Что такое потеря теплоносителя

Тепловые потери: механика расчета и основания не платить поставщику ресурса

Коммунальный ресурс в виде тепловой энергии является самым дорогостоящим. Это связано с затратами на производство тепловой энергии, которую мы используем для предоставления коммунальной услуги по отоплению или горячему водоснабжению. Пока тепло течет по трубе, оно имеет физическое свойство остывания. Это и есть потеря тепла (тепловая потеря).

Тепловые потери: общий механизм

Тепловая энергия признается разновидностью коммунального ресурса. Стоимость тепловой энергии определяется в рублях за одну гигакалорию как единицу измерения теплоты. Теплоснабжение подлежит государственному регулированию и тарифообразованию.

В соответствии с п. 3 ст. 9 Федерального закона от 27.07.2010 № 190-ФЗ «О теплоснабжении», при установлении тарифов в сфере теплоснабжения должны быть учтены нормативы технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям и нормативы удельного расхода топлива при производстве тепловой энергии.
Таким образом, все тепловые потери (расход тепловой энергии на передачу тепла до потребителя по сетям теплоснабжающей организации) уже изначально является заложенным в тарифе.

При этом в силу п. 11 ст. 15 Федерального закона от 27.07.2010 № 190-ФЗ «О теплоснабжении», теплосетевые организации или теплоснабжающие организации приобретают тепловую энергию (мощность), теплоноситель в объеме, необходимом для компенсации потерь тепловой энергии в тепловых сетях таких организаций, у единой теплоснабжающей организации или компенсируют указанные потери путем производства тепловой энергии.
Действующее законодательство о теплоснабжении допускает непосредственное или опосредованное подключение потребителя к тепловым сетям теплосетевой организации.

При непосредственном подключении потребителя к тепловым сетям затраты на тепловые потери изначально находятся в тарифе на тепловую энергию поставщика ресурса и отдельно не выставляются.

При опосредованном присоединении объем технологических потерь в теплосетевом хозяйстве, через которое осуществляется такое присоединение, может рассчитываться отдельно от расчета нормативных технологических потерь, возникающих в тепловых сетях теплоснабжающей или теплосетевой организации (п. 1 Порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя, утвержденного Приказом Минэнерго России от 30.12.2008 № 325, далее – Порядок № 325).

Процедура отказа от тепловых потерь

В многоквартирных домах часто мы имеем ситуацию, при которой точка подключения системы теплоснабжения находится в тепловой камере (как в границах земельного участка дома, так и за его пределами), а от точки подключения до внешней стены дома может пролегать протяженный участок теплотрассы.

Что такое потеря теплоносителя. Смотреть фото Что такое потеря теплоносителя. Смотреть картинку Что такое потеря теплоносителя. Картинка про Что такое потеря теплоносителя. Фото Что такое потеря теплоносителя

Застройщики возводят эти сети, однако в установленном порядке не передают их после строительства дома в орган местного самоуправления и тепловые сети оказываются брошенными. Судебная практика идет по пути признания за застройщиком данных внешних сетей в силу п. 1 ст. 218 ГК РФ и иногда поставщик ресурса осуществляет взыскание денежных средств в счет оплаты за потери доставки тепловой энергии (например, дело № А49-1244/2020 или дело № А49-1244/2020).

Одновременно нужно учитывать, что объем тепловых потерь тепловой энергии (теплоносителя) в тепловых сетях заявителя от границы балансовой принадлежности до точки учета является существенным условием договора теплоснабжения (п. 21 Правил организации теплоснабжения в Российской Федерации, утверждённых Постановлением Правительства РФ от 08.08.2012 № 808, далее – Правила № 808).

Исходя из ранее складывающейся практики (примерно до 2015 года) поставщики ресурса относили тепловые потери от теплокамеры до прибора учета (расположенного внутри многоквартирного дома) на управляющую домом организацию. В настоящее время на управляющие организации относят только тепловые потери от стены дома до прибора учета тепловой энергии (в случае, если он смещен внутрь дома, а как правило, он смещен всегда).
Однако даже расчет тепловых потерь по внутренним сетям (то есть, сетям, на которых стоит непосредственно дом) – не следует спешить признавать.

В соответствии с п. 35 Правил № 808, для заключения договора теплоснабжения с единой теплоснабжающей организацией заявитель направляет единой теплоснабжающей организации заявку на заключение договора теплоснабжения, содержащую сведения с расчетом объема тепловых потерь тепловой энергии (теплоносителя) в тепловых сетях заявителя от границы балансовой принадлежности до точки учета, подтвержденный технической или проектной документацией. В случае, если такая документация была утрачена, у управляющей организации нет возможности подтвердить некие тепловые потери, а потому нет необходимости о них заявлять.

В соответствии с п. 1 ст. 65 АПК РФ, каждое лицо, участвующее в деле, должно доказать обстоятельства, на которые оно ссылается как на основание своих требований и возражений. Таким образом, если теплоснабжающая организация идет по пути отнесения тепловых потерь на управляющую организацию, она обязана их документально подтвердить и обосновать, а именно:
— измерить протяженность внутренних тепловых труб от стены дома до прибора учета тепловой энергии;
— провести расчет тепловой энергии с суммой удельных потерь в каждый месяц года в гигакалориях;
— и предоставить его на проверку управляющей организации или суда (если дело рассматривается в преддоговорном споре по ст. 446 ГК РФ).

Судебная практика в защиту управляющей организации

Если управляющая организация заключила договор теплоснабжения на несправедливой основе и взвалила на себя необходимость оплаты тепловых потерь, есть возможность взыскать с теплоснабжающей организации неосновательное обогащение.

Например, в рамках дела № А49-14589/2016 управляющая организация взыскала с теплоснабжающей организации 1567943 р. в счет возмещения ранее оплаченных потерь доставки тепловой энергии по группе управляемых домов.

К такой категории споров постепенно подтягиваются и ТСЖ. Например, по делу № А49-4738/2020 ТСЖ взыскало с теплоснабжающей организации 113344 р. в счет возмещения ранее оплаченных потерь доставки тепловой энергии в отношении одного многоквартирного дома.

Суд указал, что из системного толкования приведенных нормативных положений следует, что управляющая организация должна нести ответственность за потери тепловой энергии, которые образуются в тепловых сетях, относящихся к общему имуществу многоквартирного дома, внешняя граница которых, если иное не предусмотрено законодательством, проходит по внешней границе стены многоквартирного дома.

Сама по себе такая судебная практика правильная, мотивирующая местные власти на необходимость контроля действий застройщика по передаче вновь возводимых тепловых сетей в муниципальную казну и прекращения формирования нового и нового бесхоза.

Таким образом, взаимодействие управляющей организации с теплоснабжающей организацией в вопросе определения объема тепловых потерь должно быть основано на принципе, который можно назвать «глухой обороной». Не следует соглашаться с любыми предлагаемыми объемами, они должны обосновываться и доказываться с подробными расчетами от поставщика коммунального ресурса.

Источник

Потери теплоносителя в тепловых сетях

Одна из важных проблем теплоснабжения – утечки и потери составов низкозамерзающих всесезонных (теплоносителей) при эксплуатации систем. Если теплообменное оборудование или трубопроводы утратили герметичность, то через несколько часов работы объём жидкости охлаждающей снижается, а эффективность нагрева или отведения тепла существенно уменьшится. Временные интервалы стабильной работы системы теплообмена зависят от объема жидкости, наличия модулей компенсации колебаний давления. Нормативные потери теплоносителя и тепловой энергии учитываются индивидуально для каждого объекта. Лучше не допускать потерь теплоносителя, которые могут привести к остановке теплообменной системы, а значит к вынужденному простою процесса производства, длительному поиску причин и затратам на ремонт.

Почему происходят потери жидкостей-теплоносителей?

Снижение эффективности распределения тепловой энергии – чаще всего вопрос качества изоляции теплообменного оборудования и системы трубопроводов. От этого зависит, насколько сохранит теплоноситель стабильную температуру в теплообменной системе. Но разгерметизация не просто снижает эффективность, а делает невозможной работу оборудования в дальнейшем. Потребуется определение причин потерь теплоносителя, исследование системы на предмет негерметичных соединений, а возможно и комплексный ремонт.

Причины потерь теплоносителей при циркуляции в теплообменной системе:

Неправильный подбор вида рабочей среды, может привести к быстрому выходу из строя теплообменного и технологического оборудования. Возможно образование коррозии на внутренних поверхностях теплообменников, радиаторов, трубопроводов и возникновение аварийных ситуаций, обусловленных утечкой теплоносителя из систем отопления и кондиционирования. Наравне с основной функцией теплоносителей – эффективное распределение теплообмена им выполняется не менее важная задача по защите металлов систем теплообмена от коррозии. Жидкости низкозамерзающие всесезонные в состоянии выполнять эту функцию при добавлении в их состав ингибиторов ( пакета антикоррозионных присадок). Типы антифризов различают в зависимости от типа ингибиторов. Ингибиторы могут быть органическими и неорганическими веществами. Общей чертой всех ингибиторов является то, что они работают в водном растворе. Добавление воды «активизирует» ингибиторы, что позволяет им защищать внутренние поверхности оборудования от возникновения зачатков коррозии. Современные теплоносители для технологических процессов теплообмена содержат комплексные пакеты антикоррозийных присадок.

Таким образом, теплообменное оборудование, трубопроводы, запорная арматура и насосы прослужат дольше, а компания не столкнется с проблемой потери рабочей среды. При этом следует учитывать срок эффективной службы теплоносителя в теплообменной системе и производить замену охлаждающей жидкости в соответствии с рекомендациями производителя либо своевременно выполнять ее регенерацию.

Где заказать сервис систем теплообмена?

Источник

Основные источники потерь в тепловых системах и способы их устранения

Введение
Настоящая статья кратко описывает проблематику энергосбережения, сложившуюся сегодня на подавляющем большинстве отечественных объектов производства, транспортировки и потребления тепловой энергии, предлагая варианты их эффективного решения.

Существующие тепловые системы, в основной своей массе, проектировались и создавались без учета возможностей, появившихся на теплоэнергетичском рынке в течение последних 10 лет. Массовое развитие вычислительной техники обусловило появление в это время огромного количества технологических новшеств, которые коренным образом изменили ситуацию в энергосбережении. Например, возможность точного моделирования тепловых процессов на ЭВМ привела к появлению новых эффективных конструкций котлоагрегатов и схем отопления, а достижения электронной индустрии обеспечили возможность широкого применения средств учета тепловой энергии и высокоэкономичных регулирующих устройств.

Таким образом, в конце ХХ века энергосбережение получило на свое вооружение большое количество эффективных технологий и новое оборудование, позволяющее значительно (до 50%) повысить надежность и экономичность работы уже существующих тепловых систем и проектировать новые системы, качественно отличающиеся от уже существующих.

Однако, несмотря на уникальность в общем случае факторов, вызывающих потери в каждой конкретной тепловой системе, отечественные объекты имеют ряд характерных особенностей. Они очень похожи друг на друга, что связано с тем, что строились они по общим для «Союза» проектным нормам во времена, когда тепловая энергия стоила «копейки». Характерные проблемы и основные каналы тепловых потерь в энергосистемах «постсоветских» объектов хорошо изучены специалистами нашего предприятия. Решение подавляющего большинства проблем энергосбережения на них отработано нами на практике, что позволяет провести анализ, рассмотреть наиболее характерные ситуации с тепловыми потерями и предложить варианты их решения с прогнозированием результатов, основываясь на наш опыт работы с подобными ситуациями на других объектах.

Излагаемое ниже исследование рассматривает наиболее характерные проблемы существующих тепловых объектов, описывает наиболее существенные каналы непроизводительных потерь в них тепловой энергии и предлагает варианты снижения этих потерь с предварительным прогнозом результатов.

Тепловые системы. Источники потерь.

Любую теплоэнергетическую систему с целью анализа можно условно разбить на 3-х основных участка:

1. участок производства тепловой энергии (котельная);

2. участок транспортировки тепловой энергии потребителю (трубопроводы тепловых сетей);

3. участок потребления тепловой энергии (отапливаемый объект).

Каждый из приведенных участков обладает характерными непроизводительными потерями, снижение которых и является основной функцией энергосбережения. Рассмотрим каждый участок в отдельности.

1.Участок производства тепловой энергии. Существующая котельная.

Главным звеном на этом участке является котлоагрегат, функциями которого является преобразование химической энергии топлива в тепловую и передача этой энергии теплоносителю. В котлоагрегате происходит ряд физико-химических процессов, каждый из которых имеет свой КПД. И любой котлоагрегат, каким бы совершенным он не был, обязательно теряет часть энергии топлива в этих процессах. Упрощенно схема этих процессов изображена на рисунке.

Что такое потеря теплоносителя. Смотреть фото Что такое потеря теплоносителя. Смотреть картинку Что такое потеря теплоносителя. Картинка про Что такое потеря теплоносителя. Фото Что такое потеря теплоносителя

На участке производства тепловой энергии при нормальной работе котлоагрегата всегда существуют три вида основных потерь: с недожогом топлива и уходящими газами (обычно не более18%), потери энергии через обмуровку котла (не более 4%) и потери с продувкой и на собственные нужды котельной (около 3%). Указанные цифры тепловых потерь приблизительно близки для нормального не нового отечественного котла (с КПД около 75%). Более совершенные современные котлоагрегаты имеют реальный КПД около 80-85% и стандартные эти потери у них ниже. Однако они могут дополнительно возрастать:

Таким образом, постоянные неявные дополнительные потери только при производстве тепла в котельной могут достигать величины 20-25%!

Алгоритм повышения экономичности работы уже существующего котлоагрегата в общем случае можно представить как последовательность определенных действий (в порядке эффективности):

1. Провести комплексное обследование котлоагрегатов, включая газовый анализ продуктов сгорания. Оценить качество работы периферийного оборудования котельной.

2. Провести режимную наладку котлов с инвентаризацией вредных выбросов. Разработать режимные карты работы котлоагрегатов на различных нагрузках и мероприятия, которые обеспечат работу котлоагрегатов только в экономичном режиме.

4. Оборудовать котельную рабочими приборами контроля и регулирования, оптимально настроить автоматику котлоагрегатов.

5. Восстановить теплоизоляцию котлоагрегата, обнаружив и устранив неконтролируемые источники присосов воздух в топку;

6. Проверить и возможно модернизировать систему ХВО котельной.

7. Произвести перерасчет сопел горелок под реальную нагрузку.

8. Оборудовать котельную эффективным и экономичным насосным оборудованием, надежной трубопроводной запорно-регулирующей арматурой.

При проектировании и строительстве новой котельной в пределах ценового коридора, выделенного на данное мероприятие, необходимо тщательно подобрать такое котельное оборудование, которое при высоком КПД и надежности, обеспечивало бы возможность интеграции котла и современных технологий автоматического регулирования процесса производства тепла, которая в основном и определит экономичность ее работы. Вариант комплектации котельной, место ее расположения, способ транспорта теплоносителя потребителю также являются немаловажными факторами, влияние которых способно значительно увеличить или снизить эффективность ее работы.

2. Потери тепла на участке его транспортировки к потребителю. Существующие трубопроводы теплосетей.

Обычно тепловая энергия, переданная в котельной теплоносителю поступает в теплотрассу и следует на объекты потребителей. Величина КПД данного участка обычно определяется следующим:

При разумно спроектированной и гидравлически налаженной системе теплотрасс, удаление конечного потребителя от участка производства энергии редко составляет больше 1,5-2 км и общая величина потерь обычно не превышает 5-7%. Однако:

Обычно потери тепловой энергии в теплотрассах не должны превышать 5-7%. Но фактически они могут достигать величины в 25% и выше!

Алгоритм повышения экономичности работы теплотрассы в общем случае также можно представить как последовательность определенных действий:

1. Провести комплексное обследование теплотрасс от котельной к объектам теплоснабжения и выявить основные каналы появления в них тепловых потерь.

2. Провести гидравлическую наладку теплотрасс с шайбированием потребителей по фактически потребляемой ими тепловой нагрузке.

3. Восстановить или усилить теплоизоляцию теплотрассы или при экономической целесообразности переложить существующие трубопроводы использовав для замены предварительно изолированные трубопроводы.

4. Для систем ГВС обеспечить циркуляционную схему включения. По возможности оборудовать теплопункты потребителей тепла пластинчатыми теплообменниками для нужд ГВС.

5. Заменить низкоэффективные отечественные сетевые насосы на современные импортные с более высоким КПД. При экономической целесообразности (большой мощности электродвигателей насосов) использовать устройства частотного регулирования скорости вращения асинхронных двигателей.

6. Произвести замену запорной арматуры на трассе с использованием современных надежных поворотных заслонок (например типа «Danfoss»), что значительно снизит тепловые потери в нештатных и аварийных ситуациях, а также исключит варианты появления утечек теплоносителя через сальники задвижек.

3. Потери на объектах потребителей тепла. Системы отопления и ГВС существующих зданий.

Наиболее существенными составляющими тепловых потерь в теплоэнергетических системах являются потери на объектах-потребителях. Наличие таковых не является прозрачным и может быть определено только после появления в теплопункте здания прибора учета тепловой энергии, т.н. теплосчетчика. Наш опыт работы с огромным количеством отечественных тепловых систем, позволяет указать основные источники возникновения непроизводительных потерь тепловой энергии. В самом распространенном случае таковыми являются потери:

Общие неявные непроизводительные потери на объекте потребления могут составлять до 35% от тепловой нагрузки!

Главной косвенной причиной наличия и возрастания вышеперечисленных потерь является отсутствие на объектах теплопотребления приборов учета количества потребляемого тепла. Отсутствие прозрачной картины потребления тепла объектом обуславливает вытекающее отсюда недопонимание значимости принятия на нем энергосберегающих мероприятий. В общем случае алгоритм улучшения ситуации энергопотребления зданиях выглядит так:

1. Установить приборы учета тепловой энергии на объектах потребления тепла. Появление картины потребления тепла зданием во времени даст возможность провести анализ сложившейся ситуации и выбрать наиболее эффективный способ использования тепловой энергии;

3. Установить автоматическую систему регулирования тепловой нагрузки здания по погодным условиям. Использование «погодного» регулирования способно до 30% снизить потребление тепла зданием при одновременном повышении комфортности в его помещениях.

4. По возможности оборудовать отопительные приборы радиаторными регуляторами температуры в помещениях, что дает возможность снижения тепловой нагрузки здания до 20%;

6. Обеспечить надежную работу рециркуляции ГВС внутри объекта, что позволит сэкономить до 25% тепловой энергии, затрачиваемой на нагрев воды.

7. Обеспечить эффективную работу регуляторов температуры на бойлерах ГВС. Работоспособный регулятор температуры на бойлере экономит порядка 15% тепла, идущего на нужды ГВС.

8. Оборудовать теплопункты надежной и современной запорно-регулирующей арматурой.

9. В случае необходимости провести комплекс работ по утеплению здания.

Источник

Определение потерь тепла в тепловых сетях

В.Г. Хромченков, зав. лаб., Г.В. Иванов, аспирант,
Е.В. Хромченкова, студент,
кафедра «Промышленные теплоэнергетические системы»,
Московский энергетический институт (технический университет)

В данной работе обобщены некоторые результаты проведенных нами обследований участков тепловых сетей (ТС) системы теплоснабжения жилищно-коммунальной сферы с анализом существующего уровня потерь тепловой энергии в тепловых сетях. Работа выполнялась в различных регионах РФ, как правило, по просьбе руководства ЖКХ. Значительный объем исследований проводился также в рамках Проекта передачи ведомственного жилого фонда, связанного с кредитом Мирового Банка.

Определение потерь тепла при транспорте теплоносителя является важной задачей, результаты решения которой оказывают серьезное влияние в процессе формирования тарифа на тепловую энергию (ТЭ). Поэтому знание этой величины позволяет также правильно выбирать мощности основного и вспомогательного оборудования ЦТП и, в конечном счете, источника ТЭ. Величина тепловых потерь при транспорте теплоносителя может стать решающим фактором при выборе структуры системы теплоснабжения с возможной ее децентрализацией, выборе температурного графика ТС и др. Определение реальных тепловых потерь и сравнение их с нормативными значениями позволяет обосновать эффективность проведения работ по модернизации ТС с заменой трубопроводов и/или их изоляции.

Зачастую величина относительных тепловых потерь принимается без достаточных на то обоснований. На практике задаются значениями относительных тепловых потерь часто кратными пяти (10 и 15%). Следует отметить, что в последнее время все больше муниципальных предприятий проводят расчеты нормативных тепловых потерь [1], которые, на наш взгляд, и должны определяться в обязательном порядке. Нормативные потери тепла напрямую учитывают основные влияющие факторы: длину трубопровода, его диаметр и температуры теплоносителя и окружающей среды. Не учитывают только фактическое состояние изоляции трубопроводов. Нормативные тепловые потери должны рассчитываться для всей ТС с определением потерь тепла с утечками теплоносителя и с поверхности изоляции всех трубопроводов, по которым осуществляется теплоснабжение от имеющегося источника тепла. Причем эти расчеты должны выполняться как в плановом (расчетном) варианте с учетом среднестатистических данных по температуре наружного воздуха, грунта, продолжительности отопительного периода и т.д., так и уточняться в конце его по фактическим данным указанных параметров, в том числе с учетом фактических температур теплоносителя в прямом и обратном трубопроводе.

Вообще же ошибка, при определении потерь тепла при транспорте теплоносителя на конкретном участке ТС по сравнению со средним значением, может быть очень большой.

Что такое потеря теплоносителя. Смотреть фото Что такое потеря теплоносителя. Смотреть картинку Что такое потеря теплоносителя. Картинка про Что такое потеря теплоносителя. Фото Что такое потеря теплоносителя

В табл. 1 представлены результаты обследования 5 участков ТС г. Тюмень (кроме расчетов нормативных потерь тепла, нами также были выполнены измерения фактических тепловых потерь с поверхности изоляции трубопроводов, см. ниже). Первый участок представляет собой магистральный участок ТС с большими диаметрами трубопровода

Как видно из табл. 1, относительные реальные потери тепла на обследованных участках трубопроводов зачастую составляют почти половину от переданного тепла (участки № 2 и № 3). На участке № 5, где расположены частные дома, более 70% тепла теряется в окружающую среду, несмотря на то, что коэффициент превышения абсолютных потерь над нормативными значениями примерно такой же, как на остальных участках. Наоборот, при компактном расположении относительно крупных потребителей, потери тепла резко снижаются (участок № 4). Средняя скорость теплоносителя на этом участке составляет 0,75 м/с. Все это приводит к тому, что фактические относительные тепловые потери на этом участке более чем в 6 раз ниже, чем на остальных тупиковых участках, и составили всего 7,3%.

С другой стороны, на участке № 5 скорость теплоносителя в среднем составляет 0,2 м/с, причем на последних участках теплосети (в таблице не показано) из-за больших диаметров трубы и малых значений расходов теплоносителя она составляет всего 0,1-0,02 м/с. С учетом относительно большого диаметра трубопровода, а следовательно, и поверхности теплообмена, в грунт уходит большое количество тепла.

При этом надо иметь в виду, что количество тепла, теряемое с поверхности трубы, практически не зависит от скорости движения сетевой воды, а зависит только от ее диаметра, температуры теплоносителя и состояния изоляционного покрытия. Однако относительно количества передаваемого по трубопроводам тепла,

тепловые потери напрямую зависят от скорости теплоносителя и резко возрастают при ее снижении. В предельном случае, когда скорость теплоносителя составляет сантиметры в секунду, т.е. вода практически стоит в трубопроводе, большая часть ТЭ может теряться в окружающую среду, хотя потери тепла могут и не превышать нормативные.

Таким образом, величина относительных тепловых потерь зависит от состояния изоляционного покрытия, и в значительной степени определяется также протяженностью ТС и диаметром трубопровода, скоростью движения теплоносителя по трубопроводу, тепловой мощностью присоединенных потребителей. Поэтому наличие в системе теплоснабжения мелких, удаленных от источника потребителей ТЭ может привести к росту относительных тепловых потерь на многие десятки процентов. Наоборот, в случае компактной ТС с крупными потребителями, относительные потери могут составлять считанные проценты от отпущенного тепла. Все это следует иметь в виду при проектировании систем теплоснабжения. Например, для рассмотренного выше участка № 5, возможно, более экономично было бы в частных домах установить индивидуальные газовые теплогенераторы.

В приведенном выше примере нами были определены, наряду с нормативными, фактические потери тепла с поверхности изоляции трубопроводов. Знание реальных тепловых потерь очень важно, т.к. они, как показал опыт, могут в несколько раз превышать нормативные значения. Такая информация позволит иметь представление о фактическом состоянии тепловой изоляции трубопроводов ТС, определить участки с наибольшими тепловыми потерями и рассчитать экономическую эффективность замены трубопроводов. Кроме того, наличие такой информации позволит обосновать реальную стоимость 1 Гкал отпущенного тепла в региональной энергетической комиссии. Однако, если тепловые потери, связанные с утечкой теплоносителя, можно определить по фактической подпитке ТС при наличии соответствующих данных на источнике ТЭ, а при их отсутствии рассчитать их нормативные значения, то определение реальных потерь тепла с поверхности изоляции трубопроводов является весьма трудной задачей.

В соответствии с [2] для определения фактических тепловых потерь на испытываемых участках двухтрубной водяной ТС и сравнения их с нормативными значениями, должно быть организовано циркуляционное кольцо, состоящее из прямого и обратного трубопроводов с перемычкой между ними. Все ответвления и отдельные абоненты должны быть от него отсоединены, а расход на всех участках ТС должен быть одинаков. При этом минимальный объем испытываемых участков по материальной характеристике должен быть не менее 20% материальной характеристики всей сети, а перепад температур теплоносителя должен составлять не менее 8 ОС. Таким образом, должно образоваться кольцо большой протяженности (несколько километров).

Учитывая практическую невозможность проведения испытаний по данной методике и выполнения ряда ее требований, в условиях отопительного периода, а также сложность и громоздкость, нами предложена и с успехом много лет используется методика тепловых испытаний, основанная на простых физических законах теплопередачи. Суть ее заключается в том, что, зная снижение («сбег») температуры теплоносителя в трубопроводе от одной точки измерения до другой при известном и неизменном его расходе, легко вычислить потерю тепла на данном участке ТС. Затем при конкретных температурах теплоносителя и окружающей среды в соответствии с [2] полученные значения тепловых потерь пересчитываются на среднегодовые условия и сравниваются с нормативными, также приведенными к среднегодовым условиям для данного региона с учетом температурного графика теплоснабжения. После этого определяется коэффициент превышения фактических потерь тепла над нормативными значениями.

Измерение температуры теплоносителя

Учитывая очень малые значения перепада температур теплоносителя (десятые доли градуса), повышенные требования предъявляются как к измерительному прибору (шкала должна быть с десятыми долями ОС), так и тщательности самих измерений. При измерении температуры поверхность труб должна быть зачищена от ржавчины, а трубы в точках проведения измерений (на концах участка) желательно иметь одного диаметра (одинаковой толщины). С учетом вышесказанного температура теплоносителей (прямого и обратного трубопроводов) должна измеряться в местах разветвления ТС (обеспечение постоянного расхода), т.е. в тепловых камерах и колодцах.

Измерение расхода теплоносителя

Расход теплоносителя должен быть определен на каждом из неразветвленных участков ТС. При проведении испытаний иногда удавалось использовать портативный ультразвуковой расходомер. Сложность непосредственного измерения расхода воды прибором связана с тем, что чаще всего обследуемые участки ТС расположены в непроходных подземных каналах, а в тепловых колодцах, из-за расположенной в нем запорной арматуры, не всегда возможно соблюсти требование, касающееся необходимых длин прямолинейных участков до и после места установки прибора. Поэтому для определения расходов теплоносителя на обследуемых участках теплотрассы наряду с непосредственными измерениями расходов в некоторых случаях использовались данные с теплосчетчиков, установленных на зданиях, присоединенных к этим участкам сети. При отсутствии в здании теплосчетчиков расходы воды в подающем или обратном трубопроводах измерялись переносным расходомером на вводе в здания.

В случае невозможности непосредственно измерить расход сетевой воды для определения расходов теплоносителя использовались расчетные его значения.

Таким образом, зная расход теплоносителя на выходе из котельных, а также на других участках, включая здания, присоединенные к обследуемым участкам теплосети, можно определить расходы практически на всех участках ТС.

Пример использования методики

Многократные измерения фактических тепловых потерь с поверхности изоляции трубопроводов ТС в различных регионах страны указывают на то, что потери тепла с поверхности трубопроводов, находящиеся в эксплуатации 10-15 и более лет, при прокладке труб в непроходных каналах в 1,5-2,5 раза превышают нормативные значения. Это в случае, если нет видимых нарушений изоляции трубопровода, отсутствует вода в лотках (по крайней мере, во время проведения измерений), а также косвенных следов ее пребывания, т.е. трубопровод находится в видимом нормальном состоянии. В случае же, когда вышеуказанные нарушения присутствуют, фактические потери тепла могут превысить нормативные значения в 4-6 и более раз.

В качестве примера приведены результаты обследования одного из участков ТС, теплоснабжение по которому осуществляется от ТЭЦ г. Владимира (табл. 2) и от котельной одного из микрорайонов этого города (табл. 3). Всего в процессе работы было обследовано около 9 км теплотрассы из 14 км, которые планировались к замене на новые, предварительно изолированные трубы в пенополиуретановой оболочке. Замене подлежали участки трубопроводов, теплоснабжение по которым осуществляется от 4 муниципальных котельных и от ТЭЦ.

Анализ результатов обследования показывает, что потери тепла на участках с теплоснабжением от ТЭЦ в 2 раза и более превышают тепловые потери на участках теплосети, относящихся к муниципальным котельным. В значительной степени это связано с тем, что срок службы их зачастую составляет 25 лет и более, что на 5-10 лет больше срока службы трубопроводов, теплоснабжение по которым осуществляется от котельных. Второй причиной лучшего состояния трубопроводов, на наш взгляд, является то, что протяженность участков, обслуживаемых работниками котельной, относительно небольшая, расположены они компактно и руководству котельных проще следить за состоянием теплосети, вовремя обнаруживать утечки теплоносителя, проводить ремонтные и профилактические работы. На котельных имеются приборы для определения расхода подпиточной воды, и в случае заметного увеличения расхода «подпитки» можно обнаружить и устранить образовавшиеся утечки.

Таким образом, наши измерения показали, что предназначенные к замене участки ТС, особенно участки, присоединенные к ТЭЦ, действительно находятся в плохом состоянии в отношении повышенных потерь тепла с поверхности изоляции. В тоже время анализ результатов подтвердил полученные при других обследованиях данные об относительно невысоких скоростях теплоносителя (0,2-0,5 м/с) на большинстве участков ТС. Это приводит, как отмечено выше, к увеличению тепловых потерь и если может быть как-то оправданным при эксплуатации старых трубопроводов, находящихся в удовлетворительном состоянии, то при модернизации ТС (в большинстве своем) необходимо уменьшение диаметра заменяемых труб. Это тем более важно с учетом того, что предполагалось при замене старых участков ТС на новые использовать предварительно изолированные трубы (того же диаметра), что связано с большими затраты (стоимость труб, запорной арматуры, отводов и т.д.), поэтому уменьшение диаметра новых труб до оптимальных значений может существенно снизить общие затраты.

Изменение диаметров трубопроводов требует проведения гидравлических расчетов всей ТС.

Что такое потеря теплоносителя. Смотреть фото Что такое потеря теплоносителя. Смотреть картинку Что такое потеря теплоносителя. Картинка про Что такое потеря теплоносителя. Фото Что такое потеря теплоносителя

Проведенные нами измерения потерь тепла на участке ТС одного из микрорайонов г. Оренбурга после полной замены труб на новые предварительно изолированные в пенополиуретано-вой оболочке, показали, что тепловые потери стали на 30% ниже нормативных.

Что такое потеря теплоносителя. Смотреть фото Что такое потеря теплоносителя. Смотреть картинку Что такое потеря теплоносителя. Картинка про Что такое потеря теплоносителя. Фото Что такое потеря теплоносителя

1. При проведении расчетов потерь тепла в ТС необходимо определять нормативные потери для всех участков сети в соответствии с разработанной методикой [1].

2. При наличии мелких и удаленных потребителей потери тепла с поверхности изоляции трубопроводов могут быть очень большими (десятки процентов), поэтому необходимо рассмотреть целесообразность альтернативного теплоснабжения данных потребителей.

3. Помимо определения нормативных тепловых потерь при транспорте теплоносителя по

ТС необходимо определить на отдельных характерных участках ТС фактические потери, что позволит иметь реальную картину ее состояния, обоснованно выбирать участки, требующие замены трубопроводов, точнее рассчитывать стоимость 1 Гкал тепла.

4. Практика показывает, что скорости теплоносителя в трубопроводах ТС часто имеют низкие значения, что приводит к резкому увеличению относительных потерь тепла. В таких случаях при проведении работ, связанных с заменой трубопроводов ТС, следует стремиться к уменьшению диаметра труб, что потребует проведения гидравлических расчетов и наладки ТС, но позволит существенно снизить затраты на приобретение оборудования и значительно уменьшить потери тепла при эксплуатации ТС. Особенно это актуально при использовании современных предварительно изолированных труб. На наш взгляд близкими к оптимальным являются скорости теплоносителя 0,8-1,0 м/с.

1. «Методика определения потребности в топливе, электрической энергии и воде при производстве и передаче тепловой энергии и теплоносителей в системах коммунального теплоснабжения», Государственный комитет РФ по строительству и жилищно-коммунальному хозяйству, Москва. 2003, 79 с.

2. РД 34.09.255-97 «Методические указания по определению тепловых потерь в водяных сетях».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *