Что такое перетоки в электросетях
Переток электрической энергии (мощности)
Источник:
«ДОГОВОР ОБ ОБЕСПЕЧЕНИИ ПАРАЛЛЕЛЬНОЙ РАБОТЫ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ ГОСУДАРСТВ-УЧАСТНИКОВ СОДРУЖЕСТВА НЕЗАВИСИМЫХ ГОСУДАРСТВ»
Смотреть что такое «Переток электрической энергии (мощности)» в других словарях:
внешний переток электрической энергии (мощности) — Максимально возможная по системным ограничениям величина сальдо перетоков электрической энергии (мощности) в определенную зону. [ОАО РАО «ЕЭС России» СТО 17330282.27.010.001 2008] Тематики экономика EN maximum external power inflow … Справочник технического переводчика
система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации
СТО 70238424.29.240.01.002-2012: Единая национальная электрическая сеть. Условия поставки электроэнергии для передачи. Нормы и требования — Терминология СТО 70238424.29.240.01.002 2012: Единая национальная электрическая сеть. Условия поставки электроэнергии для передачи. Нормы и требования: 3.1.2 владелец : физическое или юридическое лицо, владеющее правом на производственный объект … Словарь-справочник терминов нормативно-технической документации
ГОСТ 21027-75: Системы энергетические. Термины и определения — Терминология ГОСТ 21027 75: Системы энергетические. Термины и определения оригинал документа: 24. Аварийный резерв мощности энергосистемы Аварийный резерв мощности Резерв мощности, необходимый для восполнения аварийного понижения генерирующей… … Словарь-справочник терминов нормативно-технической документации
Поставки электроэнергии в Финляндию — Дешевые и стабильные[1] поставки электроэнергии в Финляндию проект по продаже электрической энергии, вырабатываемой ЛАЭС в Финляндию. Проект осуществляется ОАО «ФСК ЕЭС» и предполагающая ежегодный трансфер около 1000 мегаватт. Финляндия является… … Википедия
Сургутская ГРЭС-2 — У этого термина существуют и другие значения, см. Сургутская ГРЭС. Сургутская ГРЭС 2 … Википедия
Линия электропередачи — Линии электропередачи … Википедия
Высоковольтная линия постоянного тока — (HVDC) используется для передачи больших электрических мощностей по сравнению с системами переменного тока. При передаче электроэнергии на большие расстояния устройства системы HVDC менее дороги и имеют более низкие электрические потери. Даже при … Википедия
Балаковская АЭС — Балаковская АЭС … Википедия
ВВЭР-1000 — Монтаж корпуса реактора ВВЭР 1000 на Балаковской АЭС Тип реактора водо водяной … Википедия
Перетоки мощности
нормальные (наибольший допустимый переток называется максимально допустимым);
Смотреть что такое «Перетоки мощности» в других словарях:
перетоки обменной мощности — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN interchange power flows … Справочник технического переводчика
балансовые перетоки — 3.1.4 балансовые перетоки : Перетоки, включаемые в приходную или расходную часть баланса и показывающие, какая часть недостающей мощности может быть получена дефицитными энергосистемами, а какая отдана избыточными при оптимальном развитии… … Словарь-справочник терминов нормативно-технической документации
Загорская ГАЭС — Загорская ГАЭС … Википедия
Электрическая подстанция — ОРУ подстанции 110/35/6 кВ, г. Лянтор … Википедия
Контролируемое сечение в электроэнергетике — Контролируемое сечение совокупность линий электропередачи (ЛЭП) и других элементов электрической сети, определяемых диспетчерскими центрами системных операторов, перетоки мощности по которым контролируются в целях обеспечения устойчивой работы,… … Официальная терминология
Сечение — – совокупность таких сетевых элементов одной или нескольких связей, отключение которых приводит к полному разделению энергосистемы на две изолированные части. Применяется также понятие «частичное сечение» – совокупность сетевых элементов (часть… … Коммерческая электроэнергетика. Словарь-справочник
