Что такое поляризатор дисплея
Что такое поляризационная пленка
Я думаю, что многие из вас слышали про поляризационную пленку, но не все знают, что это такое? В этой статье я постараюсь вам вкратце открыть вам взгляд на этот вопрос, а также расскажу о том:
Свойства
Для того, чтобы объяснить ценные свойства поляризационной пленки, благодаря, которым она приобретает все большее признание в быту, промышленности и науке, давайте-ка вспомним: что такое поляризация?
Поляризация – это ограничение световых лучей методом пропускания света через поляризатор-решетку, когда расстояние между нитями решетки сопоставимы с длиной световой волны. Эта решетка наносит ограничение на распределение потока лучей, она пропускает лишь одну волну в одной плоскости.
Работа поляризационного элемента основана на свойстве поперечности электромагнитных волн: поляризатор может пропускать только ту часть естественного света, которая параллельна его оси. Существую 2 способа создания поляризационных устройств:
Для абстрактного понимания рассмотрим следующий рисунок.
Чего можно достичь с помощью поляризационной пленки:
Применение
Поляризационная пленка используется в самых различных областях при производстве:
Поляризационные пленки можно использовать как фильтры с изменяемой прозрачностью. Это достигается путем их скрещивания. При таком положении лучшие из них понижают яркость лучей света в сотни раз. Если сравнить пленки с поляризационными призмами, то они обладают лучшим качеством и более широким полем зрения.
Изготовление
Поляризационная пленка производится из поливинилена с использованием поливинилового спирта (ПВС). Также, в ее состав может добавляться фосфорно-вольфрамовая кислота. В результате производства ее вытягивают в 5-7 раз более ее стартовой длины. Пленку отжигают на протяжении 15 мин. при 120-140 градусах.
В результате получают:
Пленки вытянуты одноосно, что дает преимущественно молекулярную ориентацию ее компонентов, которые поляризуются по вектору оси вытяжки, благодаря чему пленка обретает необходимые свойства.
Поляризационные ПВС пленки в зависимости от содержащихся в них компонентов разделяют на 3 группы, в состав которых входят:
Передовым является электролитический метод полирования. Суть метода заключается в удалении поляризационной пленки силой электрического тока, которая образовалась на выпуклых местах поверхности. Вначале поверхности шлифуются так же, как и при простом механической полировке.
Режим обработки подбирают так, чтобы на выступах поляризационная пленка имела разрыв, а именно там, где силовые линии имеют большую концентрацию. На процесс электрохимического полирования влияет состав электролита. Перед процессом полировки деталь травят, а также шлифуют на станке. После полировки она промывается и просушивается.
После иодного окрашивания и ориентации, получается пленка хорошего качества. Такую технологию обычно используют для солнцезащитных очков.
Органическое стекло не имеет широкого распространения здесь, т.к. имеет низкое сопротивление царапанию, а это существенно понижает срок годности наружных линз. Для изготовления крупных линз и призм использование органической пленки напротив, является выгодным, поскольку малая плотность и простейшая производственная технология снижает общую массу оптического прибора или устройства, которые выпускаются большими партиями: фотоаппараты и проекторы.
Проверка поляризации
Рассмотрим проверку на примере поляризационных очков. Поляризационная пленка размещена в линзах таким образом, чтобы пропускать свет, который имеет только вертикальную поляризацию.
Лучи, которые отбрасывает горизонтальная поверхность: снежная или водная, имеют горизонтальную поляризацию. Благодаря этому они не проходят через линзы.
Лучи от других объектов – не поляризованные. Следовательно, поляризационная пленка в линзах их пропускает! На выходе мы получаем четкое изображение.
Чтобы убедиться, что товар является подлинным, вы можете сделать две такие проверки:
Вариант первый
Вариант второй
Управление поляризацией в ЖК мониторах при помощи электродов
Что такое ЖК монитор
Принцип работы ЖК монитора
Для начала стоит разобраться, что же такое ЖК монитор. Для этого нужно понять, что такое LCD-дисплей. Как вы, наверное, уже догадались LCD это некое сокращение, полностью название имеет следующий вид – Liquid Crystal Display. В переводе на русский язык это означает жидкокристаллический дисплей. Таким образом, становится понятно, что ЖК и LCD – это одно и то же.
Данная технология построена на использовании специальных молекул жидких кристаллов, которые имеют уникальные свойства. Такие мониторы отличаются рядом неоспоримых преимуществ. Для того чтобы их понять стоит более детально разобрать принцип работы ЖК мониторов.
Устройство LCD монитора и принцип его работы
Как уже говорилось выше, для изготовления ЖК-дисплея используются специальные вещества, которые называются цианофенилами. Они находятся в жидком состоянии, однако при этом они имеют уникальные свойства, которые присущи кристаллическим телам. По сути – это такая жидкость, которая имеет анизотропию свойств, в частности оптических. Эти свойства связаны с упорядоченностью в ориентации молекул.
Принцип работы жидкокристаллических мониторов основывается на поляризационных свойствах молекул кристаллов. Эти молекулы способны пропускать исключительно ту составляющую света, вектор электромагнитной индукции которой располагается в параллельной оптической плоскости поляроида (молекулы кристалла). Другие световые спектры кристаллы не пропускают. Другими словами, цианофенилы являются световыми фильтрами, пропускающими только определенный световой спектр – один из основных цветов. Такой эффект и называется поляризацией света.
Благодаря тому, что длинные молекулы жидких кристаллов меняют свое расположение в зависимости от электромагнитного поля, появилась возможность управления поляризацией. То есть в зависимости от силы воздействующего электромагнитного поля на циенофенилы они меняют свое расположение и форму, тем самым меняя углы преломления света и меняя свою поляризацию. Именно благодаря сочетанию электрооптических свойств кристаллов и способности принимать форму сосуда такие молекулы получили название – жидкие кристаллы.
Именно на таких свойствах и основывается принцип работы LCD монитора. Благодаря изменению силы электромагнитного поля молекулы жидких кристаллов меняют свое положение. Таким образом, формируется изображение.
2.1. Матрица ЖК-дисплея
Матрица ЖК мониторы – это массив, состоящий из множества мельчайших сегментов, которые имеют название – пиксели. Каждым из этих пикселей можно управлять в отдельности, благодаря чему и возникает определенная картинка. Матрица LCD монитора состоит из нескольких слоев. Ключевая роль принадлежит двум панелям, которые изготовлены из свободного от натрия, а также абсолютно чистого стеклянного материала. Этот материал имеет название субстрат (или в народе – подложка). Именно между этими двумя слоями и располагается тончайший слой жидких кристаллов.
Помимо этого на панелях имеются специальные бороздки, которые контролируют кристаллы, задавая им нужную ориентацию (положение). Эти бороздки расположены параллельно друг другу на панели и перпендикулярны расположению бороздок на другой панели. То есть, на одной панели они горизонтальны, а на другой вертикальны. Если посмотреть на экран через увеличительное стекло, то можно будет увидеть тончайшие полоски (вертикально и горизонтально). Они образуют маленькие квадратики – это и есть пиксели. Они бывают и круглой формы, но в подавляющем большинстве – квадратные.
Освещение жидкокристаллических панелей может реализовываться двумя способами:
· Отражение света;
· Прохождение света.
При этом плоскость поляризации световых потоков может поворачиваться на 90˚ в момент прохождения через одну панель.
В случае возникновения электрического поля, молекулы кристаллов частично выстраиваются вертикально вдоль этого поля. При этом угол поворота плоскости поляризации световых потоков меняется, и становится отличным от 90˚. Благодаря этому свет беспрепятственно проходит сквозь молекулы.
Такой поворот плоскости абсолютно невозможно заметить невооруженным глазом. Из-за этого появилась потребность в добавлении к стеклянным панелям еще двух других слоев, которые играют роль поляризационных фильтров. Они пропускают исключительно такие спектры световых лучей, ось поляризации которых соответствует установленному значению. Другими словами, благодаря дополнительным панелям в момент прохождения света через поляризатор он будет ослаблен. Интенсивность света зависит от угла между плоскостью поляризации (дополнительных панелей) и осью поляризатора (основные стеклянные панели).
Если напряжение отсутствует, то ячейка будет абсолютно прозрачной, так как первый поляризатор исключительно тот свет, который имеет соответствующее направление поляризации. Направление поляризации задается молекулами жидких кристаллов, и к тому времени, как свет поступит ко второму поляризатору, он уже будет повернут, чтобы пройти через него без затруднений.
В случае воздействия электрического поля поворот вектора поляризации осуществляется на меньший угол. Это в свою очередь делает второй поляризатор частично прозрачным для потоков света. Если сделать так, что поворот плоскости поляризации в молекулах жидких кристаллов вовсе будет отсутствовать, то свет будет полностью поглощаться вторым поляризатором. Другими словами при освещении задней части дисплея передняя часть будет качаться абсолютно черной.
Управление поляризацией в ЖК мониторах при помощи электродов
Учитывая это, разработчики оснастили дисплеи достаточным количеством электродов, которые создают разные электромагнитные поля в отдельных частях экрана (в каждом пикселе). Благодаря такому решению они достигли возможности, в условиях правильного управления потенциалами этих электродов, воспроизводить на экране дисплея буквы, и даже сложные разноцветные картинки. Эти электроды могут обладать любой формой и располагаются в прозрачном пластике.
Благодаря современным новшествам в технологии, электроды имеют весьма небольшие размеры – их практически не видно не вооруженным глазом. Благодаря этому на относительно небольшой площади дисплея можно разместить достаточно большое количество электродов, что позволяет увеличить разрешение ЖК-дисплея. Это в свою очередь позволяет улучшить качество отображаемой картинки и воспроизводить даже самые сложные картинки.
2.3. Получение цветного изображения
Принцип работы жидкокристаллических мониторов заключается в довольно сложных процессах. Однако благодаря этому пользователь получает высокое качество изображения на своем мониторе. Для того чтобы отображать цветную картинку, дисплею LCD необходима задняя подсветка, благодаря которой свет будет исходить из задней части экрана. Это позволяет пользователям наблюдать максимально высокое качество изображения, даже в условиях затемненной окружающей среды.
Принцип работы ЖК мониторов для вывода цветной картинки основывается на применении все тех же трех основных цветов:
· Синий;
· Зеленый;
· Красный.
Для получения этих спектров используется три фильтра, отсеивающие остальные спектры видимого излучения. При помощи комбинирования этих цветов для каждого пикселя (ячейки) достигается возможность вывода полноценной цветной картинки.
На сегодняшний день существует два способа для получения цветной картинки:
· Использование нескольких фильтров, расположенных друг за другом. Это приводит к малой доле пропускаемого света.
· Использование свойств молекул жидких кристаллов. Для отражения (или поглощения) излучения нужной длины можно изменять силу напряжения электромагнитного поля, которое влияет на расположение молекул жидких кристаллов, тем самым фильтруя излучение.
Каждый производитель выбирает свой вариант получения цветного изображения. Стоит отметить, что первый способ более простой, однако второй – более эффективный. Также стоит отметить, что для повышения качества изображения в современных ЖК-дисплеях, которые обладают высоким разрешением экрана, используется технология STN, позволяющая поворачивать плоскости поляризации света в кристаллах на 270˚. Также были разработаны такие типы матриц как TFT и IPS.
Именно TFT и IPS матрицы пользуются наибольшим распространением в наше время.
TFT – это Thin Film Transistor. Другими словами – это тонкопленочный транзистор, который управляет пикселем. Толщина такого транзистора составляет 0,1-0,01 микрон. Благодаря этой технологии появилась возможность достичь еще более высокого качества изображения путем управления каждым пикселем.
Технология IPS – это самая новая разработка, позволяющая достичь наивысшего качества изображения. Она предоставляет максимальные углы обзора, однако имеет большее время отклика. То есть медленнее реагирует на изменения напряжения. Однако разница во времени между 5 мс и 14 мс абсолютно не видна.
Теперь вы знаете, как работает ЖК монитор. Однако это еще не все. Существует такое понятие как частота обновления экрана.
Как это работает: поляризация в дисплеях
Лето — прекрасная, яркая и солнечная пора, по крайней мере в теории. Представьте себе, вы собираетесь отправиться в парк или, например, на дачу, надеваете солнцезащитные очки, выходите на улицу, достаете внезапно зазвонивший смартфон и… не видите на экране ровным счетом ничего. Почему? Об этом читайте далее.
Содержание
Нет, с аппаратом все в порядке. Стоит снять очки и изображение возвращается на место, но разглядеть что-либо через любимый полароид невозможно. Даже если выкрутить яркость на максимум, дисплей выглядит темным, фиолетовым или даже совершенно черным. Этому доставляющему неудобства эффекту подвержены самые разные электронные устройства: смартфоны, планшеты, ноутбуки, мониторы и даже банкоматы и аппараты по продаже билетов.
Виноват поляризационный фильтр.
Что такое поляризация?
Наверняка вы слышали о поляризованных солнцезащитных очках, если сами не пользуетесь сами продукцией Polaroid. А задумывались ли вы, что в них особенного, как работает и где еще применяется эффект поляризации?
Вероятно, для вас станет сюрпризом, что поляризационные фильтры встроены практически в каждый дисплей. Убедиться в этом несложно: достаточно надеть хорошие солнцезащитные очки и повертеть в руках смартфон или взглянуть на монитор под углом. Но то, как поляризация связана с эффектом «черного зеркала», возникающего в эти моменты, не понять без дополнительных объяснений.
Ученый расскажет вам, что свет имеет корпускулярно-волновую природу, но это довольно сложная и запутанная концепция. Для объяснения того, что такое поляризационный фильтр и зачем он нужен, достаточно упрощенного объяснения, не подразумевающего серьезной лекции по физике.
Свет проявляет одновременно и свойства потока частиц, и свойства волны. Для наших целей, можно представить, будто он состоит из отдельных фотонов, которые движутся в пространстве колеблясь, будто на гребне волны. Вектор этого изгиба как-то расположен в пространстве. Исходящий от солнца естественный свет раскаленных докрасна тел и других естественных источников состоит из хаотично расположенных волн, в которых не прослеживается закономерностей. Встречаясь с различными отражающими поверхностями, световые волны начинают колебаться более упорядоченно, обычно горизонтально. Таковы, например, блики на поверхности озера или кузове автомобиля.
Что такое поляризационный фильтр?
Поляризационные фильтры поглощают световые волны, которые колеблются вдоль определенной оси, а остальной свет пропускают без препятствий. Еще до того, как явление было описано учеными, в качестве поляризационных фильтров использовали тонкие пластины турмалина. У нас нет достоверных доказательств, но некоторые историки считают, что викинги использовали их для навигации. «Солнечные камни» помогали разглядеть светило сквозь туман и тучи, чтобы определить направление.
Подходящие минералы-поляризаторы, бывшие тогда большой редкостью и высоко ценившиеся, больше не используются в таком качестве. Еще с конца XX века благодаря химии производство линейных поляризаторов, в том числе и для солнечных очков, сильно удешевилось. Сегодня для изготовления поляризационных фильтров применяют пленки на основе особых кристаллов. Обычно в их основе — герапатит или другие сложные соединения йода.
Фильтры поляризующих солнцезащитных очков поглощают горизонтально-ориентированные волны. Изображение становится темнее, но, поскольку через фильтр продолжают проникать вертикально-ориентированные волны, вы по-прежнему можете видеть, а блики уже не так беспокоят.
В некоторых солнцезащитных линзах напротив — поляризационные фильтры блокируют все световые волны, за исключением тех, что ориентированы вертикально. Кроме того, хорошие солнцезащитные очки защищают сетчатку глаза от ультрафиолетовых лучей, так что носить их — хорошая идея.
Поляризация и гаджеты
Проблема в том, что в экранах ваших гаджетов тоже есть поляризационные фильтры. Они — неотъемлемая часть некоторых разновидностей матриц, где такие слои используются для формирования изображения и регулировки яркости, а также выступают в роли антибликовых фильтров. Так, большинство матриц LCD-мониторов подсвечиваются поляризованным светом.
Работают они так же, как и фильтры в солнцезащитных очках, отсекая свет, ориентированный, например, вертикально, и пропуская горизонтальные волны. Беда в том, что когда вы смотрите на такой экран в очках, которые отсекают горизонтальные волны, линзы задержат свет, исходящий от экрана полностью.
Другими словами, если экран излучает горизонтально-ориентированный свет, а ваши солнцезащитные очки блокируют все, кроме вертикально-ориентированного света, фотоны не достигнут глаза, а вы будете созерцать очень темное или полностью черное изображение.
У некоторых устройств этот эффект более выражен, чем у других. Как правило, прослеживается зависимость и, чем раньше выпущен смартфон и чем меньше его стоимость, тем вероятнее вы столкнетесь с описанной проблемой.
Во многих гаджетах высокого класса эту проблему успешно обходят, например, располагая поляризационные слои под углом в 45 градусов. Так вы не заметите поляризационных фильтров, даже если будете вглядываться в экран в очках. Примером могут служить нынешние поколения iPhone, iPad и смартфонов Google Pixel. К счастью, даже если экран, на который вы смотрите, полностью черный, снимать солнцезащитные очки не обязательно, достаточно повернуть устройство на 90 градусов. Поляризационный фильтр дисплея и поляризационный фильтр в очках совпадут по ориентации, и свет сможет добраться до ваших глаз. Проблемы возникнут только в случае с мониторами ПК, многие из которых не поворачиваются в портретный режим.
Вместо заключения
Теперь вы знаете об еще одной маленькой тайне производителей современной электроники. Я продолжу раскрывать их в серии статей из цикла: «как это работает». Пока еще продолжение не вышло, можете поэкспериментировать самостоятельно и выяснить, у экранов каких из ваших устройств есть поляризационные фильтры, и как они расположены. Только не забудьте рассказать о своих открытиях в комментариях.
Поляризационные фильтры в фотографии: практика применения
Содержание
Содержание
Поляризационные фильтры широко используются не только в науке или фотографии. В быту мы с ними тоже сталкиваемся — они есть в жидкокристаллических экранах, некоторые солнцезащитные очки так же могут иметь эффект поляризатора.
Какими бывают поляризационные фильтры
По физическим свойствам поляризационные фильтры делятся на два типа. Линейные широко использовались в пленочной фотографии. Сейчас из-за некоторой несовместимости с цифровыми камерами почти не используются.
Принцип действия линейного поляризатора.
В фотофильтрах используется два поляризатора и внешний установлен на вращающейся оправе. На практике эффект от вращения можно увидеть если посмотреть через солнцезащитные очки с поляризатором на экран смартфона и покрутить его: при одном положении смартфона экран будет очень темным, а при повороте на 90° — максимально ярким.
И раз уж речь зашла об очках. Солнцезащитные очки с поляризацией не только защищают от ультрафиолета и избыточной яркости, но и снижают количество бликов. Особенно хорошо это заметят те, кто много времени проводит у воды и на воде — например, рыбаки. Впрочем, и на снегу в горах от таких очков будет польза. Одно время такие очки рекомендовались и водителям — они действительно снижают блики на лобовом стекле и асфальте, делая картинку четче, но с активным использованием электронных приборов с LCD-экранами можно сесть в авто и не увидеть показаний спидометра или картинки с навигатора. А чтобы увидеть, придется повернуть голову пол определенным углом — это никак не способствует безопасному вождению.
Изменение светопропускания при вращении оправы — основной минус линейных поляризационных фильтров, но именно он позволил создать нейтральные фильтры переменной плотности, позволяющие снимать с длинными выдержками при ярком свете.
Циркулярные поляризационные фильтры (маркируются CPL или Circular PL) лишены этого недостатка — они уменьшают количество света примерно на две ступени независимо от положения вращающейся оправы.
Что дает поляризатор фотографу
Свет при отражении от неметаллических поверхностей поляризуется определенным образом, а поляризационный фильтр вращением оправы позволяет пропускать свет с одним направлением поляризации и задерживать все остальные.
На круговой панораме видно, как меняется яркость неба в зависимости от направления.
Синее небо, облака и зеленая листва часто служат примерами работы поляризационного фильтра. В воздухе содержится много аэрозольных частиц, отражаясь от которых свет поляризуется. Именно поэтому чистое небо часто выглядит бледным на фотографиях. Использование поляризационного фильтра позволяет добиться более глубокого цвета неба и зеленой листвы, а белые облака станут более контрастными. Особенно это хорошо заметно в ясный солнечный день, но только если объектив направлен перпендикулярно солнечным лучам. Такова особенность работы поляризационного фильтра — максимальный эффект достигается перпендикулярно солнечному свету, а минимальный, если объектив направлен параллельно солнечным лучам.
Более темное небо на правой стороне правого кадра подскажет, где использовался CPL-фильтр.
Если небо, снятое без фильтра, ярче только в направлении солнца, то с использованием фильтра хорошо заметны затемнения в плоскости, перпендикулярной направлению солнечных лучей, и изменившиеся отражения на воде.
Пропуская свет с одним направлением поляризации и задерживая со всеми остальными, поляризационный фильтр меняет не только интенсивность света, но и его качество. Поэтому эффект от его использования невозможно повторить в графическом редакторе. Если с контрастом и тоном неба или листвы еще можно что-то сделать, то с отражениями в стекле и воде вариантов уже нет.
Два соседних кадра: одна экспозиция и одинаковые параметры конвертации из RAW, все отличия только в повороте оправы поляризационного фильтра.
И снова между кадрами поворот оправы на 90° — как инструмент, контролирующий отражения, поляризационный фильтр не имеет аналогов.
Поляризационные фильтры одни из самых дорогих, поэтому если вы хотите снимать с ними на разные объективы, купите фильтр с диаметром резьбы под самый большой ваш объектив, а на остальные устанавливайте его с помощью переходных колец — не так удобно, но зато экономно.
При съемке через стекло так же, как и на примере выше, свет, отраженный от стекла, и свет, отраженный от предметов за стеклом, имеют разную поляризацию и вращая оправу фильтра можно контролировать то, что зафиксирует матрица фотоаппарата.
Слева снимок сделан без фильтра, справа — с CPL фильтром.
Поляризаторы незаменимы при работе с отражениями, но они не работают при съемке металла и отражениях от металлических поверхностей. В пейзажах они могут помочь прорисовать облака, сделать насыщеннее небо и зелень листвы в определенных условиях, но при съемке панорам или на широкоугольный объектив фильтры добавят темные переходы, которые никак не украсят картинку. А вот съемка через стекло или воду с этим фотоаксессуаром добавит немало интересных кадров в ваше портфолио.