового момента
Пусковой момент вычисляется по приведенной формуле. В паспорте электродвигателя (паспорт предоставляется производителем) указана кратность пускового момента.
Обычно значение величины кратности лежит в пределах от 1,5 до 6, в зависимости от типа двигателя. И при выборе электродвигателя для своих нужд, важно убедиться, что пусковой момент окажется больше статического момента планируемой проектной нагрузки на валу. Если это условие не соблюсти, то двигатель попросту не сможет развить рабочий момент при вашей нагрузке, то есть не сможет нормально стартонуть и разогнаться до номинальных оборотов.
Для нахождения P2 применяют следующую формулу. Здесь необходимо учесть скольжение, пусковой ток и напряжение питания, все эти данные указаны на шильдике. Как видите, все довольно просто. Из формулы очевидно, что пусковой момент в принципе можно повысить двумя путями: увеличением стартового тока или повышением питающего напряжения.
Попробуем, однако, пойти наиболее простым путем, и рассчитаем значения пусковых моментов для трех двигателей серии АИР. Воспользуемся параметрами кратности пускового момента и величинами номинального момента, то есть пользоваться будем самой первой формулой. Результаты расчетов приведены в таблице:
Тип двигателя | Номинальный момент, Нм | Отношение пускового момента к номинальному моменту | Пусковой момент, Нм |
АИРМ132М2 | 36 | 2,5 | 90 |
АИР180 S2 | 72 | 2 | 144 |
АИР180М2 | 97 | 2,4 | 232,8 |
Роль пускового момента асинхронного электродвигателя (пусковой ток)
Часто двигатели включают напрямую в сеть, осуществляя коммутацию магнитным пускателем: на обмотки подается линейное напряжение, создается вращающееся магнитное поле статора, оборудование начинает работать.
Бросок тока в момент старта в данном случае неизбежен, и он превышает номинальный ток в 5-7 раз, причем длительность превышения зависит от мощности двигателя и от мощности нагрузки: более мощные двигатели стартуют дольше, их обмотки статора дольше принимают токовую перегрузку.
Если же вы имеете дело с мощным двигателем на 10 и более кВт, то включать напрямую такой двигатель в сеть нельзя. Бросок тока в момент пуска необходимо ограничить, иначе сеть испытает значительную перегрузку, что может привести к опасной «нештатной просадке напряжения».
Пути ограничения пускового тока
Наиболее простой способ ограничения пускового тока — пуск при пониженном напряжении. Обмотки просто переключаются с треугольника на звезду в момент пуска, а затем, когда двигатель набрал какие-то обороты — обратно на треугольник. Переключение осуществляется через несколько секунд после старта с помощью реле времени, например.
В таком решении пусковой момент также понижается, причем зависимость квадратичная: при снижении напряжения в будет в 1,72 раза, момент снизится в 3 раза. По этой причине пуск при пониженном напряжении подходит для такого оборудования, где пуск возможен с минимальной нагрузкой на валу асинхронного двигателя (например пуск многопильного станка).
Мощным нагрузкам, например ленточному конвейеру, необходим другой способ ограничения пускового тока. Здесь лучше подойдет реостатный метод, позволяющий снизить пусковой ток без уменьшения крутящего момента.
Такой способ очень подходит асинхронным двигателям с фазным ротором, где реостат удобно включается в цепь обмотки ротора, и регулировка рабочего тока осуществляется ступенчато, получается очень плавный пуск. С помощью реостата тут же можно регулировать и рабочую скорость двигателя (не только в момент запуска).
Но наиболее эффективным способом безопасного пуска асинхронных двигателей является все же пуск посредством частотного преобразователя. Величину напряжения и частоту регулирует сам преобразователь автоматически, создавая оптимальные условия двигателю. Обороты получаются стабильными, при этом броски тока принципиально исключены.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Пусковой момент асинхронного двигателя
Пусковым моментом асинхронного двигателя называют вращающий момент, который развивается на валу асинхронного электрического двигателя, когда ротор остается неподвижным, а статор тока установлен в обмотках.
Если в специализированной литературе встречаются термины «начальный момент», «начальный пусковой момент асинхронного двигателя» или «момент трогания», то речь тоже идет о пусковом моменте. Обязательно нужно следить за правильностью выполнения обмоток, причем подразумевается, что частота питающего напряжения, как и само напряжение, будут приближены к номинальному значению. Только в номинальном режиме асинхронный двигатель сможет работать непосредственно так, как задумано инженерами.
Пусковой момент и его численное значение
Определить пусковой момент асинхронного двигателя можно, используя специальную формулу. Кратность же пускового момента асинхронного двигателя можно найти в паспорте устройства, такой документ обязательно должен предоставляться производителем. С этими данными формулу пускового момента асинхронного двигателя очень просто рассчитать.
В зависимости от модели двигателя меняется величина кратности. Встречаются изделия, в которых этот показатель составляет от 1,5 до 6. При покупке необходимо убедиться, что значение пускового момента больше, чем статический момент планируемой проектной нагрузки на валу. Если, выбирая двигатель, вы обнаружили несоответствие, то такой аппарат не сможет развивать необходимый рабочий момент и выполнять нужную нагрузку. Он просто будет не в состоянии должным образом запуститься, а после и разогнаться до номинальных оборотов. Максимальный пусковой момент асинхронного двигателя должен соответствовать потребностям пользователя.
Для нахождения пускового момента существует и еще одна формула. Ее следует использовать при выполнении теоретических расчетов. Чтобы воспользоваться формулой, необходимо знать показатели номинального оборота и мощности на валу. На шильдике (табличка с данными) устройства указываются все эти параметры. В формуле P2 –номинальная мощность, а F1 – номинальные обороты. Формула выглядит следующим образом:
Чтобы найти P2, необходимо применить уже отдельную формулу. Здесь пусковой момент асинхронного двигателя зависит от напряжения. Важно учитывать параметры скольжения, пускового тока и напряжения питания. Все эти величины тоже обнаруживаются на шильдике. Расчеты не представляют особой сложности. И формула наглядно показывает, что для увеличения пускового момента асинхронного двигателя можно воспользоваться двумя методиками: повысить питающее напряжение или увеличить стартовый ток.
Для наглядности предлагаем произвести расчет значений пусковых моментов для трех аппаратов из серии АИР. Воспользоваться нужно самой первой формулой, для которой необходимы величины номинального момента и параметры кратности пускового момента. Результаты вычислений представлены в табличке:
Тип двигателя | Номинальный момент, Нм | Отношение пускового момента к номинальному моменту | Пусковой момент, Нм |
АИРМ132М2 | 36 | 2,5 | 90 |
АИР180S2 | 72 | 2 | 144 |
АИР180М2 | 97 | 2,4 | 232,8 |
Какую роль играет пусковой момент
Встречаются ситуации, когда двигатели подключают непосредственно к сети, а коммутацию производят за счет обычного магнитного пускателя. Для этого линейное напряжение подается на обмотки, образуется вращающееся магнитное поле статора, за счет чего оборудование начинает работать.
В этом случае не избежать броска тока, который по своей величине превысит номинальный ток в 5-7 раз. И чем мощнее двигатель и выше нагрузка, тем большей будет и длительность такого превышения. Более мощные моторы демонстрируют продолжительный старт, а обмотки статора в них принимают токовую перегрузку дольше.
Двигатели малой мощности, не превышающей 3 кВт, могут с легкостью перенести такие перепады. Сеть тоже вполне достойно справляется с кратковременными бросками мощности, поскольку у сети в любом случае присутствует некий мощностной резерв. Это объясняет, почему мелкие бытовые электроприборы, а также небольшие станки, вентиляторы и насосы подсоединяют напрямую, не беспокоясь о том, что они подвергаются перегрузкам. Обмотки статоров в двигателях маломощного оборудования соединяются «звездой», если расчет идет на 3-фазное напряжение в 380 вольт или «треугольником», когда речь идет о 220 вольтах.
Но если двигатель более мощный, с показателем в 10 и больше кВт, то его недопустимо включать в сеть напрямую. Нужно ограничить бросок тока, иначе можно спровоцировать существенную перегрузку, которая приведет к опасным последствиям.
Пути ограничения пускового тока
Самый простой способ убрать лишний пусковой ток заключается в запуске оборудования на пониженном напряжении электродвигателя. Для этого конструкция предусматривает переключение обмотки с «треугольника» на «звезду» непосредственно в момент запуска. Когда же двигатель наберет некоторые обороты, обмотка переключается обратно на «треугольник». Всего несколько секунд требуется для погашения ненужного всплеска и переключения. В устройствах это реализуется за счет реле времени или иных приспособлений.
Если используется это решение, то пусковой момент также понижается. И здесь можно наблюдать квадратичную зависимость: когда напряжение уменьшится в 1,7 раза, то и момент снизится в 3 раза. Именно поэтому пуск на пониженном напряжении можно использовать лишь оборудования, в котором пуск возможен только с минимальной нагрузкой на валу двигателя асинхронного типа. Ярким примером может служить пуск многопильного станка.
Если же речь идет о мощных нагрузках, к примеру, присущих ленточному конвейеру, то указанный выше способ ограничения пускового тока не подходит. Лучше применять реостатный метод. Он дает возможность уменьшить пусковой ток без ущерба для крутящего момента. Именно этот способ можно назвать наиболее подходящим для асинхронных электродвигателей, снабженных фазным ротором. Тут удобно включается реостат в цепь обмотки ротора, а регулировка рабочего тока производится ступенчато, обеспечивая плавный пуск. А за счет реостата можно отрегулировать и рабочую скорость в двигателе, причем это характерно не только для момента запуска.
Самым же эффективным методом для безопасного запуска электродвигателей асинхронного типа можно смело назвать пуск через частотный преобразователь. Показатели напряжения и частоты здесь регулируются самим преобразователем в автоматическом режиме, за счет чего двигатель работает в оптимальных для себя условиях. Так удается достичь стабильности в оборотах, но полностью исключить броски тока.
Что такое пусковой момент в асинхронном двигателе
Вращающий момент, развиваемый на валу асинхронного электродвигателя в условиях нулевой скорости вращения ротора (когда ротор еще неподвижен) и установившегося в обмотках статора тока, — называется пусковым моментом асинхронного двигателя.
Пусковой момент иногда называют еще моментом трогания или начальным моментом. При этом подразумевается, что напряжение и частота питающего напряжения приближены к номиналу, причем соединение обмоток выполнено правильно. В номинальном режиме работы данный двигатель будет работать именно так, как предполагали разработчики.
Численное значение пускового момента
Пусковой момент вычисляется по приведенной формуле. В паспорте электродвигателя (паспорт предоставляется производителем) указана кратность пускового момента.
Обычно значение величины кратности лежит в пределах от 1,5 до 6, в зависимости от типа двигателя. И при выборе электродвигателя для своих нужд, важно убедиться, что пусковой момент окажется больше статического момента планируемой проектной нагрузки на валу. Если это условие не соблюсти, то двигатель попросту не сможет развить рабочий момент при вашей нагрузке, то есть не сможет нормально стартонуть и разогнаться до номинальных оборотов.
Давайте рассмотрим еще одну формулу для нахождения пускового момента. Она будет вам полезной для теоретических расчетов. Здесь достаточно знать мощность на валу в киловаттах и номинальные обороты, — все эти данные указаны на табличке (на шильдике). P2-номинальная мощность, F1-номинальные обороты. Итак, вот эта формула:
Для нахождения P2 применяют следующую формулу. Здесь необходимо учесть скольжение, пусковой ток и напряжение питания, все эти данные указаны на шильдике. Как видите, все довольно просто. Из формулы очевидно, что пусковой момент в принципе можно повысить двумя путями: увеличением стартового тока или повышением питающего напряжения.
Попробуем, однако, пойти наиболее простым путем, и рассчитаем значения пусковых моментов для трех двигателей серии АИР. Воспользуемся параметрами кратности пускового момента и величинами номинального момента, то есть пользоваться будем самой первой формулой. Результаты расчетов приведены в таблице:
Тип двигателя | Номинальный момент, Нм | Отношение пускового момента к номинальному моменту | Пусковой момент, Нм |
АИРМ132М2 | 36 | 2,5 | 90 |
АИР180 S2 | 72 | 2 | 144 |
АИР180М2 | 97 | 2,4 | 232,8 |
Роль пускового момента асинхронного электродвигателя (пусковой ток)
Часто двигатели включают напрямую в сеть, осуществляя коммутацию магнитным пускателем: на обмотки подается линейное напряжение, создается вращающееся магнитное поле статора, оборудование начинает работать.
Бросок тока в момент старта в данном случае неизбежен, и он превышает номинальный ток в 5-7 раз, причем длительность превышения зависит от мощности двигателя и от мощности нагрузки: более мощные двигатели стартуют дольше, их обмотки статора дольше принимают токовую перегрузку.
Маломощные двигатели (до 3 кВт) легко переносят данные броски, и сеть так же легко выдерживает эти незначительные кратковременные всплески мощности, ибо у сети всегда есть некоторый мощностный резерв. Вот почему небольшие насосы и вентиляторы, станки и бытовые электроприборы обычно включают напрямую, не заботясь особо о токовых перегрузках. Как правило обмотки статоров двигателей оборудования такого рода соединяются по схеме «звезда» из расчета на трехфазное напряжение 380 вольт или «треугольник» — для 220 вольт.
Если же вы имеете дело с мощным двигателем на 10 и более кВт, то включать напрямую такой двигатель в сеть нельзя. Бросок тока в момент пуска необходимо ограничить, иначе сеть испытает значительную перегрузку, что может привести к опасной «нештатной просадке напряжения».
Что такое пусковой ток двигателя
Пусковой ток и его кратность
Итак, для начала давайте дадим определение. Пусковой ток — это ток, потребляемый электродвигателем в момент его запуска (раскручивания). В большинстве случаев этот ток больше рабочего в 6-8 раз. Величина, показывающая во сколько раз больше пусковой ток, называется кратностью и записывается как коэффициент:
Получается, если известен коэффициент, то пусковой ток найти крайне легко по этой формуле:
Примечание. Пожалуйста, не путайте номинальный и рабочий токи. Номинальный — это такой ток, при котором двигатель способен работать продолжительное время и ограничивается только температурным нагревом статора. А рабочий — это реальный ток, протекающий по обмоткам в процессе работы агрегата и он всегда равен или несколько меньше номинального тока.
Кратность пусковых токов имеет прямую зависимость от мощности самого движка и от того сколько пар полюсов в нем реализовано. То есть при меньшей мощности будет меньший пусковой ток. А в случае с парами полюсов, чем их меньше, тем пусковой ток больше.
Получается, что, наибольшим пусковым током обладают двигатели с оборотами 3000 об/мин, двумя полюсами и мощностью более 10 кВт (7-9 крат от номинала).
Почему так происходит
Все дело в том, что потребление тока и инерционный момент при запуске зависит от конструктивных особенностей двигателя и от того, каким образом произведена намотка обмоток.
Мало полюсов – это минимальное сопротивление обмоток. Такое низкое сопротивление – это автоматически большой ток. А еще высокооборотистым движкам для полного выхода на рабочие параметры необходимо больше времени, а это автоматически тяжелый пуск.
Что такое пусковой момент в асинхронном двигателе
Пусковой момент на валу асинхронника – вращающий момент, который развивает на валу электрический асинхронный двигателя при следующих условиях: скорость вращения равна нулю (ротор неподвижен), ток имеет установившееся значение, к обмоткам электродвигателя подведено номинальное по частоте и напряжению питание, соединение обмоток соответствует номинальному режиму работы электродвигателя.
Под номинальным режимом понимают процесс функционирования электродвигателя, для которого он был разработан.
При выборе электродвигателя для оборудования важно следить что бы пусковой момент был больше чем статический момент нагрузки подключенной к валу электродвигателя. В случае если данное условие не выполняется асинхронный двигатель либо вообще не сможет разогнать нагрузку, либо разгон будет очень длительным.
Кратность — пусковой момент
Кратность пускового момента выбирается из каталога на двигатели. За расчетное значение Ммакс принимается максимальная величина момента только в тех положениях переключающего устройства, в которых оно может остановиться. [1]
Кратностью пускового момента называют отношение Кп — м Мп / Мном. Для асинхронных двигателей мощностью 0 6 — 100 кВт ГОСТом установлен Кп. Достоинством прямого пуска является простота, а отсюда — высокая надежность. [2]
Начальный пусковой ток и начальный пусковой момент
Последовательность расчета | Условные обозначения | Источник | Двигатель №1 |
347 | h ст, мм | (9-330) | 25,5 – 0,75 = 24,75 |
348 | (9-329) | ||
349 | рис. 9-23 | 0,4 | |
350 | h р, мм | (9-332) | 24,75 / (1 + 0,4) = 17,7 |
351 | b р, мм | (9-333) | |
352 | s p, мм2 | (9-335) | |
353 | k в. т | (9-337) | 95,9 / 79,06 = 1,21 |
354 | r ст. п, Ом | (9-338) | 4,44∙10-5∙1,21 = 5,33∙10-5 |
355 | r’ 2п, Ом | (9-339) | 5206 (5,33 + 1,85)∙10-5 = 0,374 |
356 | рис. 9-23 | 0,82 | |
357 | п2п | (9-340) | |
358 | 2п | (9-342) | 1,69 + 2,73 + 0,436 + 2,1 = 6,87 |
359 | x пер, Ом | (9-343) | |
360 | x пост, Ом | (9-344) | |
361 | r к. п, Ом | (9-345) | 0,64 + 0,374∙1,22 (1 + 0,04)2 = 1,14 |
362 | , А | (9-368) | |
363 | z к. п, Ом | (9-370) | 220 / 95,2 = 2,3 |
364 | x к. п, Ом | (9-371) | |
365 | п. а1, А | (9-372) | |
366 | п. р1, А | (9-373) | |
367 | п1, А | (9-374) | |
368 | п1 / 1, о. е. | (9-375) | 100,4 / 14,9 = 6,7 |
369 | r’’ 2п, Ом | (9-376) | 0,374∙1,22∙1,042 = 0,49 |
370 | M п / М н | (9-377) |
§ 9-13. Тепловой и вентиляционный расчеты
Тепловой расчет асинхронного двигателя.Проводим его по упрощенной методике, изложенной в § 5-3.
При выполнении теплового расчета необходимо учитывать следующее. 1. Потери в обмотках вычисляют при сопротивлениях, приведенных к максимальной допускаемой температуре; для этого сопротивление, определенное при 200С, умножают на коэффициент m’
Т (см. § 5-1) в соответствии с выбранным классом нагревостойкости изоляции.
2. При тепловом расчете обмотки статора учитывают, что воздуху внутри двигателя передается только часть потерь в активной части статора (эта доля потерь равна коэффициенту k
из табл. 9-25); остальные потери передаются непосредственно через станину наружному охлаждающему воздуху.
Таблица 9-25
Количество полюсов 2р | Коэффициент k для двигателей со степенью защиты | |
IP44 | IP23 | |
2; 4 | 0,20 – 0,22 | 0,80 – 0,84 |
6; 8 | 0,18 – 0,19 | 0,76 – 0,78 |
10; 12 | 0,16 – 0,17 | 0,72 – 0,74 |
3. Для обмоток, не имеющих изоляцию катушек в лобовых частях, первое слагаемое в (9-394), а также Δt
и. л1 в (9-395) необходимо считать равными нулю.
4. При определении по (9-400) среднего превышения температуры воздуха внутри машины Δt
в у асинхронных двигателей со степенью защиты IP23 принимают, что воздух внутри двигателя нагревается всеми выделяемыми потерями (за исключением части потерь в статоре, передаваемых через станину), а у двигателей со степенью защиты IP44 и способом охлаждения IC0141, кроме того, за исключением потерь на трение о воздух наружного вентилятора, составляющие примерно 0,9
Р
мхΣ.
Обмотка статора.Тепловой расчет для определения превышения температуры обмотки статора проводят в такой последовательности
Потери в обмотке статора при максимальной допускаемой температуре (Вт) | (9-378) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Условная внутренняя поверхность охлаждения активной части статора (мм2) | (9-379) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Условный периметр поперечного сечения (мм): трапецеидального полузакрытого паза | (9-380) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
прямоугольного полуоткрытого и открытого пазов | (9-381) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Условная поверхность охлаждения (мм2): пазов | (9-382) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
лобовых частей обмотки | (9-383) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
двигателей без охлаждающих ребер на станине | (9-384) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
двигателей с охлаждающими ребрами на станине | (9-385) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Удельный тепловой поток от потерь в активной части обмотки и от потерь в стали, отнесенных к внутренней поверхности охлаждения активной части статора (Вт / мм2) | (9-386) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
То же, от потерь в активной части обмотки, отнесенных к поверхности охлаждения пазов | (9-387) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
То же, от потерь в лобовых частях обмотки, отнесенных к поверхности охлаждения лобовых частей обмотки | (9-388) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Окружная скорость ротора (м / с) | (9-389) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Повышение температуры внутренней поверхности активной части статора над температурой воздуха внутри машины (0С) | (9-390) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Перепад температуры в изоляции паза и катушек из круглых проводов(0С) | (9-391) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
То же в изоляции паза и жестких катушек или полукатушек | (9-392) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Превышение температуры наружной поверхности лобовых частей обмотки над температурой воздуха внутри двигателя (0С) | (9-393) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Перепад температуры в изоляции лобовых частей катушек из круглых проводов (0С) | (9-394) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
То же, из жестких катушек или полукатушек | (9-395) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Среднее превышение температуры обмотки над температурой воздуха внутри двигателя (0С) | (9-396) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Потери в двигателе со степенью защиты IP23, передаваемые воздуху внутри двигателя, (Вт) | (9-397) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
То же, для IP44 | (9-398) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Среднее превышение температуры воздуха внутри двигателя над температурой наружного воздуха без охлаждающих ребер на станине или с ребрами (0С) | (9-399) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Среднее превышение температуры обмотки над температурой наружного воздуха (0С) | (9-400) | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Здесь n p и Рис. 9-24. Средние значения 1 = f Рис. 9-25. Средние значения в = f – исполнение по защите IP44, способ охлаждения IC0141, U Рис. 9-26. Средние значения = f Обмотка фазного ротора. Тепловой расчет для определения превышения температуры фазного ротора проводят в такой последовательности
|