СТО 70238424.29.240.01.001-2012: Единая национальная электрическая сеть. Условия развития. Нормы и требования — Терминология СТО 70238424.29.240.01.001 2012: Единая национальная электрическая сеть. Условия развития. Нормы и требования: 3.1.4 балансовые перетоки : Перетоки, включаемые в приходную или расходную часть баланса и показывающие, какая часть… … Словарь-справочник терминов нормативно-технической документации
Природный газ — (Natural gas) Природный газ это один из самых распространенных энергоносителей Определение и применение газа, физические и химические свойства природного газа Содержание >>>>>>>>>>>>>>> … Энциклопедия инвестора
Единая национальная (общероссийская) электрическая сеть — комплекс электрических сетей и иных объектов электросетевого хозяйства, обеспечивающих устойчивое снабжение электрической энергией потребителей, функционирование оптового рынка, а также параллельную работу российской электроэнергетической системы … Википедия
Газогидродинамические исследования — пластов и скважин (a. gas hydrodynamic investigations of seams and wells; н. gashydrodynamische Untersuchungen von Flozen und Bohrlochern; ф. etudes hudrodynamiques du gaz dans les couches et les trous de forage; и. investigaciones… … Геологическая энциклопедия
Расчет потерь электроэнергии в электросетях
Чтобы понять, что представляют собой потери электроэнергии в электрических сетях, потребуется разобраться с самой системой электроснабжения. Она состоит из ряда конструктивных элементов, каждый из которых в определенных условиях вносит вклад в непроизводительные издержки. Кроме того, они могут быть связаны с необходимостью удовлетворения собственных потребностей на вспомогательное оборудование подстанций. Из этого следует вывод, что без потерь в электрических цепях обойтись практически невозможно.
Виды и структура
Примерная структура потерь
Потери в электросетях с точки зрения энергосбережения – это разница между отпущенным поставщиком объемом электричества и той энергией, которую по факту получает потребитель. С целью нормирования и подсчета их реальной величины была принята следующая классификация:
Второй фактор – коммерческий – обычно увязывается с такими неустранимыми причинами, как погрешность приборов, измеряющих контролируемые параметры. В нем также учитывается ряд нюансов, касающихся ошибочных снятий показаний по потреблению и хищений энергии.
Проведенные исследования убедительно доказывают, что максимальный уровень издержек приходится на передачу энергии высоковольтными линиями ЛЭП (до 64 процентов).
Коронный разряд на линии ЛЭП
Большую их часть составляют расходы на ионизацию воздуха из-за коронарного разряда (17%). Фактическими называют потери, которые были определены в самом начале – разница между отпущенным продуктом и его потребленным объемом. При их упрощенном расчете иногда две описанные составляющие просто складываются. Однако на практике техника вычисления этого показателя оказывается несколько иной. Для его определения применяется проверенная временем методика расчета потерь в проводах с учетом всех остальных компонентов.
Фактическая их величина согласно специальной формуле равна притоку энергии в сеть за минусом следующих составляющих:
Затем полученный результат делится на поступающий в сеть объем электроэнергии минус потребление в нагрузках, где потери отсутствуют, минус перетоки и собственные нужды. На завершающем этапе расчетной операции итоговая цифра умножается на 100%. Если требуется получить результат в абсолютных значениях, при использовании этого метода ограничиваются расчетами одного только числителя.
Определение нагрузки, обходящейся без непроизводительных расходов (перетоки)
В рассмотренной ранее формуле введено понятие нагрузки без потерь, определяемой посредством приборов коммерческого учета, устанавливаемых на подстанциях. Любое предприятие или государственная организация самостоятельно оплачивают потери в электрической сети, фиксируемые отдельным счетчиком в точке подключения. «Перетоки» также относят к категории расходов энергии без потерь (так удобнее вести расчет). Под ними понимается та ее часть, которая из одной энергосистемы перенаправляется в другую. Для учета этих объемов также применяются отдельные измерительные приборы.
Собственные нужды
Потери в силовых трансформаторах подстанции
Собственные нужды обычно относят к особой категории, классифицируемой как фактические потери. В этом показателе принято фиксировать затраты на поддержание работоспособности следующих объектов:
Каждая из статей входит в итоговую сумму в пропорции, нормируемой для данного вида потребителя.
Самый весомый вклад вносят районные подстанции, поскольку в них размещается основное обслуживающее оборудование. Оно обеспечивает нормальные режимы эксплуатации узлов, ответственных за преобразование электроэнергии, а также ее доставку к потребителю.
Зарядное помещение для тяговых АКБ
Для фиксации величины этих затрат на подстанциях устанавливаются собственные приборы учета.
Список потребителей, традиционно относящихся к рассматриваемой категории:
К этому же типу оборудования относят приспособления и инструменты, используемые для проведения ремонтных работ, а также при восстановлении вспомогательной аппаратуры.
Коммерческая составляющая
Отсутствие контроля работы приборов учета приводят к неучтенным хищениям электроэнергии
В первую очередь эта составляющая касается характеристик приборов учета, принадлежащих конечным потребителям (их погрешности, в частности). Для снижения этого типа потерь разработан ряд конкретных мер, успешно применяемых на практике. К категории коммерческих относят не только ошибки при выписывании счетов конкретному потребителю, но и неучтенные хищения электроэнергии. В первом случае они чаще всего возникают по следующим причинам:
Характерные ошибки, вызванные спорным определением границ балансовой принадлежности объекта, решаются в порядке, установленном законодательством РФ.
Проблема хищений с трудом решается во всех цивилизованных странах. Эти противозаконные действия постоянно пресекаются соответствующими органами, дела по ним направляются в местные судебные инстанции. Пик таких хищений традиционно приходится на зимнюю пору и именно в тех регионах страны, где бывают проблемы с централизованным теплоснабжением.
Основные причины утечек электроэнергии
Большая часть энергии, произведенная трансформатором, рассеивается
Грамотный подход к расчету потерь электроэнергии подразумевает учет причин, по которым они возникают. При исследовании проблемы следует разделять источники непроизводительных расходов в соответствии с уже знакомой классификацией. Начать следует с технической составляющей, которую обычно увязывают с такими элементами:
У любого силового трансформатора имеется несколько обмоток, каркас которых крепится на ферромагнитном сердечнике. В нем и теряется большая часть электроэнергии, трансформируемой в тепло (оно затем просто рассеивается в пространство).
На величину потерь в различных элементах электросети также влияет режим ее работы: холостой ход или «под нагрузкой». В первом случае они оцениваются как постоянные, не зависящие от внутренних и сторонних факторов. При подключении потребителя уровень потерь зависит от величины нагрузочного тока в цепи, который каждый день меняется. Поэтому для его оценки проводятся статические наблюдения за определенный период (за месяц, например).
Потери в ВВ линиях электропередач образуются при транспортировке энергоносителя из-за утечек, связанных с коронным разрядом, а также из-за нагрева проводников. К категории обслуживающего оборудования относят установки и приборы, участвующие в генерации, транспортировке, а также в учете и потреблении отпускаемой энергии. Величины сверхнормативных потерь этой категории в основном не меняются со временем или же учитываются посредством электросчетчиков.
Понятие нормативного показателя
Под этим термином понимается подтвержденная на практике и экономически обоснованная величина потерь за определенный промежуток времени. При утверждении норматива учитываются все рассмотренные ранее составляющие, для каждой из которых проводится отдельный анализ. По их результатам вычисляется фактическое (абсолютное) значение и рассматриваются возможные варианты снижения этого показателя.
Нормируемое значение не остается все время постоянным – непрерывно корректируется.
Под абсолютными показателями в данном случае понимается разница между переданной потребителю мощностью и технологическими (переменными) потерями. Нормативные значения для последнего параметра вычисляются по соответствующим формулам.
Кто платит за потери электричества
Чтобы определиться с тем, кто должен оплатить непроизводительные расходы электроэнергии в сети, следует учитывать конкретную ситуацию, а также ряд дополнительных критериев. Когда речь заходит о расходах на восполнение технологических потерь, их оплата ложится на плечи потребителей – частных или юридических лиц.
Она учитывается не напрямую, а закладывается в существующие тарифы.
Каждый потребитель при оплате счетов за электричество рассчитывается с сетевой организацией за всевозможные потери в линиях передач и трансформаторах. В случае с коммерческой составляющей за всякое превышение показателя сверх нормируемого значения платить приходится компании, отпускающей энергоресурс клиенту.
Способы снижения потерь
Сократить непроизводительные расходы удается за счет снижения коммерческой и технологической составляющих суммарных потерь. Во втором случае сделать это можно принятием следующих особых мер:
Указанные меры позволяют заметно снизить суммарное потребление и потери и обеспечить высокое качество напряжения в сети (оно не будет «проседать»).
Методика и пример расчета
Известны следующие методики приблизительного подсчета потерь в линиях электропередач:
С полной информацией об официально утвержденных методиках определения этого параметра можно ознакомиться в соответствующей нормативной документации.
Расчет потерь в силовом трансформаторе
В качестве примера рассмотрим расчет потерь в фидере высоковольтной линии с трансформатором ТП 6-20/04кВ.
При реализации метода оперативного расчета издержек в зависимости от линейного падения напряжения сначала измеряются величины фазных потенциалов на шинах трансформаторной подстанции в самой удаленной точке при максимальной нагрузке. По результатам проведенных измерений узнается абсолютное и относительное снижение DU в процентах: оно берется по отношению к его среднестатистическому фазному значению на шинах 0,4 кВ ТП 6-20.
Потери энергии W в линии напряжением 0,4 кВ (в процентах от отгрузки электроэнергии в сеть) можно узнать по следующей формуле:
W = 0,7 Kн х DU х t /T, где
Выбрав значения параметров для конкретного фидера по одной из выложенных в Интернете таблиц (ТП-4) и подставив их в формулу, с помощью калькулятора получим значение 11,4 процента.
Для фидеров других марок искомую величину технологических потерь удается посчитать с помощью тех же таблиц с приведенными в них данными.
В Интернете широко представлены самые различные методы онлайн расчетов, которыми при необходимости может воспользоваться любой желающий.
О влиянии перетоков реактивной мощности на параметры систем электроснабжения промышленных предприятий
О влиянии перетоков реактивной мощности на параметры систем электроснабжения промышленных предприятий
Содержание
В современных условиях дефицита энергетических ресурсов все более важную роль на промышленных предприятиях приобретают проблемы энергосбережения. Принятый Федеральный закон от 23.11.2009 № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности…» [1] и Энергетическая стратегия России на период до 2030 года [2] призваны обеспечить реализацию на промышленных предприятиях потенциала организационного и технологического энергосбережения.
По данным [2] в настоящее время потенциал энергосбережения в промышленности составляет 13-15 % от общего объема электропотребления. При этом значительная его часть обусловлена высокими потерями электроэнергии в промышленных электрических сетях.
В связи с этим важным направлением энергосбережения на промышленных предприятиях является снижение потерь электроэнергии в электрических сетях. Проведение мероприятий по снижению потерь электроэнергии в электрических сетях промышленных предприятий позволит не только в значительной степени реализовать указанный потенциал энергосбережения, но и получить существенную экономию энергетических ресурсов за счет сокращения объемов непроизводительного расхода электроэнергии.
Значительное влияние на потери электроэнергии в электрических сетях оказывают перетоки реактивной мощности. Поскольку на промышленных предприятиях большинство электроприемников наряду с активной мощностью потребляет также и реактивную (причем в зависимости от характера электроприемников их реактивная нагрузка может составлять до 130 % активной нагрузки [3]), то перетоки реактивной мощности в промышленных электрических сетях могут быть весьма существенными.
Определение соотношений активной и реактивной нагрузками сети
Вместе с тем наличие значительных перетоков реактивной мощности в электрических сетях приводит не только к увеличению потерь электроэнергии, но и к снижению их пропускной способности, увеличению потерь напряжения и др. Рассмотрим более подробно влияние перетоков реактивной мощности в электрических сетях на данные параметры систем электроснабжения промышленных предприятий.
Полный ток I, потери мощности ΔР и потери напряжения ΔU в элементах электрической сети связаны с активной и реактивной нагрузками сети следующими соотношениями [3,4]:
Из формул (1) — (3) следует:
Определим долю значения П, обусловленную передачей по сети реактивной мощности, по формуле:
Подставив в (4) значения параметров I, ΔР и ΔU, определенные по формулам (1) — (3), и произведя соответствующие преобразования, получим:
На рисунке 1 приведены графики зависимости d = f(tgϕ), построенные по результатам расчетов dI, dΔР и dΔU, выполненных по формулам (5) — (7) при различных значениях коэффициента реактивной мощности характеризующего соотношение потребления активной и реактивной мощности отдельными электроприемниками (группой электроприемников).
Представленные графики зависимости отражают характер изменения dI, dΔР и dΔU при изменении величины реактивной мощности, передаваемой по сети.
Из графика зависимости dI = f(tgϕ) (кривая 1) следует:
График зависимости dΔР = f(tgϕ) (кривая 2) показывает:
Из графика зависимости dΔU = f(tgϕ) (кривая 3) следует:
Основные выводы на основании приведенных расчетов и графиков
На сегодняшний день потери напряжения, обусловленные передачей реактивной мощности, составляют около 30 % суммарных потерь напряжения в электрических сетях 6-10 кВ и около 70 % в сетях более высоких уровней напряжений [3]:
Для снижения перетоков реактивной мощности и уменьшения вызываемых ими отрицательных последствий на промышленных предприятиях должна осуществляться компенсация реактивной мощности. Компенсация реактивной мощности обеспечивает соблюдение условия баланса реактивной мощности, способствует снижению потерь электроэнергии в электрических сетях, увеличению их пропускной способности, позволяет осуществлять регулирование напряжения за счет применения компенсирующих устройств и др.
С этой точки зрения компенсация реактивной мощности может рассматриваться как достаточно эффективное направление энергосбережения на промышленных предприятиях. Кроме того, проведение мероприятий по компенсации реактивной мощности на промышленных предприятиях будет также в значительной степени способствовать снижению потерь электроэнергии и увеличению пропускной способности районных распределительных сетей за счет их разгрузки по реактивной мощности вследствие снижения перетоков реактивной мощности.
Мероприятия по компенсации реактивной мощности, проводимые на промышленных предприятиях, могут быть разделены на две группы:
Организационные мероприятия связаны с естественным уменьшением потребляемой электроприемниками реактивной мощности:
К числу организационных мероприятий относятся:
Как показывают исследования, необходимость проведения подобных мероприятий обусловлена тем, что при снижении загрузки асинхронных двигателей и силовых трансформаторов происходит значительное увеличение относительного потребления ими реактивной мощности [7, 8].
В условиях наблюдаемого в России в последние десятилетия спада объемов промышленного производства, при котором системы электроснабжения промышленных предприятий эксплуатируются не в номинальном режиме, и имеет место низкий уровень загрузки электрооборудования [9], необходимость проведения организационных мероприятий по компенсации реактивной мощности, очевидно, еще более возрастает.
Технические мероприятия заключаются в установке компенсирующих устройств в соответствующих точках системы электроснабжения промышленного предприятия:
Таким образом, максимальный экономический эффект от компенсации реактивной мощности на промышленных предприятиях может быть достигнут при правильном сочетании различных мероприятий (организационных и технических), которые должны быть технически и экономически обоснованы. Проведение мероприятий по компенсации реактивной мощности позволит значительно уменьшить перетоки реактивной мощности в промышленных электрических сетях.
Снижение перетоков реактивной мощности в свою очередь приведет к уменьшению потерь электроэнергии и потерь напряжения в электрических сетях, увеличению их пропускной способности и будет способствовать реализации на промышленных предприятиях потенциала организационного и технологического энергосбережения.