что такое хаотическая репликация хромосом

Новый взгляд на геном: не просто цепочка генов, а трехмерная сеть, интегрирующая функциональные домены ядра

«Не то, что мните вы, геномы». На самом деле геном — не просто абстрактная цепочка генов, а сложнейшая трехмерная структура, динамически сворачивающаяся и разворачивающаяся в зависимости от текущего состояния клетки.

Автор
Редакторы

Редакция журнала «Биохимия» и «Биомолекула» предлагают вашему вниманию специальный выпуск журнала, посвященный 3D-организации генома, функциональной компартментализации клеточного ядра и регуляции транскрипции. В выпуске представлены статьи ведущих отечественных и ряда зарубежных ученых, которые кратко резюмирует «Биомолекула». Большое внимание уделяется значению стохастических процессов в установлении 3D-архитектуры генома и эпигенетической роли пространственной организации генома.

что такое хаотическая репликация хромосом. Смотреть фото что такое хаотическая репликация хромосом. Смотреть картинку что такое хаотическая репликация хромосом. Картинка про что такое хаотическая репликация хромосом. Фото что такое хаотическая репликация хромосом

«Биохимия» — «Биомолекуле»

Выдающийся франко-швейцарский ученый Вильгельм Бернард (Wilhelm Bernhard) уже в 70-е годы прошлого века осознал, что необходимо интегрировать в единое научное направление цитологию и биохимию, фактически предвосхитив появление научного направления, которое теперь мы называем «молекулярная и клеточная биология». Именно продвижению этой идеи должны были способствовать созданные по инициативе Вильгельма Бернарда регулярные конференции по структуре и функциям клеточного ядра. В прошлом году прошла такая и в России: 19–22 июня 2017 года в Нижнем Новгороде состоялся уже 25-й симпозиум из этой серии.

В 70-е годы прошлого века биохимики рассматривали клеточное ядро как некий реакционный компартмент, в котором сосредоточены молекулы наследственности (ДНК) и ферменты, необходимые для ее удвоения и считывания информации в виде молекул РНК. Происходящие в клеточном ядре процессы пытались понять на основе знаний о кинетике ферментативных реакций в растворе. Будучи специалистом по электронной микроскопии, Вильгельм Бернард хорошо осознавал, что клеточное ядро неоднородно. Соответственно, скорее следовало говорить о том, что оно представляет собой не единый реакционный компартмент, а совокупность относительно изолированных областей.

Эта идея нашла многочисленные подтверждения в последующих исследованиях, которые продемонстрировали, что различные функциональные процессы в клеточном ядре пространственно изолированы. Например, показали, что работающие РНК- и ДНК-полимеразы собраны в кластеры, получившие название транскрипционных и репликационных фабрик [1], [2]. Обнаружили многочисленные внутриядерные компартменты, в которых сосредоточены те или иные ферменты. Наконец, коллектив немецких ученых под руководством Томаса Кремера (Thomas Cremer) продемонстрировал, что в интерфазном ядре индивидуальные хромосомы занимают обособленные (не перекрывающиеся) позиции, получившие название хромосомных территорий [3–5].

Как только научный мир признал факт существования структурно-функциональной компартментализации клеточного ядра, встал вопрос о том, существует ли какая-то структурная платформа, поддерживающая эту компартментализацию. В цитоплазме такой платформой является цитоскелет. Начальные наблюдения, сделанные еще в 1960-х годах рядом ученых, в том числе в России Ильёй Борисовичем Збарским, свидетельствовали о том, что подобная цитоскелету белковая структура существует и в клеточном ядре. Американский ученый Рональд Березни (Ronald Berezney) назвал эту структуру ядерным матриксом. Изучение ядерного матрикса сыграло важную роль в развитии современных представлений о компартментализации клеточного ядра. Многие из наблюдений, сделанных при изучении ядерного матрикса, актуальны и сейчас. Об этом рассказывается в заключительной части статьи Сергея Разина и Алексея Гаврилова в специальном выпуске журнала «Биохимия» [6]. Тем не менее никаких убедительных доказательств существования этой структуры в живых клетках получено не было. Сеть внутриядерных белковых филаментов, которую можно увидеть при электронномикроскопическом исследовании ядер после экстракции хроматина, скорее всего, возникает в результате агрегации белков в интерхроматиновых каналах.

Что же тогда является платформой, на которой собираются функциональные компартменты клеточного ядра? Современная гипотеза состоит в том, что этой платформой является сам упакованный геном. В ее обоснование ключевой вклад внесли работы Томаса Кремера и соавторов, о которых рассказывается в их обзорной статье в спецвыпуске журнала «Биохимия» [7]. Работы этой группы ученых начались с поиска ответа на вопрос: что происходит с хромосомами по завершении митоза? Все знают, что во время митоза пары хромосом имеют вид конденсированных палочек, связанных перетяжками в центромерных областях. А вот что происходит с ними по завершении этого процесса, долгое время оставалось неясным.

Клеточное ядро подобно фабрике, где выполнение отдельных процессов разделено во времени и пространстве

В 70-е годы прошлого века наиболее популярная точка зрения состояла в том, что по завершении митоза хромосомы полностью деконденсируются, распределяясь по всему объему ядра и перемешиваясь с другими хромосомами. Томас Кремер и соавторы сделали простой эксперимент. Они повредили небольшую область клеточного ядра с помощью направленного пучка ультрафиолетового света. Существует техническая возможность посмотреть во время следующего митоза, какие из хромосом оказались повреждены. Если бы ДНК каждой хромосомы была распределена по всему объему ядра, то можно было бы ожидать, что повредятся все хромосомы. Однако на деле поврежденными оказывались лишь несколько хромосом. Это позволило заключить, что хромосомы занимают ограниченные области внутри клеточного ядра.

Как и вообще в науке, дальнейший прогресс в этих исследованиях был обусловлен развитием экспериментальных технологий. С появлением конфокальной микроскопии [8] и методов визуализации индивидуальных хромосом посредством флуоресцентной гибридизации in situ (FISH) с наборами хромосом-специфичных проб, удалось показать, что интерфазные хромосомы действительно занимают ограниченные и в первом приближении неперекрывающиеся области, получившие название «хромосомные территории» (рис. 1).

что такое хаотическая репликация хромосом. Смотреть фото что такое хаотическая репликация хромосом. Смотреть картинку что такое хаотическая репликация хромосом. Картинка про что такое хаотическая репликация хромосом. Фото что такое хаотическая репликация хромосом

Рисунок 1. Каждой хромосоме — свою территорию. Большие хромосомы курицы окрашены наборами разноцветных флуоресцентных хромосом-специфичных проб. Слева показана окраска хромосом в метафазе, а справа — в интерфазном ядре. Можно видеть, что хромосомы занимают неперекрывающиеся области ядра.

Между хромосомными территориями находится так называемый интерхроматиновый домен, а внутри него располагаются различные функциональные компартменты, о которых говорилось выше. Хромосомные территории в каждом ядре позиционируются посредством прикрепления к ядерной оболочке (ламине) и ядрышку (рис. 2). Кроме того, существуют и «сцепки» между хромосомными территориями, возникающие благодаря тому, что некоторые участки разных хромосом привлекаются к одним и тем же функциональным компартментам (транскрипционным фабрикам, компартментам сплайстинга и т.д.) в интерхроматиновом домене. В силу этого возникает единый и при этом относительно «жесткий» хроматиновый домен, который и служит структурной платформой для всей внутриядерной организации.

что такое хаотическая репликация хромосом. Смотреть фото что такое хаотическая репликация хромосом. Смотреть картинку что такое хаотическая репликация хромосом. Картинка про что такое хаотическая репликация хромосом. Фото что такое хаотическая репликация хромосом

Рисунок 2. Хроматиновый компартмент и интерхроматиновый домен. Отдельные хромосомные территории (показаны разными цветами) прикрепляются к ядрышку и ядерной ламине. В ряде мест хромосомные территории контактируют друг с другом, в силу чего формируется единый хроматиновый компартмент. Интерхроматиновым доменом являются относительно свободные от хроматина места между хромосомными территориями, а также полости (каналы), пронизывающие хромосомные территории.

Модель хромосомных территорий и интерхроматинового домена сформулировал Томас Кремер в конце 80-х годов прошлого века, и в последующие годы ее совершенствовали и уточняли по мере появления новых экспериментальных данных. В статье Томаса Кремера и соавторов, опубликованной в спецвыпуске журнала «Биохимия» [7], представлена современная версия модели, учитывающая последние результаты авторов, полученные с использованием микроскопии высокого и сверхвысокого разрешения (SIM, STORM) [9], [10].

Наиболее важные уточнения состоят в том, что интерхроматиновые каналы пронизывают хромосомные территории. Последние представляют собой свернутую цепочку из глобулярных хроматиновых доменов (содержащих

1 млн пар нуклеотидов ДНК), которые иногда организованы в кластеры. Существенно, что внутренние области таких глобулярных доменов содержат преимущественно неактивный хроматин, тогда как транскрибирующиеся гены находятся на поверхности глобулярных доменов в так называемом перихроматиновом слое (рис. 3). Эта организация обеспечивает предпочтительную доступность транскрипционноактивной фракции генома для регуляторных белков и аппарата транскрипции. Одновременно обеспечивается возможность транспорта новосинтезированных РНК к ядерным порам по сети интерхроматиновых каналов.

что такое хаотическая репликация хромосом. Смотреть фото что такое хаотическая репликация хромосом. Смотреть картинку что такое хаотическая репликация хромосом. Картинка про что такое хаотическая репликация хромосом. Фото что такое хаотическая репликация хромосом

Возникновение 3D-геномики

Работы коллектива исследователей, возглавляемого Томасом Кремером, раскрыли важные особенности структурно-функциональной организации клеточного ядра. Однако ультраструктурные исследования в принципе не могут дать ответа на вопрос о том, как устанавливается и поддерживается пространственная организация генома. В раскрытии механизмов, поддерживающих пространственную организация эукариотического генома, а стало быть и структурно-функциональную компартментализацию клеточного ядра, ключевую роль сыграли работы молекулярных биологов, выполненные на протяжении последних 15 лет. Результаты этих работ анализируются в обзорной статье Разина и Гаврилова, опубликованной в спецвыпуске журнала «Биохимия» [6].

Ключевой инструмент, позволивший изучать 3D-организацию генома, — процедура лигирования близкорасположенных фрагментов ДНК, разработанная американским ученым Джобом Деккером (Job Dekker). Нить ДНК разрезается на фрагменты внутри фиксированных формальдегидом ядер, и возникающие свободные концы ДНК вновь сшивают с помощью ДНК-лигаз. При этом во многих случаях восстанавливается целостность исходной цепи ДНК, однако возможна и перекрестная сшивка фрагментов, физически расположенных рядом, но разнесенных далеко друг от друга на молекуле ДНК. Такое может произойти в случае петель на ДНК: фрагменты нити, расположенные в основании петли, сближены друг с другом.

На основе процедуры лигирования близкорасположенных фрагментов ДНК разработан ряд экспериментальных протоколов, адаптированных для решения разных задач и в совокупности именуемых С-методами (от названия исходной процедуры — Chromosome Conformation Capture; сокращенно — 3C). Принцип одного из этих методов — Hi-C, позволяющего строить полногеномные профили пространственных взаимодействий удаленных фрагментов ДНК, — показан на рисунке 4.

что такое хаотическая репликация хромосом. Смотреть фото что такое хаотическая репликация хромосом. Смотреть картинку что такое хаотическая репликация хромосом. Картинка про что такое хаотическая репликация хромосом. Фото что такое хаотическая репликация хромосом

Рисунок 4. Принцип метода Hi-C. Конфигурация хроматиновой фибриллы в ядре фиксируют формальдегидом. После экстракции непришитых гистонов ДНК разрезают рестриктазой и застраивают липкие концы с использованием биотинилированного предшественника. Далее проводят лигирование. При этом возможно образование сшивок между отдаленными фрагментами ДНК, которые оказались сближены в силу особенностей укладки хроматиновой фибриллы. Сшитые фрагменты выделяют посредством аффинной хроматографии на шариках со стрептавидином, который специфически связывает биотин. Полученный препарат секвенируют и результаты накладывают на референсный геном. Получаемая в итоге «тепловая карта» позволяет судить о частотах контактов между удаленными геномными элементами. На приведенной в секции B тепловой карте красный цвет соответствует наиболее высокой частоте пространственных взаимодействий. Выраженные треугольники на карте свидетельствуют о существовании контактных доменов, внутри которых пространственные взаимодействия наблюдаются намного чаще, чем между доменами. Контактные домены обычно отождествляют с хроматиновыми глобулами, хотя убедительные свидетельства в пользу такой интерпретации появились лишь недавно [11].

1 м.п.н. Основной характеристикой ТАДов является то, что пространственные контакты внутри ТАДа происходят существенно чаще, чем между ними. Это может происходить, например, в том случае, когда в границах ТАДа хроматиновая фибрилла организована в компактную глобулу. Легко видеть возможное соответствие ТАДов глобулярным доменам, которые обнаружили Томас Кремер и соавторы. Действительно, визуализация индивидуальных ТАДов с использованием техники FISH и микроскопии высокого разрешения продемонстрировала, что ТАДы обычно имеют глобулярную форму.

Также с помощью методики Hi-C были раскрыты подробности «молекулярных путешествий» некодирующей РНК Xist, функция которой — инактивация некоторых генов на X-хромосоме: «Загадочное путешествие некодирующей РНК Xist по X-хромосоме» [12]. — Ред.

что такое хаотическая репликация хромосом. Смотреть фото что такое хаотическая репликация хромосом. Смотреть картинку что такое хаотическая репликация хромосом. Картинка про что такое хаотическая репликация хромосом. Фото что такое хаотическая репликация хромосом

Рисунок 5. Как работают энхансеры: удаленные от своего промотора в последовательности ДНК, они могут быть сближены в пространстве. Вверху — На линейной ДНК ген, расположенный далеко от энхансера, оказывается вне зоны действия энхансера. Слева — Выпетливание разделяющего энхансер и промотор сегмента хроматиновой фибриллы перемещает промотор в сферу действия энхансера (область, ограниченная пунктиром). Справа — На уровне 3D-организации генома один ген может оказаться в сфере действия нескольких энхансеров.

Помимо организации в ТАДы, характерной особенностью упаковки эукариотических геномов является существование большого количества хроматиновых петель различного рода. Из них с функциональной точки зрения наибольший интерес представляют выпетливания хроматиновой фибриллы, обеспечивающие приближение энхансеров к промоторам. В свете этих результатов стало очевидным, что на уровне 3D-организации генома работают важные эпигенетические механизмы, контролирующие транскрипцию [13].

На подсознательном уровне большинство людей, в том числе и ученых-биологов, все еще рассматривают геном как линейную цепь генов и регуляторных элементов. Трендом времени является, однако, представление о геноме как о трехмерной структуре, обеспечивающей возможность установления контактов между генами и удаленными регуляторными элементами. Сейчас известно, что в геноме человека количество регуляторных модулей (энхансеров) в разы превышает количество генов [14], [15]. Именно трехмерная организация генома обеспечивает возможность активации тех или иных генов одновременно несколькими энхансерами в различных комбинациях (рис. 5), что позволяет системе регуляции транскрипции лучше адаптироваться к изменяющимся потребностям клетки.

Осознание этого факта привело к возникновению 3D-геномики, которая позволяет объяснить многие непонятные ранее феномены. Ясно, что организация генома в ТАДы накладывает определенные ограничения на возможность установления пространственных контактов между удаленными регуляторными элементами. Такие контакты, как правило, устанавливаются внутри ТАДов. В силу этого сфера активности энхансеров часто ограничивается пределами соответствующего ТАДа. Слияние ТАДов или возникновение новых ТАДов в результате хромосомных перестроек (таких, как делеции и инверсии) может привести к нарушению работы большого числа генов и, как уже показано, является причиной возникновения ряда наследственных заболеваний. Обо всем этом можно прочитать в статье Разина и Гаврилова в спецвыпуске журнала «Биохимия» [6].

От констатации фактов к раскрытию механизмов

Учитывая очевидную функциональную роль 3D-организации генома, важно понять, как эта организация складывается и какие силы ее поддерживают. Что касается ТАДов, то существуют две не исключающие друг друга модели. Одна из них, которую можно назвать моделью динамического выпетливания ДНК (DNA loop extrusion), постулирует, что в сегментах генома, ограниченных конвергентными сайтами связывания архитектурного белка CTCF, происходит динамическое выпетливание хроматиновой фибриллы, которое может начаться в любой точке и продолжается до сайта связывания CTCF. В результате в разных клетках рядом оказываются разные участки данной области генома. При интеграции данных по клеточной популяции получается домен, внутри которого предпочтительно реализуются пространственные контакты ДНК. Эта модель подробно обсуждается в недавней статье на «Биомолекуле»: «Организовать геном: запутанная история гипотез и экспериментов» [16].

Недостатком модели является то, что ТАД представляется популяционным феноменом, в то время как хроматиновые глобулы можно видеть в индивидуальных клетках. Другая модель, предложенная отечественными учеными, постулирует, что ТАДы — это компактные хроматиновые домены, существующие в индивидуальных клетках [17]. Движущей силой, обеспечивающей возникновение таких доменов, представляется электростатическое взаимодействие между нуклеосомами неактивного хроматина. Эта модель хорошо согласуется с описанными выше результатами Томаса Кремера и соавторов, но не объясняет предпочтительной локализации конвергентных сайтов связывания CTCF на границах ТАДов в клетках млекопитающих.

Роль стохастических процессов в клеточном ядре — как хаос порождает порядок

что такое хаотическая репликация хромосом. Смотреть фото что такое хаотическая репликация хромосом. Смотреть картинку что такое хаотическая репликация хромосом. Картинка про что такое хаотическая репликация хромосом. Фото что такое хаотическая репликация хромосом

Рисунок 6. Энтропийные силы, возникающие в условиях макромолекулярного скопления, способствуют созданию макромолекулярных агрегатов. Находясь в постоянном температурном движении, малые молекулы бомбардируют более крупные молекулярные комплексы с разных направлений. В том случае, если по стечению обстоятельств два крупных объекта окажутся рядом, микромолекулы не смогут бомбардировать их со стороны контактирующих поверхностей, в силу чего крупные объекты будут постепенно объединяться в еще более крупные агрегаты, подобно мусору на поверхности воды. Кроме того, объединение двух крупных объектов сокращает так называемый исключенный объем (зеленые короны вокруг крупных объектов), что дает выигрыш в энтропии. Связанные с ДНК макромолекулярные комплексы также будут объединяться под действием энтропийных сил, что может приводить к образованию петель ДНК.

Кажущимся недостатком всех моделей пространственной организации ТАДов является то, что поддержание 3D-организации генома обеспечивается относительно слабыми взаимодействиями. В какой-то мере все эти модели похожи на создание трехмерной конструкции из водопроводных труб, удерживаемых пластилином. Впрочем, роль слабых взаимодействий в молекулярной биологии не стоит недооценивать: об этом идет речь в статье «Роль слабых взаимодействий в биополимерах» на «Биомолекуле» [18].

В клеточном ядре существуют силы, способствующие удержанию вместе крупных объектов, которые стабилизируют 3D-геном и внутриядерные компартменты. Об этих силах рассказывается в статье Рональда Хэнкока (Ronald Hancock) [19]. Он одним из первых обратил внимание на то, что концентрация макромолекул в ядре столь высока, что она соответствует условиям макромолекулярного скопления. В этих условиях термодинамически выгодным оказывается объединение крупных объектов в еще более крупные агрегаты (рис. 6). В крайних случаях при этом происходит разделение фаз [20]. Так возникают различные ядерные компартменты, в том числе ядрышко, спеклы сплайсинга, тельца Кахаля и т.д. Эти компартменты не окружены мембранами и существуют до тех пор, пока выполняются условия макромолекулярного скопления. Хэнкок продемонстрировал, что все эти компартменты можно разбирать и собирать вновь, изменяя уровень макромолекулярного скопления. Энтропийные силы, возникающие в этих условиях, поддерживают и компактную организацию различных хроматиновых структур, таких как метафазные хромосомы, гетерохроматиновые кластеры и глобулярные хроматиновые домены (ТАДы) в составе интерфазных хромосом.

В контексте 3D-геномики возможно совершенно новое объяснение биологической роли бессмысленных, на первый взгляд, участков нуклеотидной последовательности. Не кодируя никакие белки, эти участки генома могут, тем не менее, существенно влиять на транскрипцию тех или иных генов, модулируя способ пространственной укладки протяженных областей генома. Конкретные механизмы такого влияния еще предстоит выяснить. Это может стать ключом к раскрытию возможной роли повторяющихся последовательностей в работе генома. В этой связи в спецвыпуск журнала «Биохимия» включена статья Ольги Подгорной и соавторов, в которой суммируются современные знания, включая и результаты собственных работ авторов, о повторяющихся последовательностях генома млекопитающих [21].

Источник

Что такое ДНК и хромосомы

Что такое ДНК, и из чего она состоит? Кто и когда открыл эту молекулу в клетках человека и других живых организмов? Чем уникален открытый учеными механизм наследования, и какие последствия ждал весь мир после этого открытия? Всю необходимую информацию Вы можете узнать, прочитав эту статью.

что такое хаотическая репликация хромосом. Смотреть фото что такое хаотическая репликация хромосом. Смотреть картинку что такое хаотическая репликация хромосом. Картинка про что такое хаотическая репликация хромосом. Фото что такое хаотическая репликация хромосом

Когда впервые в истории появилось упоминание о ДНК

Иоганнес Фридрих Фишер – врач и биолог-исследователь родом из Швейцарии, стал первым в мире ученым, выделившим нуклеиновую кислоту. Открытие случилось в 1869 году, когда он занимался изучением животных клеток, а именно лейкоцитов, которых много содержалось в гное. Совершенно случайно молодой ученый заметил, что при отмывании лейкоцитов с гнойных повязок от них остается загадочное соединение. Под микроскопом Иоганн обнаружил, что оно содержится в ядрах клеток. Это соединение Мишер назвал нуклеином, а в процессе изучения его свойств переименовал в нуклеиновую кислоту, из-за наличия свойств, как у кислот.

Роль и функции только открытой нуклеиновой кислоты были неизвестны. Однако многие ученые того времени уже высказывали свои теории и предположения о существовании механизмов наследования.

Нынешние взгляды на состав молекулы ДНК ассоциируются у людей с именами английских ученых Джорджа Уотсона и Фрэнсиса Крика, которые открыли структуру данной молекулы в 1953 году. За несколько лет до этого, в тридцатые годы, ученые из советского союза А.Н. Белозерский и А.Р. Кезеля доказали наличие ДНК в клетках во всех живых организмах, тем самым они опровергли теорию о том, что молекула ДНК находится только в клетках животных, а в клетках растений присутствует только РНК. Лишь спустя несколько лет, в 1944 году, группой освальдских ученых было установлено, что молекула ДНК является механизмом сохранения наследственной информации клетки. Таким образом, благодаря совместным усилиям и трудам исследователей человечество познало тайну процесса эволюции и его основных принципов.

ДНК в медицине

Открытие состава молекулы дезоксирибонуклеиновой кислоты позволило перейти медицине на новый уровень развития. Появилось большое количество новых направлений практической медицины, стали доступны новые методы лечения, диагностики. Благодаря этому фундаментальному открытию для науки и современным технологиям, человечеству стали доступны:

И это еще не все доступные для людей услуги, которые может предложить медицина, изучающая генетику. Выше были представлены только самые популярные среди людей тесты. Перспективой для многих ученых-генетиков является создание таких лекарств, способных победить все болезни на Земле и даже смертность.

Строение молекулы ДНК

От цепочки к хромосоме

В каждом живом организме находится миллионы клеток, а внутри этих клеток находится ядро. Клетки, содержащие в себе ядро, называются эукариотами или ядерными. У древних одноклеточных нет оформленного ядра. К таким безъядерным одноклеточным, или прокариотам, относятся бактерии и археи, например, кишечная палочка или серая анаэробная бактерия. Также ядро отсутствует в клетках вирусов и вироидов, однако причисление вирусов к живым организмам – вопрос спорный, о котором по сей день дискуссируют ученые.

В ядре находятся хромосомы – структурный элемент, в котором содержится молекула ДНК в виде спирали, хранящая внутри себя всю генетическую информацию клетки.

Процесс упаковки ДНК спиралей

Количество нуклеотидов в ДНК велико, и нужны длинные цепочки, чтобы вместить все их число, поэтому нити ДНК закручиваются в две спирали, что позволяет укоротить цепочки в 5 раз, сделав их более компактными. Нити ДНК могут также закручиваться в форму суперспирали. Двойная спираль пересекает свою ось и накручивается на специальные гистоновые белки – гиразы, образуя при этом супервитки. Таким образом, двойная спираль закручивается в спираль более высокого порядка. Сокращение цепочек в этом случае произойдет в 30 раз.

Как гены связаны с ДНК

Ген – самый изученный на сегодняшний день участок ДНК. Гены являются структурной единицей наследственности всех живых организмов. Цепочки нуклеотидов в ДНК состоят из генов, которые определяют генотип особи, например, цвет и разрез глаз, тип кожи, рост, группу и резус фактор крови и другие физиологические качества и особенности внешности.

Еще много отраслей генетики до конца не изучены, и до конца не раскрыты все функции генома, но ученые до сих пор продолжают изучение генов, чтобы добиться новых открытий в области генетики.

Хромосома: определение и описание

что такое хаотическая репликация хромосом. Смотреть фото что такое хаотическая репликация хромосом. Смотреть картинку что такое хаотическая репликация хромосом. Картинка про что такое хаотическая репликация хромосом. Фото что такое хаотическая репликация хромосом

Хромосомы – структурный элемент клетки, находящийся внутри ядра. Они содержат в себе молекулы ДНК, в которых содержится вся наследственная информация.

Строение и виды хромосом:

Отсюда возникают различные типы хромосом:

Всего в клетке человека находится 46 хромосом: 22 пары аутосом, встречающиеся у обоих полов, и одна пара половых хромосом: XY – у мужчин, XX – у женщин. Забавно, что если прибавить к количеству хромосом хотя бы одну пару, то человек мог бы быть шимпанзе или тараканом, а если отнять, то – кроликом.

Еще интересно то, что человек и ясень имеют одинаковое количество хромосом, несмотря на принадлежность к разным видам и царствам.

Наследственные болезни

Генетический код – система записи генетической информации в ДНК и РНК в виде определенной последовательности в цепочке нуклеотидов. Он должен сохранять наследственную информацию в первоначальном виде, восстанавливая повреждения цепочки в последующем поколении с помощью ДНК. Однако ген может каким-то образом быть поврежден, либо в нем может произойти мутация.

Генные мутации – изменение в последовательности нуклеотидов, например выпадение, замена, вставка другого нуклеотида в цепочку. Последствия этих мутаций могут быть полезные, вредные или нейтральные. Примером полезных мутаций является устойчивость к минусовым температурам, увеличенная плотность костей, меньшая потребность во сне, устойчивость к ВИЧ и другие. Примером вредных мутаций является аллергия на солнечный свет, глухота слепота и так далее. К нейтральным мутациям относятся те мутации, которые не влияют на жизнеспособность, например, гетерохромия.

Существуют также летальные и полулетальные мутации. Летальные мутации несовместимы с жизнью и приводят к гибели организма на ранних этапах его развития, например, при рождении у особи отсутствует головной мозг. Полулетальные мутации не приводят к смерти особи, но значительно уменьшают ее жизнеспособность. К таким мутациям относятся заболевания человека, передающиеся по наследству. Например, наличие 47-й хромосомы может вызвать у человека синдром Дауна, а, наоборот, отсутствие 46-й парной хромосомы – сидром Шерешевского-Тернера.

Расшифровка цепочки ДНК

Расшифровка цепочки ДНК в клетке – это исследование всех известных генов в клетках человека. Хоть цена за такую услугу значительно упала за последние десять лет, однако такое исследование по-прежнему остается дорогим удовольствием, и не каждый человек сможет позволить себе оплатить такую услугу. Чтобы уменьшить цену этого исследования, расшифровку ДНК стали делить по тематикам. Таким образом, появились различные тесты, которые исследуют интересующую человека группу генов и ее функции.

Как происходит расшифровка цепочки ДНК?

Таким образом, ученые получают картину гена, которую можно изучить и расшифровать. Синтез РНК Нуклеотиды делятся на четыре базовых элемента, служащими основой для формирования генов: АТГЦ, или аденин, тимин, гуанин, цитозин. В их состав входят фосфорные остатки, азотистые основания и пептоза.

Важно, что молекула дезоксирибонуклеиновой кислоты не должна выходить за пределы мембраны ядра. С помощью РНК, которая играет роль копии участка цепи с генетическим кодом, генетическая цепочка может покинуть ядро, попасть вовнутрь клетки и воздействовать на ее внутренние процессы.

Как это происходит:

Итак, группа генов, участвующих в процессе старения клеток может, как заставить процесс старения идти быстрее, так и вовсе его остановить и запустить процесс омолаживания. То есть, каждый из генов может спровоцировать синтез нескольких видов белка.

что такое хаотическая репликация хромосом. Смотреть фото что такое хаотическая репликация хромосом. Смотреть картинку что такое хаотическая репликация хромосом. Картинка про что такое хаотическая репликация хромосом. Фото что такое хаотическая репликация хромосом

Сутягина Дарья Сергеевна

В нашей ДНК содержится очень много информации, но пока мы можем расшифровать лишь небольшой процент генов. Добавлю несколько интересных фактов о ДНК: возможность двойной ДНК у человека. Такое явление случается, когда при беременности в утробе развиваются близнецы, но в процессе развития плода они сливаются в одного человека. Длина одной молекулы ДНК человека равна 2 метрам, а общая длина цепочки ДНК всех клеток тела человека равна 16 млрд. километрам, что равно расстоянию от Земли до Плутона. ДНК человека и кенгуру всего лишь 150 млн. лет назад были одинаковыми. Все знания и информация во всем мире могла бы уместиться всего лишь в 2 граммах дезоксирибонуклеиновой кислоты.

ООО «Медикал Геномикс» Лицензия № ЛО-69-01-002086 от 06.10.2017

Юр. адрес: г. Тверь, ул. Желябова, 48

ООО «Лаб-Трейдинг», ИНН: 6950225035, ОГРН: 1186952017053, КПП:695001001

Юр. адрес: г. Тверь, ул. 1-Я За Линией Октябрьской Ж/Д, 2, оф. 22

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *