Что такое пороговое напряжение в полевом транзисторе
Максимальная пороговое напряжение затвора?
Оценить 1 комментарий
Диапазон напряжений на который рассчитан затвор транзистора обзывают gate-to-source voltage, вот его превышать нельзя
И лучше приближаться к значению gate-to-source voltage, т.к. транзистор будет больше открыт, следовательно сопротивление его канала меньше, т.е. меньше потери на нагрев транзистора.
Обычно приводят графики тока от напряжения на затворе при фиксированном напряжении, по ним видно, что при напряжениях близких к treshhold ток через транзистор не очень большой, т.к. он еще не полностью открыт.
30в для мощных силовых.
Максимальная пороговое напряжение затвора?
Например 12 вольт сток и 12 вольт затвор.
Напряжение на переходе получилось 0,2 вольта и не меняется при 5 вольтах и при 9,5 вольтах затвора. Считаю сопротивление на переходе 0,2 : 1,8 = 0,11 ом
ПРОБНИК ПОЛЕВЫХ ТРАНЗИСТОРОВ
В радиолюбительских конструкциях все чаще встречаются полевые транзисторы (ПТ), особенно в схемах УКВ аппаратуры. Но многие отказываются от их сборки, хотя схемы простые, проверенные временем, так как в них применяются ПТ к которым предъявляются особые требования по описанию схем. В журналах и интернете описано много приборов и испытателей ПТ (5,6), но они сложны, ведь в домашних условиях сложно измерить основные параметры ПТ. Приборы для испытания ПТ очень дороги и покупать их ради подбора двух, трех ПТ нет смысла. Схема испытателя для полевых транзисторов (уменьшенная) В домашних условиях возможно измерить, приблизительно, основные параметры ПТ и подобрать их. Для этого необходимо иметь как минимум два прибора, одним из которых измеряют ток, а другим напряжение, и два источника питания. Собрав схему (1, 2) вначале необходимо резистором R1 установить нулевое напряжение на затворе VT1, движок R1 в нижнем положение резистором R2 установить напряжение сток-исток Uси VT1 по справочнику, для проверяемого транзистора, обычно 10-12 вольт. Затем подключают прибор PA2, переведенный в режим измерения тока, в цепь стока и снимают показание, Iс.нач это начальный ток стока, его еще называют током насыщения ПТ при заданном напряжение сток-исток и нулевом напряжение затвор-исток. Затем медленно перемещая движок R1 за показанием PA2 и как только ток упадет практически до нуля (10-20 мкА) измерить напряжение между затвором и истоком, данное напряжение будет напряжением отсечки Uотс.. Чтобы измерить крутизну характеристики SмА/В ПТ нужно снова устанавливают нулевое напряжение Uзи резистором R1, PA2 покажет Iс.нач. Резистором R1 так же медленно увеличивают напряжение Uзи до одного вольта по PA1, для упрощения расчета, PA2 покажет меньший ток Ic.измер. Если теперь разность двух показаний PA2 разделить на напряжение Uзи получившийся результат будет соответствовать крутизне характеристики: Так проверяются транзисторы с управляющим с p-n переходом и каналом p-типа, для ПТ n-типа нужно поменять полярность включения Uпит на обратное. Существуют также полевые транзисторы с изолированным затвором. Существуют две разновидности МДП-транзисторов с индуцированным и со встроенным каналами. В МОП-транзисторах с индуцированным каналом проводящий канал между сильнолегированными областями истока и стока и, следовательно, заметный ток стока появляются только при определенной полярности и при определенном значении напряжения на затворе относительно истока (отрицательного при р-канале и положительного при n-канале). Это напряжение называют пороговым (Uпор). Так как появление и рост проводимости индуцированного канала связаны с обогащением его основными носителями заряда, эти транзисторы могут работать только в режиме обогащения. Работа МОП-транзистора с индуцированным p-каналом. При отсутствии смещения (Uзи = 0; Uси = 0) приповерхностный слой полупроводника обычно обогащен электронами. Это объясняется наличием положительно заряженных ионов в пленке диэлектрика, что является следствием предшествующего окисления кремния и фотолитографической его обработки. Напряжение на затворе, при котором индуцируется канал, называют пороговым напряжением Unoр. Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения Unop. В транзисторах с встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. Для прекращения его необходимо к затвору приложить положительное напряжение (при структуре с каналом p-типа), равное или большее напряжения отсечки Uотc. При приложении отрицательного напряжения канал расширяется и ток увеличивается. Таким образом, МДП-транзисторы с встроенными каналами работают как в режиме обеднения, так и в режиме обогащения. Иногда в структуре полевого МОП транзистора между истоком и стоком присутствует встроенный диод. На работу транзистора диод не влияет, поскольку в схему он включен в обратном направлении. В последних поколениях мощных МОП-транзисторов встроенный диод используется для защиты транзистора. Основными параметрами полевых транзисторов считаются; Для этих измерений необходимо ввести еще и переключатель полярности напряжения между затвором и истоком. Комутируя этим переключателем полярность подаваемую на затвор проверяемого транзистора измеряют параметры ПТ. Процедура довольно долгая, а как быть если в наличие только один тестер. И в этом случае возможно проверить полевой транзистор, процесс проверки тот же что и описан выше, но только еще более длительный, так как нужно будет сделать очень много переключений и других операций. Такой способ для проверки и подборки ПТ не пригоден при покупке в магазинах и радиорынках. Как известно собрать вольтметр постоянного тока намного проще чем миллиамперметр, имея одну и туже головку, а комбинированные приборы есть у каждого радиолюбителя, даже у начинающих. Собрав прибор по схеме приведенной на рисунке, можно значительно облегчить процедуру проверки ПТ во много раз. Данный прибор могут сделать даже начинающие радиолюбители не имеющие опыта работы с ПТ. Прибор питается от 9 вольт от стабилизированного преобразователя напряжения собранной по схеме из журнала Радио (3). Принцип измерений параметров ПТ. Установив переключатели SA1-SA3, SB2 в нужное полжения, в зависимости от типа и канала проверяемого ПТ, подключают любой тестер, стрелочный или цифровой (предпочтительней), в гнезда XS1, XS2, переведенном в режим измерения постоянного тока, к гнездам XS3 подключить в соответствие с цоколем ПТ и включают прибор переключателем SA4. Все компоненты прибора установлены в подходящий корпус, размер которого зависит от размеров компонентов и примененной головки PA1. На лицевой стороне расположены PA1, SA1-SA3, XS1-XS2, R1, R2 с соответствующими надписями обозначающими функции. Преобразователь установлен в корпусе прибора, из которого выведен разъем для подключения к батарейке GB1. Детали пробникаВ качестве XS3 используется кроватка для микросхем установленная на печатной плате и распаянная под тип ПТ (расположение выводов) для того чтобы не загибать выводы ПТ или другой разъем распаянный соответствующим образом. Монтаж объемный. На дно (задняя крышка) установлена плата преобразователя. Настройка испытателя полевых транзисторовНалаживание прибора практически не требуется. Правильно собранный преобразователь, из исправных деталей, начинает работать сразу, выходное напряжение 15 В устанавливают подстроечным резистором R4 контролируя напряжение вольтметром. Затем движки резисторов R1, R2 устанавливают в нижнее по схеме положение, что соответствует нулевым напряжениям. Переключатель SA3 переводят в положение 1,5 В, а SA2 в положение Uзи. Подключив контрольный вольтметр к движку R1 перемещают его контролируя показание PA1 по контрольному вольтметру и если оно отличается подбирают сопротивление резистора R3. После подбора резистора R3 переключают SA3 в положение 15 В и далее перемещают движок R3 контролируя напряжение и если оно также не соответствует подбирают R4. Таким образом настраивают внутренний вольтметр прибора. После всех настроек закрывают заднюю крышку, прибор готов к работе. Как показывает практика, для радиолюбителя важны следующие положения: 1. Проверить исправность ПТ. Для этого обычно достаточно убедиться, что параметры его стабильны, не «плывут» и находятся в пределах справочных данных. Например, нужен полевой транзистор с большей S или меньшим напряжением отсечки. И из нескольких экземпляров выбирают тот, у которого лучше (больше или меньше) выбранный показател. Таким образом, высокая точность измеряемых параметров на практике часто не столь важна, как можно было бы думать. Работа с приборомВставляют полевой транзистор в разъем XS3 в соответствие с цоколем проверяемого ПТ. Включив прибор резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Переводят SA2 в положение Uзи, а SA3 в 1,5 В. Нажимают кнопку SB1 «Измер.» при этом тестер PA2 покажет какое то значение, например 0,8 мА на пределе 1 мА, это значение указывает начальный ток стока Iс.нач. Записывают это значение для данного ПТ. Затем медленно перемещают движок R1 «Uзи» контролируя при этом напряжение на затворе по PA1, напряжение Uзи увеличивают до тех пор пока ток стока Iс измеряемый тестером PA2 не уменьшится до минимального заданного как правило 10-20 мкА, переключая PA2 на пределы ниже. Как только ток уменьшится до заданного значения, снимают показание с PA1 (например 0,9 В), это напряжение является напряжением отсечки ПТ Uотс., его так же записывают. Для измерения крутизну характеристики SмА/В устанавливают тестер PA2 на тот предел который был установлен первоначально для данного транзистора и уменьшают Uзи до нуля, PA2 покажет Iс.нач. Резистором R1 медленно увеличивают Uзи до 1 В по PA1, PA2 покажет меньший ток Iс.измер. Если теперь вычесть из Iс.нач Iс.измер это и будет соответствовать численному значению крутизны характеристики SмА/В ПТ. Цифровой тестер с автоматическим изменением пределов предпочтительнее. Измерение параметров полевых транзисторов МОП-типа с встроенным каналом, режим обеднения. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обеднения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ. У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус «К» разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1, микроамперметр PA2 покажет какой-то ток это и будет начальный ток стока Iс.нач. При увеличение напряжения Uзи ток стока Iс будет уменьшатся и при определенном значение станет минимальным около 10 мкА, снятое показания с РА2 будет напряжением отсечки Uотс. Для проверки транзистора в режиме обогащения переключатель SB2 переводят в положение «Обогащения» и увеличивают напряжение на затворе Uзи при этом ток стока Iс будет увеличиваться. Как было сказано выше, МОП-транзисторы с индуцированным каналом могут работать только в режиме обогащения. Измерение параметров полевых транзисторов МОП-типа с индуцированным каналом. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обогащения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ. У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус «К» разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1. При Uзи = 0 ток стока Iс = 0. Увеличивая напряжение Uзи следят за изменением тока стока Iс и при некотором напряжение Uзи ток стока начнет увеличиваться это будет пороговым напряжением Uпор. При дальнейшем его увеличение будет увеличиваться ток стока Iс. Данным прибором можно измерять параметры Iс.нач, Uотс., S ма/В ПТ средней и большой мощности, подав необходимое напряжение на внешний разъем XP1, по справочникам для данного ПТ, с добавлением необходимых пределов измерений внутренним вольтметром PA1, добавив необходимое число резисторов на переключатель SA3. Диоды VD5, VD6 при этом защищают преобразователь от внешнего напряжения. Если не требуется измерений точных значений Iс.нач и Uотс., а только подобрать ПТ с близкими параметрами, можно вместо PA2 включить индикаторы применяемые в бытовой технике для контроля уровней сигналов, М4762, М68501, М4248, М4223 и подобные, добавив к данным индикаторам переключатель и шунты на разные токи. Все остальные измерения производят по описанному выше методу. Данным прибором пользуюсь уже более шести лет. Он очень помогает при конструирование аппаратуры на полевых транзисторах, где к ним применяются особые требования. Литература: Конструкцию прислал на конкурс:Слинченков Александр Васильевич г. Озерск, Челябинская обл. Форум по обсуждению материала ПРОБНИК ПОЛЕВЫХ ТРАНЗИСТОРОВ
Параметры MOSFET транзисторовОсновные параметры мощных транзисторовТехнологические возможности и успехи в разработке мощных полевых транзисторов привели к тому, что в настоящее время не составляет особого труда приобрести их за приемлемую цену. В связи с этим возрос интерес радиолюбителей к применению таких MOSFET транзисторов в своих электронных самоделках и проектах. Стоит отметить тот факт, что MOSFET’ы существенно отличаются от своих биполярных собратьев, как по параметрам, так и своему устройству. Пришло время ближе познакомиться с устройством и параметрами мощных MOSFET транзисторов, чтобы в случае необходимости более осознанно подобрать аналог для конкретного экземпляра, а также иметь возможность понимать суть тех или иных величин, указанных в даташите. Что такое HEXFET транзистор?В семействе полевых транзисторов есть отдельная группа мощных полупроводниковых приборов называемых HEXFET. Их принцип работы основан на весьма оригинальном техническом решении. Их структура представляет собой несколько тысяч МОП ячеек включенных параллельно. Ячеистые структуры образуют шестиугольник. Из-за шестиугольной или по-другому гексагональной структуры данный тип мощных МОП-транзисторов и называют HEXFET. Первые три буквы этой аббревиатуры взяты от английского слова hexagonal – «гексагональный». Под многократным увеличением кристалл мощного HEXFET транзистора выглядит вот так. Как видим, он имеет шестиугольную структуру. Получается, что мощный MOSFET, по сути представляет собой эдакую супер-микросхему, в которой объединены тысячи отдельных простейших полевых транзисторов. В совокупности они создают один мощный транзистор, который может пропускать через себя большой ток и при этом практически не оказывать значительного сопротивления. Благодаря особой структуре и технологии изготовления HEXFET, сопротивление их канала RDS(on) удалось заметно снизить. Это позволило решить проблему коммутации токов в несколько десятков ампер при напряжении до 1000 вольт. Вот только небольшая область применения мощных HEXFET транзисторов: Схемы коммутации электропитания. Системы управления электродвигателями. Усилители низкой частоты. Ключи для управления мощными нагрузками. Несмотря на то, что мосфеты, изготовленные по технологии HEXFET (параллельных каналов) обладают сравнительно небольшим сопротивлением открытого канала, сфера применения их ограничена, и они применяются в основном в высокочастотных сильноточных схемах. В высоковольтной силовой электронике предпочтение порой отдают схемам на основе IGBT.
Изображение MOSFET транзистора на принципиальной электрической схеме (N-канальный МОП). Как и биполярные транзисторы, полевые структуры могут быть прямой проводимости или обратной. То есть с P-каналом или N-каналом. Выводы обозначаются следующим образом: О том, как обозначаются полевые транзисторы разных типов на принципиальных схемах можно узнать на этой странице. Основные параметры полевых транзисторов.Вся совокупность параметров MOSFET может потребоваться только разработчикам сложной электронной аппаратуры и в даташите (справочном листе), как правило, не указывается. Достаточно знать основные параметры: VDSS (Drain-to-Source Voltage) – напряжение между стоком и истоком. Это, как правило, напряжение питания вашей схемы. При подборе транзистора всегда необходимо помнить о 20% запасе. ID (Continuous Drain Current) – ток стока или непрерывный ток стока. Всегда указывается при постоянной величине напряжения затвор-исток (например, VGS=10V). В даташите, как правило, указывается максимально возможный ток. RDS(on) (Static Drain-to-Source On-Resistance) – сопротивление сток-исток открытого канала. При увеличении температуры кристалла сопротивление открытого канала увеличивается. Это легко увидеть на графике, взятом из даташита одного из мощных HEXFET транзисторов. Чем меньше сопротивление открытого канала (RDS(on)), тем лучше мосфет. Он меньше греется. PD (Power Dissipation) – мощность транзистора в ваттах. По-иному этот параметр ещё называют мощностью рассеяния. В даташите на конкретное изделие величина данного параметра указывается для определённой температуры кристалла. VGS (Gate-to-Source Voltage) – напряжение насыщения затвор-исток. Это напряжение, при превышении которого увеличения тока через канал не происходит. По сути, это максимальное напряжение между затвором и истоком. VGS(th) (Gate Threshold Voltage) – пороговое напряжение включения транзистора. Это напряжение, при котором происходит открытие проводящего канала и он начинает пропускать ток между выводами истока и стока. Если между выводами затвора и истока приложить напряжение меньше VGS(th), то транзистор будет закрыт. На графике видно, как уменьшается пороговое напряжение VGS(th) при увеличении температуры кристалла транзистора. При температуре 175°C оно составляет около 1 вольта, а при температуре 0°C около 2,4 вольт. Поэтому в даташите, как правило, указывается минимальное (min.) и максимальное (max.) пороговое напряжение.
Предельное напряжение сток-исток (VDSS): 55 Вольт. Максимальный ток стока (ID): 51 Ампер. Предельное напряжение затвор-исток (VGS): 16 Вольт. Сопротивление сток-исток открытого канала (RDS(on)): 13,5 мОм. Максимальная мощность (PD): 80 Ватт. Сопротивление открытого канала IRLZ44ZS составляет всего лишь 13,5 миллиОм (0,0135 Ом)! Взглянем на «кусочек» из таблицы, где указаны максимальные параметры. Хорошо видно, как при неизменном напряжении на затворе, но при повышении температуры уменьшается ток (с 51A (при t=25°C) до 36А (при t=100°C)). Мощность при температуре корпуса 25°C равна 80 Ваттам. Так же указаны некоторые параметры в импульсном режиме. Транзисторы MOSFET обладают большим быстродействием, но у них есть один существенный недостаток – большая ёмкость затвора. В документах входная ёмкость затвора обозначается как Ciss (Input Capacitance). На что влияет ёмкость затвора? Она в большой степени влияет на определённые свойства полевых транзисторов. Поскольку входная ёмкость достаточно велика, и может достигать десятков пикофарад, применение полевых транзисторов в цепях высокой частоты ограничивается. В схемах переключения время заряда паразитной входной ёмкости транзистора влияет на скорость его срабатывания. Важные особенности MOSFET транзисторов.
При хранении все выводы МОП-транзистора лучше закоротить с помощью обычной алюминиевой фольги. Это уменьшит риск пробоя затвора статическим электричеством. При монтаже его на печатную плату лучше использовать паяльную станцию, а не обычный электрический паяльник. Дело в том, что обычный электрический паяльник не имеет защиты от статического электричества и не «развязан» от электросети через трансформатор. На его медном жале всегда присутствуют электромагнитные «наводки» из электросети. Любой всплеск напряжения в электросети может повредить паяемый элемент. Поэтому, впаивая полевой транзистор в схему электрическим паяльником, мы рискуем повредить MOSFET-транзистор. Полевые транзисторы. For dummiesВведение
Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов — управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов, как мы помним, выходным током управляет входной ток базы. Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название — униполярные. Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки). Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами. Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором. Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль. Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два. Полевой транзистор с управляющим p-n-переходомИтак, как же устроен первый тип полевых транзисторов? В основе устройства лежит пластинка из полупроводника с проводимостью (например) p-типа. На противополжных концах она имеет электроды, подав напряжение на которые мы получим ток от истока к стоку. Сверху на этой пластинке есть область с противоположным типом проводимости, к которой подключен третий электрод — затвор. Естественно, что между затвором и p-областью под ним (каналом) возникает p-n переход. А поскольку n-слой значительно уже канала, то большая часть обедненной подвижными носителями заряда области перехода будет приходиться на p-слой. Соответственно, если мы подадим на переход напряжение обратного смещения, то, закрываясь, он значительно увеличит сопротивление канала и уменьшит ток между истоком и стоком. Таким образом, происходит регулирование выходного тока транзистора с помощью напряжения (электрического поля) затвора. Можно провести следующую аналогию: p-n переход — это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток). Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока. Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.
Статические характеристики полевого транзистора с управляющим p-n-переходомВыходной (стоковой) называется зависимость тока стока от напряжения исток-сток при константном напряжении затвор-исток. На рисунке — график слева. На графике можно четко выделить три зоны. Первая из них — зона резкого возрастания тока стока. Это так называемая «омическая» область. Канал «исток-сток» ведет себя как резистор, чье сопротивление управляется напряжением на затворе транзистора. Вторая зона — область насыщения. Она имеет почти линейный вид. Здесь происходит перекрытие канала в области стока, которое увеличивается при дальнейшем росте напряжения исток-сток. Соответственно, растет и сопротивление канала, а стоковый ток меняется очень слабо (закон Ома, однако). Именно этот участок характеристики используют в усилительной технике, поскольку здесь наименьшие нелинейные искажения сигналов и оптимальные значения малосигнальных параметров, существенных для усиления. К таким параметрам относятся крутизна характеристики, внутреннее сопротивление и коэффициент усиления. Значения всех этих непонятных словосочетаний будут раскрыты ниже. Третья зона графика — область пробоя, чье название говорит само за себя. С правой стороны рисунка показан график еще одной важной зависимости — стоко-затворной характеристики. Она показывает то, как зависит ток стока от напряжения затвор-исток при постоянном напряжении между истоком и стоком. И именно ее крутизна является одним из основных параметров полевого транзистора. Полевой транзистор с изолированным затворомТакие транзисторы также часто называют МДП (металл-диэлектрик-полупроводник)- или МОП (металл-оксид-полупроводник)-транзисторами (англ. metall-oxide-semiconductor field effect transistor, MOSFET). У таких устройств затвор отделен от канала тонким слоем диэлектрика. Физической основой их работы является эффект изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Если при нулевом напряжении на затворе подать напряжение исток-сток, то по каналу между ними потечет ток. Почему не через кристалл? Потому что один из p-n переходов будет закрыт. А теперь подадим на затвор отрицательное относительно истока напряжение. Возникшее поперечное электрическое поле «вытолкнет» электроны из канала в подложку. Соответственно, возрастет сопротивление канала и уменьшится текущий через него ток. Такой режим, при котором с возрастанием напряжения на затворе выходной ток падает, называют режимом обеднения. Рассмотренная выше конструкция транзистора с изолированным затвором похожа на конструкцию с управляющим p-n переходом тем, что даже при нулевом токе на затворе при ненулевом напряжении исток-сток между ними существует так называемый начальный ток стока. В обоих случаях это происходит из-за того, что канал для этого тока встроен в конструкцию транзистора. Т.е., строго говоря, только что мы рассматривали такой подтип МДП-транзисторов, как транзисторы с встроенным каналом. Однако, есть еще одна разновидность полевых транзисторов с изолированным затвором — транзистор с индуцированным (инверсным) каналом. Из названия уже понятно его отличие от предыдущего — у него канал между сильнолегированными областями стока и истока появляется только при подаче на затвор напряжения определенной полярности. Итак, мы подаем напряжение только на исток и сток. Ток между ними течь не будет, поскольку один из p-n переходов между ними и подложкой закрыт. Условные обозначения транзисторов с изолированным затвором следующие: Статические характеристики МДП-транзисторовТе же характеристики для транзистора с идуцированным каналом: Экзотические МДП-структурыЧтобы не запутывать изложение, хочу просто посоветовать ссылки, по которым о них можно почитать. В первую очередь, это всеми любимая википедия, раздел «МДП-структуры специального назначения». А здесь теория и формулы: учебное пособие по твердотельной электронике, глава 6, подглавы 6.12-6.15. Почитайте, это интересно! Общие параметры полевых транзисторовСхемы включенияКак и биполярный, полевой транзистор можно рассматривать как четырехполюсник, у которого два из четырех контактов совпадают. Таким образом, можно выделить три вида схем включения: с общим истоком, с общим затвором и с общим стоком. По характеристикам они очень похожи на схемы с общим эмиттером, общей базой и общим коллектором для биполярных транзисторов. Отличия полевых транзисторов от биполярных. Области примененияГде применяются полевые транзисторы? Да практически везде. Цифровые и аналоговые интегральные схемы, следящие и логические устройства, энергосберегающие схемы, флеш-память… Да что там, даже кварцевые часы и пульт управления телевизором работают на полевых транзисторах. Они повсюду, %хабраюзер%. Но теперь ты знаешь, как они работают!
|