Что такое подсеть сети
Как понять правильно IP- адреса и подсети маски?
Купить FS коммутатор L3
IP-адреса: о сетях и хостах
IP-адрес-это логический числовой адрес, присваиваемый каждому компьютеру, принтеру, Gigabit Ethernet коммутатору, маршрутизатору или любому другому устройству в сети на основе TCP/IP, причем каждое из них обладает уникальным IP-адресом. IP-адреса настраиваются либо вручную (статический IP-адрес), либо DHCP-сервером. IP-адрес состоит из 4 байт данных. Байт состоит из 8 бит (бит-это одна цифра, и это может быть только 1 или 0), поэтому у нас есть в общей сложности 32 бита для каждого IP-адреса. Это пример IP-адреса в двоичном формате: 10101100. 00010000. 11111110.00000001. Чтобы упростить дело, десятичное представление обычно используется для создания IP-адреса следующим образом: 172. 16. 254. 1
Что такое подсеть и маска подсети?
Подсеть-это процесс разделения более крупной сети на более мелкие подсети. Мы всегда резервируем IP-адрес для идентификации подсети и еще один для идентификации широковещательного адреса внутри подсети. Подсети разбивают большие сети на мелкие части, что является более эффективным и позволит сохранить большое количество адресов. Поэтому меньшие сети создавали меньшую широковещательную передачу, которая генерировала меньший широковещательный трафик. Кроме того, подсеть также упрощает устранение неполадок, изолируя сетевые проблемы вплоть до их конкретного существования.
Как работают IP-адрес и маска подсети?
В конфигурации TCP/IP мы не можем определить, используется ли часть IP-адреса в качестве сетевого или хост-адреса, если не получим дополнительную информацию из таблицы масок подсети. Если пример маски подсети равен 255.255.255.0, а поскольку 255 в двоичной системе счисления равно 11111111, то маска подсети равна:
Выстраивая IP-адрес и маску подсети вместе, сетевая и хост-части адреса могут быть разделены:
Первые 24 бита идентифицируются как сетевой адрес, а последние 8 бит (оставшиеся нули в маске подсети) идентифицируются как адрес хоста. Это дает вам следующее:
Итак, теперь вы знаете, что для этого примера с использованием маски подсети 255.255.255.0 сетевой адрес равен 192.168.123.0, а адрес хоста равен 0.0.0.132. Когда пакет поступает в подсеть 192.168.123.0 и имеет адрес назначения 192.168.123.132, ваш компьютер получает его из сети и обрабатывает.
Получить сетевой адрес из IP-адреса и маски подсети
Пример 1:
На рисунке ниже первые три части IP-адреса принадлежат IP-сети, которая определяется маской подсети. 0-это самый низкий адрес, доступный в четвертой части IP-адреса. Таким образом, компьютер принадлежит к IP-сети 101.102.103.0. Четвертая часть (.5) IP-адрес показывает, какой адрес хоста компьютер использует в IP-сети.
Пример 2:
Аналогично, следующий компьютер ниже принадлежит к IP-сети 211.139.157.0. Он использует адрес хоста 9 в IP-сети, и его IP-адрес равен 211.139.157.9
Что такое подсети и как они влияют на мою сеть? — CloudSavvy ИТ
Подсети — это способ разделить сеть на более мелкие части. Это значительно упрощает управление и маршрутизацию большой сети, ARP трафик и может использоваться для разделения сети на частные контейнерные подсети.
Что такое подсеть?
Допустим, у вас многоэтажное офисное здание с множеством устройств на каждом этаже. Их наличие в одной сети может привести к засорению труб, особенно при постоянном ARP трафик для физического соединения между устройствами.
Вместо этого более разумным решением было бы разделить каждый этаж на отдельную сеть. Самый простой способ сделать это — разделить IP-адрес на две части, первая из которых используется для идентификации подсети (т.е. этажа здания), а вторая — для идентификации идентификатора хоста (имя компьютера на этом этаже). ):
В этом примере 192.168.1.4 представляет четвертый компьютер на первом этаже, 192.168.5.2 стоит второй компьютер на пятом этаже и так далее. Технически « 192.168 »- это идентификатор сети, а не идентификатор подсети, поскольку он одинаков для всех частных подсетей, но фактически представляет одно и то же.
Под капотом это делается с помощью так называемой битовой маски, часто называемой «маской подсети». Маска подсети определяет, какие части IP-адреса являются идентификатором подсети, а какие — идентификатором хоста. Все, что является « 1 »- это идентификатор подсети, а все, что является« 0 ”- это идентификатор хоста.
Назначение последнего байта идентификатору хоста позволяет использовать 256 хостов в подсети, исключая 192.168.1.255 (широковещательный адрес) и 192.168.1.0 (используется для представления самой сети). Это адреса «все единицы» и «все нули».
Зачем нужны подсети?
Подсети используются для управления блоками адресов. Если ваша сеть достаточно большая, это замедлит работу всех ваших устройств в одной сети. Разделение их на аппаратном уровне — вот где нужны подсети.
На самом деле так устроен весь Интернет, поэтому легче представить себе это таким образом. Возьмем, к примеру, обычный домашний маршрутизатор. Он имеет общедоступный IP-адрес, назначенный ему интернет-провайдером, который является уникальным для этого устройства. Вы можете получить доступ к домашнему маршрутизатору из любой точки мира, перейдя на этот IP-адрес в своем браузере.
Именно поэтому вам нужно перенести маршрутизаторы с переадресацией, чтобы открывать устройства в Интернете. Ваш маршрутизатор не знает, что вы используете сервер Minecraft на порту 25565, пока вы не сообщите ему, что это так, и что он должен перенаправлять все соединения на этом порту вам, а не обрабатывать его самостоятельно.
Интернет — это особый случай, поскольку количество адресов ограничено, и вы должны использовать эту схему публично-частных адресов. Частные адреса фактически зарезервированы для публичного использования; следующие адреса используются только для частных устройств:
С другим уровнем подсетей у вас не будет больше устройств за шлюзом, так как каждому устройству нужен уникальный частный IP-адрес. Но вы по-прежнему разделяете устройства на аппаратном уровне; в этом примере, если компьютер внизу ( 192.168.1.2 ) хочет поговорить с компьютером наверху ( 192.168.2.3 ) в другой подсети, он должен выйти из шлюза по умолчанию для своей собственной подсети и пройти через шлюз для подсети назначения.
Это тот тип подсетей, который вы можете использовать, и хотя у вас нет преимуществ частных IP-адресов, у вас все еще есть более 16 миллионов адресов для работы. При этом вы можете создать 65 536 подсетей с 254 хостами в каждой, что заполнит грузовик, полный маршрутизаторов.
Что такое блоки CIDR?
Вместо того, чтобы включать всю маску подсети при ее записи, вы можете использовать сокращение, называемое Обозначение CIDR. В этой нотации вы помещаете косую черту после IP, за которой следует количество битов, используемых для маски подсети (поскольку это всегда ряд единиц слева направо). Например, маска подсети 255.255.255.0 использует 24 бита единиц, так что это будет:
Это позволяет легко узнать, какие числа являются идентификаторами подсети и насколько велика подсеть. Блоки CIDR большего размера имеют меньшие номера. Вы можете просмотреть их полный список здесь, в Википедии.
Блок CIDR 0.0.0.0/0 это специальная подсеть, которая используется для представления пула всех доступных адресов. Используется как подстановочный знак для соответствия любому адресу; например, установка порта брандмауэра открытым для 0.0.0.0/0 откроет его кому угодно.
Подсети могут использоваться для частных и общедоступных сетей. В предыдущем примере офисному зданию может быть присвоен публичный IP-адрес. 173.123.10.55 Интернет-провайдером. Это адресовано на выходном конце здания. шлюз по умолчанию, который он использует для маршрутизации трафика за пределы здания. Этот IP-адрес полностью уникален и был назначен интернет-провайдером, которому был предоставлен блок CIDR для распределения среди своих клиентов. Таким образом, весь Интернет разделен блоками разного размера, используемыми для маршрутизации между странами, штатами, городами и т. Д.
Но внутри здания устройства могут связываться друг с другом, используя свой частный IP-адрес, обычно в диапазоне 192.168.0.0/16 (65 536 адресов) или 10.0.0.0/8 (более 16 миллионов адресов). При необходимости их можно разделить на более мелкие подсети.
Как это влияет на конфигурацию моей сети?
Если вы используете кабель для большого офисного здания, вам обязательно нужно учитывать подсети. Следует отметить, что для широковещательного и сетевого адреса необходимо зарезервировать два адреса. Например, если вашему клиенту нужно десять подсетей по 20 компьютеров в каждой, вам действительно нужно выделить подсети размером 22. Но если вы не распределяете общедоступные подсети, у вас, вероятно, будет масса возможностей для маневра с частным IP-адресом. адреса.
Если вы арендуете облачные серверы, ваши серверы, скорее всего, будут работать в подсети. Это обычно называется «виртуальное частное облако, ”Поскольку все ваши серверы могут общаться друг с другом, используя свои частные IP-адреса, но не могут получить доступ к частным серверам в других VPC. Фактическая сегментация выполняется через подсети и обычно управляется за вас, но вы можете воспользоваться такими услугами, как AWS VPC которые позволяют создавать собственные подсети на платформе AWS. Скорее всего, вам не придется заниматься сетью самостоятельно, хотя знание нотации CIDR поможет вам понять размеры подсети.
IP-адресация и создание подсетей для новых пользователей
Об этом переводе
Этот документ был переведен Cisco с помощью машинного перевода, при ограниченном участии переводчика, чтобы сделать материалы и ресурсы поддержки доступными пользователям на их родном языке. Обратите внимание: даже лучший машинный перевод не может быть настолько точным и правильным, как перевод, выполненный профессиональным переводчиком. Компания Cisco Systems, Inc. не несет ответственности за точность этих переводов и рекомендует обращаться к английской версии документа (ссылка предоставлена) для уточнения.
Содержание
Введение
В этом документе приведена основная информация, необходимая для настройки маршрутизатора для IP-маршрутизации, в том числе сведения о повреждении адресов и работе подсетей. Здесь содержатся инструкции по настройке для каждого интерфейса маршрутизатора IP-адреса и уникальной подсети. Приведенные примеры помогут объединить все сведения.
Предварительные условия
Требования
Рекомендуется иметь хотя бы базовое представление о двоичной и десятичной системах счисления.
Используемые компоненты
Настоящий документ не имеет жесткой привязки к каким-либо конкретным версиям программного обеспечения и оборудования.
Сведения, представленные в этом документе, были получены от устройств, работающих в специальной лабораторной среде. Все устройства, описанные в этом документе, были запущены с чистой (стандартной) конфигурацией. В рабочей сети необходимо изучить потенциальное воздействие всех команд до их использования.
Дополнительные сведения
Если определения помогают вам, воспользуйтесь следующими терминами словаря, чтобы начать работу:
Подсеть — это часть сети, в которой совместно используется определенный адрес подсети.
Интерфейс — сетевое подключение.
Если уже имеются адреса в Интернете, официально полученные из центра сетевой информации InterNIC, то можно приступать к работе. Если подключение к Интернету не планируется, настоятельно рекомендуется использовать зарезервированные адреса, как описано в документе RFC 1918.
Изучение IP-адресов
IP-адрес — это адрес, который используется для уникальной идентификации устройства в IP-сети. Адрес состоит из 32 двоичных разрядов и с помощью маски подсети может делиться на часть сети и часть главного узла. 32 двоичных разряда разделены на четыре октета (1 октет = 8 битов). Каждый октет преобразуется в десятичное представление и отделяется от других октетов точкой. Поэтому принято говорить, что IP-адрес представлен в десятичном виде с точкой (например, 172.16.81.100). Значение в каждом октете может быть от 0 до 255 в десятичном представлении или от 00000000 до 11111111 в двоичном представлении.
Ниже приведен способ преобразования двоичных октетов в десятичное представление: Самый правый бит (самый младший разряд) октета имеет значение 20. Расположенный слева от него бит имеет значение 21. И так далее — до самого левого бита (самого старшего разряда), который имеет значение 27. Таким образом, если все двоичные биты являются единицами, эквивалентом в десятичном представлении будет число 255, как показано ниже:
Ниже приведен пример преобразования октета, в котором не все биты равны 1.
В этом примере показан IP-адрес, представленный в двоичном и десятичном форматах.
Эти октеты разделены таким образом, чтобы обеспечить схему адресации, которая может использоваться как для больших, так и для малых сетей. Существует пять различных классов сетей: от A до E (используются буквы латинского алфавита). Этот документ посвящен классам от A до C, поскольку классы D и E зарезервированы и их обсуждение выходит за рамки данного документа.
Примечание: Также обратите внимание, что сроки «Класс A, Класс B» и так далее используется в этом документе, чтобы помочь упрощать понимание IP-адресации и выделения подсети. Эти термины фактически уже не используются в промышленности из-за введения бесклассовой междоменной маршрутизации (CIDR).
Класс IP-адреса может быть определен из трех старших разрядов (три самых левых бита первого октета). На рис. 1 приведены значения трех битов старшего разряда и диапазон адресов, которые попадают в каждый класс. Для справки показаны адреса классов D и Е.
Рисунок 1
В адресе класса A первый октет представляет собой сетевую часть, поэтому пример класса A на рис. 1 имеет основной сетевой адрес 1.0.0.0 – 127.255.255.255. Октеты 2,3 и 4 (следующие 24 бита) предоставлены сетевому администратору, который может разделить их на подсети и узлы. Адреса класса A используются в сетях с количеством узлов, превышающим 65 536 (фактически до 16777214 узлов!)!.
В адресе класса B два первых октета представляют собой сетевую часть, поэтому пример класса B на рис. 1 имеет основной сетевой адрес 128.0.0.0 – 191.255.255.255. Октеты 3 и 4 (16 битов) предназначены для локальных подсетей и узлов. Адреса класса B используются в сетях с количеством узлов от 256 до 65534.
В адресе класса C первые три октета представляют собой сетевую часть. Пример класса C на рис. 1 имеет основной сетевой адрес 192.0.0.0 – 223.255.255.255. Октет 4 (8 битов) предназначен для локальных подсетей и узлов. Этот класс идеально подходит для сетей, в которых количество узлов не превышает 254.
Маски сети
Маска сети позволяет определить, какая часть адреса является сетью, а какая часть адреса указывает на узел. Сети класса A, B и C имеют маски по умолчанию, также известные как естественные маски:
IP-адрес в сети класса A, которая не была разделена на подсети, будет иметь пару «адрес/маска», аналогичную: 8.20.15.1 255.0.0.0. Чтобы понять, как маска помогает идентифицировать сетевую и узловую части адреса, преобразуйте адрес и маску в двоичный формат.
Когда адрес и маска представлены в двоичном формате, идентификацию сети и хоста выполнить гораздо проще. Все биты адреса, для которых соответствующие биты маски равны 1, представляют идентификатор сети. Все биты адреса, для которых соответствующие биты маски равны 0, представляют идентификатор узла.
Изучение организации подсетей
Подсети позволяют создавать несколько логических сетей в пределах одной сети класса А, В или С. Если не использовать подсети, то можно будет использовать только одну сеть из сети класса A, B или C, что представляется нереалистичным.
Каждый канал передачи данных в сети должен иметь уникальный идентификатор сети, при этом каждый узел в канале должен быть членом одной и той же сети. Если разбить основную сеть (класс A, B или C) на небольшие подсети, это позволит создать сеть взаимосвязанных подсетей. Каждый канал передачи данных в этой сети будет иметь уникальный идентификатор сети или подсети. Какое-либо устройство или шлюз, соединяющее n сетей/подсетей, имеет n различных IP-адресов — по одному для каждой соединяемой сети/подсети.
Чтобы организовать подсеть в сети, расширьте обычную маску несколькими битами из части адреса, являющейся идентификатором хоста, для создания идентификатора подсети. Это позволит создать идентификатор подсети. Пусть, например, используется сеть класса C 204.17.5.0, естественная сетевая маска которой равна 255.255.255.0. Подсети можно создать следующим образом:
Расширение маски до значения 255.255.255.224 произошло за счет трех битов (обозначенных «sub») исходной части узла в адресе, которые были использованы для создания подсетей. С помощью этих трех битов можно создать восемь подсетей. Оставшиеся пять битов идентификаторов хоста позволяют каждой подсети содержать до 32 адресов хостов, 30 из которых фактически можно присвоить устройствам, поскольку идентификаторы хостов, состоящие из одних нулей или одних единиц, не разрешены (это очень важно, запомните это). С учетом всех изложенных факторов были созданы следующие подсети.
Примечание. Существует два метода обозначения этих масок. Первый: поскольку используется на три бита больше, чем в обычной маске класса C, можно обозначить эти адреса как имеющие 3-битовую маску подсети. Вторым методом обозначения маски 255.255.255.224 является /27, поскольку в маске задано 27 битов. Второй способ используется с методом адресации CIDR. При использовании данного способа одна из этих сетей может быть описана с помощью обозначения префикса или длины. Например, 204.17.5.32/27 обозначает сеть 204.17.5.32 255.255.255.224. Если применяется, записи префикса/длины используются для обозначения маски на протяжении этого документа.
Схема разделения на подсети в этом разделе позволяет создать восемь подсетей, и сеть может выглядеть следующим образом:
Рис. 2
Обратите внимание, что каждый из маршрутизаторов на рис. 2 подключен к четырем подсетям, причем одна подсеть является общей для обоих маршрутизаторов. Кроме того, каждый маршрутизатор имеет IP-адрес в каждой подсети, к которой он подключен. Каждая подсеть может поддерживать до 30 адресов узлов.
Из этого можно сделать важный вывод. Чем больше битов используется для маски подсети, тем больше доступно подсетей. Однако чем больше доступно подсетей, тем меньше адресов узлов доступно в каждой подсети. Например, в сети класса C 204.17.5.0 при сетевой маске 255.255.255.224 (/27) можно использовать восемь подсетей, в каждой из которых будет содержаться 32 адреса узлов (30 из которых могут быть назначены устройствам). Если использовать маску 255.255.255.240 (/28), разделение будет следующим:
Поскольку теперь имеются четыре бита для создания подсетей, остаются только четыре бита для адресов узлов. В этом случае можно использовать до 16 подсетей, в каждой из которых может использоваться до 16 адресов узлов (14 из которых могут быть назначены устройствам).
Посмотрите, как можно разделить на подсети сеть класса B. Если используется сеть 172.16.0.0, то естественная маска равна 255.255.0.0 или 172.16.0.0/16. При Расширение маски до значения выше 255.255.0.0 означает разделение на подсети. Можно быстро понять, что можно создать гораздо больше подсетей по сравнению с сетью класса C. Если использовать маску 255.255.248.0 (/21), то сколько можно создать подсетей и узлов в каждой подсети?
Вы можете использовать для подсетей пять битов из битов оригинального хоста. Это позволяет получить 32 подсети (25). После использования пяти битов для подсети остаются 11 битов, которые используются для адресов узлов. Это обеспечивает в каждой подсети 2048 адресов хостов (211), 2046 из которых могут быть назначены устройствам.
Примечание. В прошлом существовали ограничения на использования подсети 0 (все биты подсети равны нулю) и подсети «все единицы» (все биты подсети равны единице). Некоторые устройства не разрешают использовать эти подсети. Устройства Cisco Systems позволяют использование этих подсетей когда ip subnet zero команда настроена.
Примеры
Упражнение 1
После ознакомления с концепцией подсетей, примените новые знания на практике. В этом примере предоставлены две комбинации «адрес/маска», представленные с помощью обозначения «префикс/длина», которые были назначены для двух устройств. Ваша задача — определить, находятся эти устройства в одной подсети или в разных. С помощью адреса и маски каждого устройства можно определить, к какой подсети принадлежит каждый адрес.
Определим подсеть для устройства DeviceA:
Рассмотрение битов адресов, соответствующие биты маски для которых равны единице, и задание всех остальных битов адресов, равными нулю (аналогично выполнению логической операции И между маской и адресом), покажет, к какой подсети принадлежит этот адрес. В рассматриваемом случае устройство DeviceA принадлежит подсети 172.16.16.0.
Определим подсеть для устройства DeviceB:
Следовательно, устройства DeviceA и DeviceB имеют адреса, входящие в одну подсеть.
Пример упражнения 2
Рис. 3
Анализируя показанную на рис. 3 сеть, можно увидеть, что требуется создать пять подсетей. Самая большая подсеть должна содержать 28 адресов узлов. Возможно ли это при использовании сети класса C? И если да, то каким образом следует выполнить разделение на подсети?
Можно начать с оценки требования к подсетям. Чтобы создать пять подсетей, необходимо использовать три бита из битов узла класса C. Два бита позволяют создать только четыре подсети (22).
Так как понадобится три бита подсети, для части адреса, отвечающей за узел, останется только пять битов. Сколько хостов поддерживается в такой топологии? 25 = 32 (30 доступных). Это отвечает требованиям.
Следовательно, можно создать эту сеть, используя сеть класса C. Пример назначения подсетей:
Пример VLSM
Следует обратить внимание на то, что в предыдущих примерах разделения на подсети во всех подсетях использовалась одна и та же маска подсети. Это означает, что каждая подсеть содержала одинаковое количество доступных адресов узлов. Иногда это может понадобиться, однако в большинстве случаев использование одинаковой маски подсети для всех подсетей приводит к неэкономному распределению адресного пространства. Например, в разделе «Пример упражнения 2» сеть класса C была разделена на восемь одинаковых по размеру подсетей; при этом каждая подсеть не использует все доступные адреса хостов, что приводит к бесполезному расходу адресного пространства. На рис. 4 иллюстрируется бесполезный расход адресного пространства.
Рис. 4
Маски подсетей переменной длины (VLSM) позволяют использовать различные маски для каждой подсети, что дает возможность более рационально распределять адресное пространство.
Пример VLSM
Определите, какую маску подсети следует использовать, чтобы получить требуемое количество узлов.
Самым простым способом разделения на подсети является назначение сначала самой большой подсети. Например, подсети можно задать следующим образом:
Графическое представление приведено на рис. 5:
Рис. 5
Маршрутизация CIDR
Бесклассовая междоменная маршрутизация (CIDR) была предложена в целях улучшения использования адресного пространства и масштабируемости маршрутизации в Интернете. Необходимость в ней появилась вследствие быстрого роста Интернета и увеличения размера таблиц маршрутизации в маршрутизаторах сети Интернет.
CIDR переезжает от традиционных классов IP (Класс A, Класс B, Класс C, и так далее). IP-сеть представлена префиксом, который является IP-адресом, и каким-либо обозначением длины маски. Длиной называется количество расположенных слева битов маски, которые представлены идущими подряд единицами. Так сеть 172.16.0.0 255.255.0.0 может быть представлена как 172.16.0.0/16. Кроме того, CIDR служит для описания иерархической структуры сети Интернет, где каждый домен получает свои IP-адреса от более верхнего уровня. Это позволяет выполнять сведение доменов на верхних уровнях. Если, к примеру, поставщик услуг Интернета владеет сетью 172.16.0.0/16, то он может предлагать своим клиентам сети 172.16.1.0/24, 172.16.2.0/24 и т. д. Однако при объявлении своего диапазона другим провайдерам ему достаточно будет объявить сеть 172.16.0.0/16.
Специальные подсети
31-разрядные Подсети
30-битная маска подсети допускает четыре IPv4 адреса: два адреса узла, одна сеть с нулями и один широковещательный адрес с единицами. Двухточечное соединение может иметь только два адреса узла. Нет реальной необходимости иметь широковещательные и нулевые адреса с каналами «точка-точка». 31-битная маска подсети допускает ровно два адреса узла и исключает широковещательные и нулевые адреса, таким образом сохраняя использование IP-адресов до минимума для двухточечных соединений.
Маска 255.255.255.254 или/31.
Подсеть/31 может использоваться в реальных двухточечных соединениях, таких как последовательные интерфейсы или интерфейсы POS. Однако они также могут использоваться в широковещательных интерфейсах, таких как интерфейсы Ethernet. В этом случае убедитесь, что в этом сегменте Ethernet требуется только два IPv4 адреса.
Пример
192.168.1.0 и 192.168.1.1 находятся на подсети 192.168.1.0/31.
Предупреждение печатается, так как gigabitEthernet является широковещательным сегментом.
32-разрядные Подсети
Маска подсети 255.255.255.255 (a/32 subnet) описывает подсеть только с одним IPv4 адресом узла. Эти подсети не могут использоваться для назначения адресов сетевым каналам связи, поскольку им всегда требуется более одного адреса на канал. Использование/32 строго зарезервировано для использования на каналах, которые могут иметь только один адрес. Примером для маршрутизаторов Cisco является интерфейс обратной связи. Эти интерфейсы являются внутренними и не подключаются к другим устройствам. Таким образом, они могут иметь подсеть/32.
Пример
Приложение
Пример конфигурации
Маршрутизаторы A и B соединены через последовательный интерфейс.