что такое прямое горение

Горение

Что такое горение

Горение – это совокупность одновременно протекающих физических процессов (плавление, испарение, ионизация) и химических реакций окисления горючего вещества и материала, сопровождающееся, как правило, световым и тепловым излучением и выделением дыма. В основе горения лежит взаимодействие горючего вещества с окислителем, преимущественно с кислородом воздуха.

Однако горения может осуществляться без доступа воздуха (кислорода), если в состав горючей массы (среды) входит окислитель в виде примеси или составной части молекулы. В производственных условиях или ракетной технике горения может осуществляться в атмосфере таких окисляющих газов, как фтор, хлор, окислы азота и другие.

что такое прямое горение. Смотреть фото что такое прямое горение. Смотреть картинку что такое прямое горение. Картинка про что такое прямое горение. Фото что такое прямое горение

Некоторые вещества (порошкообразные титан и цирконий) способны гореть в атмосфере азота, двуокиси углерода, не относящимся к традиционным окислителям.

Виды горения

В зависимости от способа подвода окислителя различают:

При пожаре отмечается смешанный тип горения. В зависимости от скорости горение может быть медленным (тление), нормальным (дефлаграция) и взрывообразным (взрыв), переходящим в детонационное (детонация).

По внешнему проявлению горение может быть пламенным или беспламенным.

что такое прямое горение. Смотреть фото что такое прямое горение. Смотреть картинку что такое прямое горение. Картинка про что такое прямое горение. Фото что такое прямое горение

Беспламенное горение может возникнуть в результате дефицита окислителя (тление) или при низком давлении насыщенных паров горючего вещества (горение тугоплавких металлов и кокса).

По механизму развития горение может быть тепловым, при котором причиной самоускорения реакций окисления является повышение температуры, и автокаталитическим (цепным), когда ускорение процесса достигается накоплением промежуточных катализирующих продуктов (активных центров). Автокаталитическое горение осуществляется при сравнительно низких температурах. При достижении определенных концентраций промежуточных каталитических продуктов автокаталитическое горение может переходить в тепловое. При этом температура горения резко возрастает.

Горение может возникать и развиваться спонтанно, стихийно (пожар), но может быть специально организованным, целесообразным: энергетическое горение (в целях получения тепловой или электрической энергии) и технологическое горение (доменный процесс, металлотермия, синтез тугоплавких неорганических соединений и т.д.).

Характеристики горения

Горение характеризуется такими величинами, как: температура, скорость, полнота, состав продуктов. Располагая данными о механизме горения и его характерных особенностях, можно увеличивать скорость и температуру горения (промотирование горения) или снижать их вплоть до прекращения горения (ингибирование горения).

Источники: Основные характеристики горения. Мальцев В.М., Мальцев М.И., Кашпоров Л.Я. —М., 1977; Процессы горения в химической технологии и металлургии. Мержанов А.Г. —Черноголовка, 1975; Физика горения и взрыва. Хитрин Л.Н. —М., 1957.

Источник

Виды и режимы горения

Горючая среда

Окислители

Окислители – это вещества, атомы которых в химических превращениях принимают электроны. Среди простых веществ к ним относятся все галогены и кислород.

Наиболее распространенным в природе окислителем является кислород воздуха.

На реальных пожарах, горение в основном протекает в воздухе, однако во многих технологических процессах используется воздух, обогащенный кислородом, и даже чистый кислород (например металлургические производства, газовая сварка, резка и т.д.). С атмосферой, обогащенной кислородом можно встретиться в подводных и космических аппаратах, доменных процессах и т.п. Такие горючие системы имеют повышенную пожарную опасность. Это необходимо учитывать при разработке систем пожаротушения, пожарно-профилактических мероприятий и при пожарно-технической экспертизе пожаров.

Помимо кислорода воздуха и галогенов, окислителями в реакциях горения могут выступать и сложные вещества, например, соли кислородсодержащих кислот – нитраты, хлораты и т.п., применяемые в производстве порохов, боевых и промышленных взрывчатых веществ и различных пиротехнических составов.

Смесь горючего и окислителя в одинаковом агрегатном состоянии в определенных пропорциях и способную гореть (а горение возможно только при определенных их соотношениях), называют горючей средой.

Выделяют два вида горючих сред: однородную и неоднородную.

Однородной горючей средойназывается предварительно перемешанная смесь горючего с окислителем, а, соответственно неоднородная горючая среда когда горючее и окислитель не перемешаны.

Влияние на процесс горения большого числа факторов обусловливает многообразие видов и режимов горения. Так, в зависимости от агрегатного состояния компонентов горючей смеси горение может быть гомогенным и гетерогенным, от условий смешения компонентов – горением предварительно приготовленной смеси (кинетическое) и диффузионным, от газодинамических условий – ламинарным и турбулентным, и т.д.

Основными видами горения являются гомогенное и гетерогенное.

Как видно из определений, принципиальным отличием гомогенного горения от гетерогенного, является то, что в первом случае горючее и окислитель находятся в одном агрегатном состоянии, во втором – в разных.

При этом необходимо отметить, далеко не всегда горение твердых веществ и материалов является гетерогенным. Это объясняется механизмом горения твердых веществ.

Так, например, горение древесины в воздухе. Для того, чтобы зажечь ее, необходимо поднести какой-либо источник тепла, например пламя от спички или зажигалки, и подождать некоторое время. Возникает вопрос: почему она загорается не сразу? Это объясняется тем, что в начальный период, источник зажигания должен нагреть древесину до определенной температуры, при которой начинается процесс пиролиза, или иными словами термическое разложение. При этом, в результате разложения целлюлозы и других составляющих, начинают выделяться продукты их разложения – горючие газы – углеводороды. Очевидно, что чем больше нагрев, тем больше скорость разложения и, соответственно, скорость выделения горючих газов. И вот только тогда, когда скорость выделения ГГ будет достаточной для создания определенной их концентрации в воздухе, т.е. образования горючей среды, может возникнуть горение. При чем горение не древесины, а продуктов ее разложения – горючих газов. Именно по этому, горение древесины, в большинстве случаев – гомогенное горение, а не гетерогенное.

Вы можете возразить: древесина, в конце концов, начинает тлеть, а тление, как было сказано выше – это гетерогенное горение. Так и есть. Дело в том, что конечными продуктами разложения древесины являются в основном горючие газы и углистый остаток, так называемый кокс. Этот самый углистый остаток все вы видели и даже покупали для приготовления шашлыков. Эти угли примерно на 98% состоят из чистого углерода и не могут выделять ГГ. Угли горят уже в режиме гетерогенного горения, то есть тлеют.

Таким образом, древесина горит сначала в режиме гомогенного горения, затем, при температуре примерно 800°С пламенное горение переходит в тление, т.е. становится гетерогенным. Так же происходит и с другими твердыми веществами.

Как горят жидкости в воздухе? Механизм горения жидкостей заключается в том, что сначала происходит ее испарение, и именно пары образуют горючую смесь с воздухом. То есть в этом случае также происходит гомогенное горение. горит не жидкая фаза, а пары жидкости

Механизм горения металла такой же, как и жидкостей, за исключением того, что металлу необходимо сначала расплавиться и после этого нагреться до высокой температуры, чтобы скорость испарения была достаточной для образования горючей среды. Некоторые металлы горят на их поверхности.

В гомогенном горении выделяют два режима: кинетическое и диффузионное горение.

Кинетическое горение – это горение предварительно перемешанной горючей смеси, т.е. однородной смеси. Скорость горения определяется только кинетикой окислительно-восстановительной реакции.

Диффузионное горение – это горение неоднородной смеси, когда горючее и окислитель предварительно не перемешаны, т.е. неоднородной. В этом случае, смешивание горючего и окислителя происходит во фронте пламени за счет диффузии. Для неорганизованного горения характерен именно диффузионный режим горения, большинство горючих материалов на пожаре могут гореть только в этом режиме. Однородные смеси, конечно, могут образовываться и при реальном пожаре, однако их образование скорее предшествует пожару или обеспечивает начальную стадию развития.

что такое прямое горение. Смотреть фото что такое прямое горение. Смотреть картинку что такое прямое горение. Картинка про что такое прямое горение. Фото что такое прямое горение

Принципиальным отличием этих видов горения заключается в том, что в однородной смеси молекулы горючего и окислителя уже находятся в непосредственной близости и готовы вступить в химическое взаимодействие, при диффузионном же горении эти молекулы сначала должны приблизится друг к другу за счет диффузии, и только после этого вступить во взаимодействие.

Этим обуславливается различие в скорости протекания процесса горения.

Полное время горения tг, складывается из длительности физиче-
ских и химических процессов:

Кинетический режим горения характеризуется длительностью только химических процессов, т.е. tг » tх, поскольку в этом случае физических процессов подготовки (перемешивания) не требуется, т.е. tф » 0.

Диффузионный режим горения, наоборот, зависит в основном от
скорости подготовки однородной горючей смеси (грубо говоря сближения молекул), В этом случае tф >> tх, и поэтому последним можно пренебречь, т.е. длительность его определяется в основном скоростью протекания физических процессов.

Если tф » tх, т.е. они соизмеримы, то горение протекает в так
называемой промежуточной области.

Для примера, представьте себе две газовые горелки(рис. 1.1): в одной из них в сопле имеются отверстия для доступа воздуха (а), в другой их нет (б). В первом случае воздух будет засасываться инжекцией в сопло, где он перемешивается в горючим газом, таким образом, образуется однородная горючая смесь, которая сгорает на выходе из сопла в кинетическом режиме. Во втором случае (б), воздух перемешивается с горючим газом в процессе горения за счет диффузии, в этом случае – горение диффузионное.

что такое прямое горение. Смотреть фото что такое прямое горение. Смотреть картинку что такое прямое горение. Картинка про что такое прямое горение. Фото что такое прямое горение

Рис. 1.1 Пример кинетического (а) и диффузионного (б) горения

В каком режиме протекает горение на реальных пожарах? Конечно в основном в диффузионном. В некоторых случаях пожар может начаться и с кинетического горения, как в приведенных примерах, однако после выгорания однородной смеси, что происходит очень быстро, горение продолжится уже в диффузионном режиме.

При диффузионном горении, в случае недостатка кислорода воздуха, например при пожарах в закрытых помещениях, возможно неполное сгорание горючего с образованием продуктов неполного сгорания таких как СО – угарный газ. Все продукты неполного сгорания очень токсичны и представляют большую опасность на пожаре. В большинстве случаев именно они являются виновниками гибели людей.

Итак, основными видами горения являются гомогенное и гетерогенное. Визуальное отличие этих режимов – наличие пламени.

Гомогенное горение может протекать в двух режимах: диффузионном и кинетическом. Визуально, их отличие заключается в скорости горения.

Следует отметить, что выделяют еще один вид горения – горение взрывчатых веществ. Взрывчатые вещества включают в свой состав горючее и окислитель в твердой фазе. Поскольку и горючее и окислитель находятся в одинаковом агрегатном состоянии, такое горение – гомогенное.

На реальных пожарах, в основном, происходит пламенное горение. Пламя, как известно, выделяют как один из опасных факторов пожара. Что же такое пламя и какие процессы в нем протекают?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Горение

что такое прямое горение. Смотреть фото что такое прямое горение. Смотреть картинку что такое прямое горение. Картинка про что такое прямое горение. Фото что такое прямое горение

что такое прямое горение. Смотреть фото что такое прямое горение. Смотреть картинку что такое прямое горение. Картинка про что такое прямое горение. Фото что такое прямое горение

что такое прямое горение. Смотреть фото что такое прямое горение. Смотреть картинку что такое прямое горение. Картинка про что такое прямое горение. Фото что такое прямое горение

что такое прямое горение. Смотреть фото что такое прямое горение. Смотреть картинку что такое прямое горение. Картинка про что такое прямое горение. Фото что такое прямое горение

Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.

Дозвуковое горение (дефлаграция) в отличие от взрыва и детонации протекает с низкими скоростями и не связано с образованием ударной волны. К дозвуковому горению относят нормальное ламинарное и турбулентное распространения пламени, к сверхзвуковому — детонацию.

Горение подразделяется на тепловое и цепное. В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях.

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации.
Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме, когда основные характеристики процесса — скорость реакции, мощность тепловыделения, температура и состав продуктов — не изменяются во времени, либо в периодическом режиме, когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры, горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).

Содержание

Теория горения

При адиабатическом сжигании горючей смеси могут быть рассчитаны количество выделившегося при горении тепла, температура ТГ, которая была бы достигнута при полном сгорании (адиабатическая температура горения) и состав продуктов, если известны состав исходной смеси и термодинамические функции исходной смеси и продуктов. Если состав продуктов заранее известен, ТГ может быть рассчитана из условия равенства внутренней энергии системы при постоянном объёме или её энтальпии при постоянном давлении в исходном и конечном состояниях с помощью соотношения: ТГ = Т0 + Qr/C, где Т0 — начальная температура смеси, С — средняя в интервале температур от Т0 до ТГ удельная теплоёмкость исходной смеси (с учетом её изменения при возможных фазовых переходах), Qr — удельная теплота сгорания смеси при температуре ТГ. При относительном содержании а0 в смеси компонентов, полностью расходуемых в реакции, QГ = Q*а0 где Q — тепловой эффект реакции горения. Значение ТГ при постоянном объёме больше, чем при постоянном давлении, поскольку в последнем случае часть внутренней энергии системы расходуется на работу расширения. На практике условия адиабатичекого горения обеспечиваются в тех случаях, когда реакция успевает завершиться прежде, чем станет существенным теплообмен между реакционным объёмом и окружающей средой, например в камерах сгорания крупных реактивных двигателей, в больших реакторах, при быстро распространяющихся волнах горения.
Термодинамический расчёт даёт лишь частичную информацию о процессе — равновесный состав и температуру продуктов. Полное описание горения, включающее также определение скорости процесса и критических условий при наличии тепло- и массообмена с окружающей средой, можно провести только в рамках макрокинетического подхода, рассматривающего химическую реакцию во взаимосвязи с процессами переноса энергии и вещества.
В случае заранее перемешанной смеси горючего и окислителя реакция горения может происходить во всём пространстве, занятом горючей смесью (объёмное горение), или в сравнительно узком слое, разделяющем исходную смесь и продукты и распространяющемся по горючей смеси в виде так называемой волны горения. В неперемешанных системах возможно диффузионное горение, при котором реакция локализуется в относительно тонкой зоне, отделяющей горючее от окислителя, и определяется скоростью диффузии реагентов в эту зону.

Описание процессов горения

Важность процесса горения в технических устройствах способствовала созданию различных моделей, позволяющих с необходимой точностью его описывать. Так называемое нулевое приближение включает описание химических реакций, изменение температуры, давления и состава реагентов во времени без изменения их массы. Оно соответствует процессам происходящим в закрытом объёме, в который была помещена горючая смесь и нагрета выше температуры воспламенения. Одно-, двух- и трёхмерные модели уже включает в себя перемещение реагентов в пространстве. Количество измерений соответствует количеству пространственных координат в модели. Режим горения бывает как и газодинамическое течение: ламинарным или турбулентным. Одномерное описанное ламинарного горения позволяет получить аналитически важные выводы о фронте горения, которые затем используются в более сложных турбулентных моделях.

Объёмное горение

Объемное горение происходит, например, в теплоизолированном реакторе идеального перемешивания, в который поступает при температуре Т0 исходная смесь с относительным содержанием горючего а0; при другой температуре горения реактор покидает смесь с иным относительным содержанием горючего а. При полном расходе G через реактор условия баланса энтальпии смеси и содержания горючего при стационарном режиме горения могут быть записаны уравнениями:

где w(а, Т) — скорость реакции горения, V — объём реактора. Используя выражение для термодинамической температуры ТГ, можно из (1) получить:

и записать (2) в виде:

где qT = GC(T — Т0) — скорость отвода тепла из реактора с продуктами сгорания, q+T = Qw(a, Т)V — скорость выделения тепла при реакции. Для реакции n-ного порядка с энергией активации:

Диффузионное горение

Характеризуется раздельным подачей в зону горения горючего и окислителя. Перемешивание компонентов происходит в зоне горения. Пример: горение водорода и кислорода в ракетном двигателе, горение газа в бытовой газовой плите.

Горение предварительно смешанной среды

Как следует из названия, горение происходит в смеси, в которой одновременно присутствуют горючее и окислитель. Пример: горение в цилиндре двигателя внутреннего сгорания бензиново-воздушной смеси после инициализации процесса свечой зажигания.

Особенности горения в различных средах

что такое прямое горение. Смотреть фото что такое прямое горение. Смотреть картинку что такое прямое горение. Картинка про что такое прямое горение. Фото что такое прямое горение

Беспламенное горение

В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени, возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора, например, окисление этанола на платиновой черни.

Твердофазное горение

Это автоволновые экзотермические процессы в смесях неорганических и органических порошков, не сопровождающиеся заметным газовыделением, и приводящие к получению исключительно конденсированных продуктов. В качестве промежуточных веществ, обеспечивающих массо-перенос, образуются газовые и жидкие фазы, не покидающие, однако, горящую систему. Известны примеры реагирующих порошков, в которых образование таких фаз не доказано (тантал-углерод).

Как синонимы используются тривиальные термины «безгазовое горение» и «твердопламенное горение».

Примером таких процессов служит СВС (самораспространяющийся высокотемпературный синтез) в неорганических и органических смесях.

Тление

Вид горения, при котором пламя не образуется, а зона горения медленно распространяется по материалу. Тление обычно наблюдается у пористых или волокнистых материалов с высоким содержанием воздуха или пропитанных окислителями.

что такое прямое горение. Смотреть фото что такое прямое горение. Смотреть картинку что такое прямое горение. Картинка про что такое прямое горение. Фото что такое прямое горение

Автогенное горение

Самоподдерживающиеся горение. Термин используется в технологиях сжигания отходов. Возможность автогенного (самоподдерживающегося) горения отходов определяется предельным содержанием балластирующих компонентов: влаги и золы. На основе многолетних исследований шведский учёный Таннер предложил для определения границ автогенного горения использовать треугольник-схему с предельными значениями: горючих более 25 %, влаги менее 50 %, золы менее 60 %.

Источник

ГОРЕНИЕ

ГОРЕНИЕ — совокупность одновременно протекающих физических процессов (плавление, испарение, ионизация) и химических реакций окисления горючего вещества и материала, сопровождающееся, как правило, световым и тепловым излучением и выделением дыма (см. ДЫМ ) [1].

ГОРЕНИЕ — сложный физико-химический процесс взаимодействия горючего вещества и окислителя, характеризующийся самоускоряющимися превращениями исходных компонентов реакционноспособной смеси в продукты горения и сопровождающийся выделением большого количества тепла, дыма и света. Выделение тепла происходит непосредственно в зоне химической реакции превращения исходных компонентов горючей смеси в продукты горения [2].

что такое прямое горение. Смотреть фото что такое прямое горение. Смотреть картинку что такое прямое горение. Картинка про что такое прямое горение. Фото что такое прямое горение

Зона протекания химической реакции обычно локализована в сравнительно небольшой части пространства. Она может быть неподвижна, а может перемещаться в пространстве в зависимости от условий протекания процесса горения.

Горение происходит в два этапа:

1. Создание молекулярного контакта между молекулами горючего и окислителя (физический процесс).

2. Взаимодействие молекул с образованием продуктов реакции (химический процесс).

При этом второй этап наступает только при выполнении некоторых дополнительных условий. Молекулы должны находиться в особом энергетически или химически возбужденном состоянии и определенном количественном соотношении.

Горение является неравновесным процессом. При горении обязательно возникают неоднородности в составе молекул, их концентрации, неравномерности поля температур и скоростей потоков. В основе процесса горения лежат химические реакции окисления, то есть соединения исходных горючих веществ с кислородом.

При горении на пожарах (см. ПОЖАР) в качестве окислителя чаще всего выступает кислород воздуха, окружающий зону протекания химических реакций. В этом случае интенсивность горения определяется не скоростью протекания самих химических реакций, а скоростью поступления кислорода из окружающего пространства в зону горения, то есть непосредственно в зону протекания химических реакций.

Скорость протекания химических реакций горения значительно превосходит скорость таких физических процессов, как диффузия недостающих компонентов в зону реакции и передача тепла из зоны горения горючим веществам для подготовки их к химическому взаимодействию. Эти два процесса — диффузия и теплопередача — являются лимитирующими. Они определяют суммарную скорость горения, а, следовательно, и интенсивность процесса тепловыделения и образования продуктов горения. Поэтому считают, что процессы горения на пожаре развиваются в чисто диффузионной области и рассматривать их следует лишь с физической стороны.

ГЕТЕРОГЕННОЕ ГОРЕНИЕгорение материалов в конденсированном (твердом или жидком) состоянии, когда реакции, определяющие развитие процесса горения, протекают в газовой фазе, а горючие компоненты поступают в эту фазу в результате испарения и разложения веществ и материалов.

ДИФФУЗИОННОЕ ГОРЕНИЕ — горение неперемешанных газо-, паровоздушных смесей с воздухом. Оно свойственно конденсированным горючим веществам — жидкостям и твердым материалам. Для диффузионного горения характерно наличие светящегося пламени. В зависимости от диаметра трубопровода, а также давления, при котором происходит истечение газов, диффузионное горение может быть ламинарным и турбулентным.

ЛАМИНАРНОЕ ГОРЕНИЕ — вид горения, характеризуемый газодинамически невозмущенным фронтом пламени, а также скоростью распространения пламени, не превышающей нескольких метров в секунду. Ламинарное горение зависит от теплообмена и других макрокинетических факторов. Процесс ламинарного горения заключается в передаче в свежую горючую смесь тепла и активных частиц, обеспечивающих распространение пламени. Скорость распространения пламени относительно свежей смеси, измеренная по нормали к фронту, называется нормальной скоростью распространения пламени [3].

ТУРБУЛЕНТНОЕ ГОРЕНИЕ — горение в турбулентных потоках смеси горючего с воздухом (кислородом), характеризующееся неупорядоченным, пульсирующим движением малых объемов таких смесей. Смешение компонентов при турбулентном горении происходит более интенсивно, чем при ламинарном горении, вследствие чего скорость турбулентного горения превышает скорость ламинарного горения.

Турбулентное горение, то есть горение смеси, течение которой является турбулентным, — это наиболее часто встречающийся в практических устройствах режим горения и одновременно наиболее сложный для изучения.

Турбулентное горение может быть вызвано автотурбулизацией пламени, заключающейся в том, что искривления фронта пламени самопроизвольно возрастают, плоская зона нормального горения перестает существовать, уступая место турбулентному пламени.

Различают турбулентнодиффузионное горение и турбулентное горение однородной горючей смеси. Первое — реализуется при сжигании предварительно не перемешанных газов в турбулентном потоке и широко используется в различных технически устройствах (промышленных печах, горелках, камерах сгорания газотурбинных двигателей и т. д.). Второе — реализуется при сжигании предварительно перемешанных газов или газовзвесей (смесей горючей пыли с газообразным окислителем) в турбулентном потоке и встречается в ряде технических устройств (двигателях внутреннего сгорания, форсажных камерах газотурбинных двигателей и т. д.) [4].

ВРЕМЯ ГОРЕНИЯ — длительность протекания процесса горения с момента зажигания горючего вещества (материала) до окончания пламенного горения или тления. Время горения регистрируется при испытаниях электрических изделий на пожарную опасность, служит в качестве показателя при определении предела огнестойкости строительных конструкций, а также критерием оценки допустимости изготовления различных изделий и их эксплуатации [5].

ВРЕМЯ ВЫГОРАНИЯ — время, в течение которого прекращается горение вещества (материала) в заданных условиях. Время выгорания зависит от:

— физико-химических свойств (теплоты сгорания, давления насыщенных паров, агрегатного состояния и пр.) вещества (материала) и его горючести;

— вида горения (гомогенного или гетерогенного) и скорости распространения пламени [5].

1. И.Н. Зверев, Н. Н. Смирнов. Газодинамика горения. — М.: Изд-во Моск. ун-та., 1987. — С. 165. — 307 с.

2. Теория горения и взрыва: конспект лекций / сост. П.П. Воднев.Ульяновск: УВАУ ГА(И), 2010.180 с.

3. Теория горения и взрыва / Под ред. Ю.В. Фролова. М., 1981 г.

4. Баратов А.Н. ГорениеПожарВзрывБезопасность.М., 2003 г.

5. Кузнецов В.Р, Сабельников В.А. Турбулентность и горение.М., 1986 г.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *