Что такое пороговый ощутимый ток
Специфика поражающего действия электротока
Поражающее действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электрический ток производит термическое, электролитическое, механическое и биологическое действие.
Виды поражений электрическим током
Электротравма – травма, вызванная воздействием электрического тока или электрической дуги. Указанное многообразие действия электрического тока на организм нередко приводит к различным электротравмам, которые сводятся к двум видам:
Местная электротравма – ярко выраженное местное нарушение целостности тканей тела, вызванное воздействием электротока или электродуги. Опасность местных электротравм и сложность их лечения зависят от места, характера и степени повреждения тканей, а также от реакции организма на это повреждение. Как правило, местные электротравмы излечиваются, и трудоспособность пострадавшего восстанавливается полностью или частично.
Характерные местные электротравмы – электрические ожоги, электрические знаки, металлизация кожи, механические повреждения и электроофтальмия.
Пороговые ощутимый, неотпускающий и фибрилляционный токи
Степень опасности действия на человека электрического тока зависит от его значения. Электрический ток, вызывающий при прохождении через организм человека ощутимые раздражения, называется ощутимым током, а наименьшее значение этого тока называется пороговым ощутимым током. Человек начинает ощущать воздействие проходящего через него малого тока: в среднем около 1,1 мА при переменном токе частотой 50 Гц и около 6 мА при постоянном токе. Это воздействие при переменном токе проявляется слабым зудом и легким пощипыванием (покалыванием), а при постоянном токе ощущением нагрева кожи на участке, касающемся токоведущей части.
Пороговый ощутимый ток не может вызвать поражения человека, однако длительное (в течение нескольких минут) прохождение этого тока через человека может отрицательно сказаться на состоянии его здоровья. Кроме того, ощутимый ток может стать косвенной причиной несчастного случая, поскольку человек, почувствовав воздействие электротока, теряет уверенность в своей безопасности и может произвести неправильные действия. Особенно опасно неожиданное воздействие ощутимого тока при работах вблизи токоведущих частей на высоте и в других аналогичных условиях.
Электрический ток, вызывающий при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник, называется неотпускающим током, а наименьшее его значение – пороговым неотпускающим током. Пороговые неотпускающие токи различны у мужчин, женщин и детей. Приближенные средние значения их составляют: для мужчин – 16 мА при 50 Гц и 80 мА при постоянном токе, для женщин – соответственно 11 и 50 мА, для детей – 8 и 40 мА.
Фибрилляционный ток – это электрический ток, вызывающий при прохождении через организм фибрилляцию сердца. Наименьшее его значение называется пороговым фибрилляционным током. Электроток 50 мА и более при 50 Гц, проходя через тело человека, распространяет свое раздражающее действие на мышцы сердца, тем самым вызывая его хаотичное сокращение и остановку. При частоте 50 Гц фибрилляционными являются токи в пределах от 50 мА до 5 А, а среднее значение порогового фибрилляционного тока можно считать 300 мА. Ток больше 5 А как переменный, так и постоянный, вызывает немедленную остановку сердца, минуя состояние фибрилляции.
Основой организации безопасной эксплуатации электроустановок является высокая техническая грамотность и сознательная дисциплина обслуживающего персонала, который обязан строго соблюдать особые организационные и технические мероприятия, правила и нормы безопасной работы в действующих электроустановках, а также приемы и очередность выполнения эксплуатационных операций.
Классификация помещений в отношении опасности поражения электротоком
В зависимости от тех или иных условий, повышающих опасность воздействия электротока на человека, разным помещениям присуща разная степень опасности поражения током – одним большая, другим меньшая. В соответствии с Правилами устройства электроустановок помещения в отношении опасности поражения людей электрическим током классифицируются следующим образом:
1. Помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность. В таких помещениях относительная влажность воздуха менее 60%, отсутствуют высокая температура, токопроводящая пыль, химически активная или органическая среда, токопроводящие полы, возможность одновременного прикосновения к металлоконструкциям зданий, аппаратов, механизмов и к металлическим корпусам электрооборудования.
2. Помещения с повышенной опасностью, характеризующиеся наличием одного из следующих условий, создающих повышенную опасность:
3. Особо опасные помещения, характеризующиеся наличием одного из следующих условий, создающих особую опасность:
Территория открытых электроустановок в отношении опасности поражения людей электрическим током приравнивается к особо опасным помещениям.
Воздействие электрического тока на организм человека
Первые упоминания об электричестве, относятся к IV веку до нашей эры в трудах греческого философа Аристотеля, а в V веке д. н. э., ученый Фалес Милетский упоминал об этом явление в своих трудах. В дальнейшем, вплоть до 17 века в истории человечества не зафиксированы упоминания об электричестве. В конце 18-го века впервые упоминается о влиянии электрического тока на человеческий организм, но в то время ученые еще мало знали о том какую опасность представляет ток для человека.
Основные понятия
Электрический удар – возбуждение живых тканей организма протекающим через него электрическим током, сопровождающееся непроизвольными судорожными сокращениями мышц.
Формула 1 – Расчет силы тока.
Как мы знаем, по степени электропроводимости все вещества делятся на 3 вида (Рисунок 1)
Рисунок 1 – Типы веществ по электропроводности
Человеческое тело довольно хорошо проводит электрический ток, а ток проходя через наш организм при превышении определенно его значения способен вызывать различные неприятные последствия, вплоть до летального исхода. Величина тока проходящего через тело попавшего под напряжение, зависит в первую очередь от величин напряжения и сопротивления организма. Сопротивление организма складывается из внутреннего – внутренние ткани, сосуды, и внешнего – кожа.
Внутреннее сопротивление у всех людей относительно мало, и составляет примерно 1000 Ом. Причем если кровь, мышечная ткань, костный и головной мозг имеют удельное сопротивление всего лишь 0,5–1 Ом/м, то сопротивление жира, костей, сухожилий и хрящей достигает 3-20 кОм/м. Сопротивление же чистой сухой кожи может достигать 100 кОм, как раз оно и определяет общее сопротивление тела человека.
Сопротивление человека зависит от многих факторов:
В среднем, общее сопротивление средне-статического человека составляет 50 кОм, оно у всех людей разное, может меняться со временем, в течение жизни, и даже в течении суток и зависит не только от физического состояния кожи, но и от психоэмоционального состояния человека. Прикоснувшись к неизолированному проводнику электрического тока, человек сам становиться «элементом» электрической цепи, и ток протекая через организм оказывает на него специфическое действие.
Характер и последствия воздействия на человека
Характер и последствия опасного и вредного воздействия на человека электрического тока зависит от многих факторов:
Величина и тип протекающего тока является главным фактором от которого зависит исход его воздействия на организм человека (или животного).
По степени воздействия на человека от величины ток делится на три пороговых значения:
В таблице 1 приведены различные реакции организма человека на электрический ток в зависимости от его силы и типа.
На увеличение силы тока организм человека отвечает соответствующими реакциями. Можно выделить следующие основные реакции: Минимальные значения токов, вызывающих основные реакции, называются пороговыми значениями токов. В связи с этим различают токи: Токи 10-15 мА называются пороговыми неотпускающими. Затем, при повышении величины тока, действие его становится более сильным. Фибрилляция — беспорядочное сокращение (подергивание) волокон сердечной мышцы, при котором сердце не может обеспечить передвижение крови по сосудам. Для каждого порогового значения тока существует максимальное допустимое время воздействия: Влияние продолжительности прохождения тока на исход пораженияАнализ несчастных случаев с людьми от воздействия электрического тока и данные опытов над животными показывают, что длительность прохождения тока через организм существенно влияет на исход поражения: чем продолжительнее действие тока, тем больше вероятность тяжелого или смертельного исхода. Такая зависимость объясняется тем, что с увеличением времени воздействия тока на живую ткань повышается его значение, растут (накапливаются) последствия воздействия тока на организм и, наконец, повышается вероятность совпадения момента прохождения тока через сердце с уязвимой фазой Т сердечного цикла (кардиоцикла). Рост тока с увеличением времени его действия объясняется уменьшением сопротивления тела человека. Последствия воздействия тока на организм выражаются в нарушении функций центральной нервной системы, изменении состава крови, местном разрушении тканей организма под влиянием выделяющейся теплоты, нарушении работы сердца и легких и т.п. Очевидно, что с увеличением времени воздействия тока эти отрицательные факторы накапливаются, а губительное влияние их на состояние организма усиливается. Опасность совпадения момента прохождения тока через сердце с фазой Т кардиоцикла заключается в следующем. Каждый цикл сердечной деятельности состоит из двух периодов: одного, называемого диастолой, когда желудочки сердца, находясь в расслабленном состоянии, заполняются кровью, и другого, именуемого систолой, когда сердце, сокращаясь, выталкивает кровь в артериальные сосуды (рис. 10, а). Следовательно, вероятность возникновения фибрилляции сердца, т.е. опасность смертельного поражения, зависит не только от значения тока, но и от того, с какой фазой сердечного цикла совпадает период прохождения тока через область сердца. Общий характер этой зависимости выражается кривой, приведенной на рис. 10, б. Рис. 10. Опасность совпадения времени протекания тока через сердце с фазой Т кардиоцикла: а) электрокардиограмма здорового человека (в схематическом виде); б) кривая, выражающая общий характер зависимости опасности поражения током (т.е. вероятности возникновения фибрилляции сердца) от момента протекания тока через сердце человека Если же время воздействия тока меньше продолжительности кардиоцикла на 0,2 с или более, то вероятность совпадения момента прохождения тока с фазой Т, а, следовательно, и опасность поражения резко уменьшаются. Необходимо отметить еще одно немаловажное обстоятельство, влияющее на исход поражения. Дело в том, что если время прохождения тока совпадает с фазой Т, то и в этом случае вероятность возникновения фибрилляции сердца зависит от длительности воздействия тока. На рис. 11 показана зависимость порогового фибрилляционного тока частотой 50 Гц от длительности его прохождения через человека. Время прохождения тока во всех случаях совпадает с фазой Ткардиоцикла. Эта кривая получена путем соответствующей обработки результатов опытов над животными. Известно, что величина тока через тело человека (мА), не вызывающая фибрилляцию сердца у 99,5 % пострадавших, связана со временем его воздействия соотношением (по данным профессора С. Ф. Дальзиеля из США): Рис. 11 Зависимость порогового фибрилляционного тока с частотой 50 Гц Построенная по приведенному соотношению кривая имеет вид, представленный на рис. 12. Рис. 12. Зависимость безопасного тока от времени его воздействия на человека Если же ток проходит иными путями, то воздействие его на жизненно важные органы может быть лишь рефлекторным, а не непосредственным. При этом опасность тяжелого поражения хотя и сохраняется, но вероятность ее резко снижается. Кроме того, поскольку путь тока определяется местом приложения токоведущих частей (электродов) к телу пострадавшего, его влияние на исход поражения обусловливается еще и различным сопротивлением кожи на разных участках тела. Возможных путей тока в теле человека, которые именуются также петлями тока, очень много. Однако характерными, обычно встречающимися в практике являются не более 15 петель, показанных на рис. 13. Рис. 13. Характерные пути тока в теле человека (петли тока) В табл. 5 эти токи указаны для каждой из рассматриваемых петель (четвертая графа). Примечания: 1. Во второй графе за 100 % приняты все несчастные случаи поражения током, повлекшие за собой утрату трудоспособности более чем на 3 рабочих дня. В этом случае через сердце проходит, очевидно, небольшой ток. Характеристика наиболее распространенных путей тока в теле человека Кроме влияния рассмотренных физиологических факторов и условий окружающей природной среды на исход поражения влияют и другие факторы, хотя и в значительно меньшей степени. Условия окружающей среды Атмосферные условия. Уменьшение или увеличение парциального давления кислорода в воздухе по сравнению с нормой соответственно снижает или повышает сопротивление тела человека. Следовательно, в закрытых помещениях, где парциальное давление кислорода, как правило, меньше, опасность поражения током при прочих равных условиях выше, чем на открытом воздухе. Если парциальное содержание углекислого газа превышает значение, допустимое по санитарно-гигиеническим нормам (1 %), то чувствительность к току возрастает в два раза. Магнитное поле. Само по себе магнитное поле не вызывает патологии. Нарушения здоровья обуславливаются токами, возникающими в теле организма в процессе изменения численных значений напряженности магнитного поля, и чем она выше, тем выше опасность поражения электрическим током. Анализ факторов, влияющих на исход поражения электрическим током, и последствий этих влияний, позволил разработать методику оказания первой помощи пострадавшему при поражении электрическим током. Прежде чем изложить порядок проведения практических исследований рассмотрим дополнительные сведения об электрическом сопротивлении тела человека. Рассмотрим лишь те положения, которые не вошли в п. 1.3. Для эквивалентной схемы выражения для Zh получается относительно сложным и здесь не приводится. Анализируя эквивалентную схему замещения, можно сделать несколько выводов: а) Наличие емкости в схеме и соответственно реактивной составляющей в выражении для Zh обусловливает влияние рода и частоты тока на значение сопротивления тела человека. в) При уменьшении частоты емкостное сопротивление возрастает и в пределе приƒ→0, т.е. при постоянном токе: Zh = Z0 = 2 rН + rВ, откуда Рис. 14. Электрическая схема замещения тела человека (рука-рука): а) эквивалентная; Рис. 15. График экстраполяции при определении сопротивления тела человека постоянному току г) Значение полного сопротивления наружного слоя кожи ZH при данной частоте может быть найдено из выражения Приведенные выражения позволяют при наличии экспериментальной зависимости Zh(f) определить расчетным путем для заданной частоты f значения rB, z0, rH, zH, cH. Состояние кожи сильно влияет на значение электрического сопротивления тела человека. Так, повреждение рогового слоя, в том числе порезы, царапины, ссадины и другие микротравмы, могут снизить Zh до значения, близкого к значению внутреннего сопротивления, что, безусловно, увеличивает опасность поражения током. Такое же влияние оказывает и увлажнение кожи водой или потом, а также загрязнение кожи проводящей пылью или грязью. Поскольку у одного и того же человека электрическое сопротивление кожи неодинаково на разных участках тела, то на сопротивление в целом влияют и место приложения, а также плотность и площадь контакта. Значение тока и длительность его прохождения через тело человека непосредственно влияют на полное электрическое сопротивление Zh: с ростом тока и времени его прохождения сопротивление падает, поскольку при этом усиливается местный нагрев кожи, что приводит к расширению ее сосудов, а следовательно, к усилению снабжения этого участка кровью и увеличению потовыделения. Необходимо отметить, что оценкой электрофизических характеристик кожи, и в первую очередь его сопротивления, можно получить важную информацию о состоянии человека в целом, а также отдельных его органов. Электрофизический метод диагностики о состоянии человека и деятельности его отдельных систем был предложен в 1928 году академиком Павловым И.П. и получил название реографического. Реография основана на оценке изменения значения полного электрического сопротивления между двумя электродами, расположенными на теле больного. С помощью реографии можно оценить функцию внешнего дыхания, представить работу системы периферического кровообращения и дать ряд других диагностических оценок. Кожа человека не только позволяет оценивать состояние человека, но через нее можно ввести человеку лекарственные средства (электрофорез), а также воздействовать на центральную нервную систему через акупунктурные зоны, куда подходят нервные окончания и где электрическое сопротивление на несколько порядков ниже, чем на соседних участках кожи. Новые возможности в диагностике появились в связи с созданием простого прибора, измеряющего при напряжении 2 В мостовым способом поверхностное электрическое сопротивление кожи, т.е. эпидермиса, который несет максимальную информацию о воспалительных процессах в органах и тканях человека.
|