что такое фотоэлектрический эффект
Фотоэлектрический эффект
Основа |
---|
Классическая механика · Интерференция · Бра и кет · Гамильтониан |
Фундаментальные понятия |
---|
Квантовое состояние · Волновая функция · Суперпозиция · Запутанность · |
Эксперименты |
---|
Опыт Дэвиссона — Джермера · Опыт Поппера · Опыт Штерна — Герлаха · Опыт Юнга ·Проверка неравенств Белла · Фотоэффект · Эффект Комптона |
Формулировки |
---|
Картина Шрёдингера · Картина Гейзенберга · Картина взаимодействия · Матричная квантовая механика · Интегралы по траекториям |
Уравнения |
---|
Уравнение Шрёдингера · Уравнение Паули · Уравнение Клейна — Гордона · Уравнение Дирака |
Интерпретации |
---|
Копенгагенская интерпретация · Теория скрытых параметров · Многомировая |
Сложные темы |
---|
Квантовая теория поля · Квантовая гравитация · Теория всего |
Известные учёные |
---|
Планк · Эйнштейн · Шрёдингер · Гейзенберг· Йордан · Бор · Паули · Дирак · Фок · Борн · де Бройль · Ландау · Фейнман · Бом · Эверетт |
Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.
Содержание
История открытия
В 1839 году Александр Беккерель наблюдал [1] явление фотоэффекта в электролите. В 1873 году Виллоби Смит обнаружил, что селен является фотопроводящим. Затем эффект изучался в 1887 году Генрихом Герцем. При работе с открытым резонатором он заметил, что если посветить ультрафиолетом на цинковые разрядники, то прохождение искры заметно облегчается. Исследования фотоэффекта показали, что, вопреки классической электродинамике, энергия вылетающего электрона всегда строго связана с частотой падающего излучения и практически не зависит от интенсивности облучения. В 1888—1890 годах фотоэффект систематически изучал русский физик Александр Столетов. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта. Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Карла Вильгельма Озеена, получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза — если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:
Исследования фотоэффекта были одними из самых первых квантовомеханических исследований.
Внешний фотоэффект
Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.
Фотокатод — электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений.
Зависимость спектральной чувствительности от частоты или длины волны электромагнитного излучения называют спектральной характеристикой фотокатода.
Законы внешнего фотоэффекта
Внутренний фотоэффект
Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта.
Фотопроводимость
Фотопроводимостью называется увеличение электрической проводимости вещества под действием излучения.
Вентильный фотоэффект
Вентильный фотоэффект или фотоэффект в запирающем слое — явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит).
Фотовольтаический эффект
Фотовольтаический эффект — возникновение электродвижущей силы под действием электромагнитного излучения. [2]
Современные исследования
Сравнительные количественные исследования различных материалов показали, что глубина взаимодействия между излучением и веществом существенно зависит от структуры атомов этого вещества и корреляции между внутренними электронными оболочками. В случае c ксеноном, который использовался в экспериментах, воздействие пакета фотонов в коротком импульсе приводит, по всей видимости, к одновременной эмиссии множества электронов с внутренних оболочек. [4]
Примечания
Полезное
Смотреть что такое «Фотоэлектрический эффект» в других словарях:
ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ — Внешний Ф. Э. испускание электронов телами, на которые падают световые, рентгеновские или гамма лучи. Внутренний Ф. Э. изменение электропроводимости некоторых тел (напр. селена) под влиянием освещения. Самойлов К. И. Морской словарь. М. Л.:… … Морской словарь
фотоэлектрический эффект — фотоэффект Процесс полного или частичного освобождения заряженных частиц в веществе в результате поглощения фотонов. [ГОСТ 21934 83] Тематики приемники излуч. полупроводн. и фотоприемн. устр. Синонимы фотоэффект … Справочник технического переводчика
фотоэлектрический эффект — fotoefektas statusas T sritis automatika atitikmenys: angl. photoeffect; photoelectric effect vok. lichtelektrischer Effekt, m; Photoeffekt, m rus. фотоэлектрический эффект, m; фотоэффект, m pranc. effet photo électrique, m ryšiai: sinonimas –… … Automatikos terminų žodynas
фотоэлектрический эффект — fotoelektrinis reiškinys statusas T sritis automatika atitikmenys: angl. photoelectric effect vok. photoelektrischer Effekt, m rus. фотоэлектрический эффект, m pranc. effet photo électrique, m … Automatikos terminų žodynas
фотоэлектрический эффект — fotoelektrinis reiškinys statusas T sritis Standartizacija ir metrologija apibrėžtis Elektronų išspinduliavimas iš apšviesto kietojo kūno arba skysčio. atitikmenys: angl. photoeffect; photoelectric effect vok. lichtektrischer Effekt, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
фотоэлектрический эффект — fotoelektrinis efektas statusas T sritis chemija apibrėžtis Elektronų išspinduliavimas iš apšviesto kietojo kūno arba skysčio. atitikmenys: angl. photoeffect; photoelectric effect rus. фотоэлектрический эффект; фотоэффект ryšiai: sinonimas –… … Chemijos terminų aiškinamasis žodynas
фотоэлектрический эффект — fotoelektrinis reiškinys statusas T sritis fizika atitikmenys: angl. photoeffect; photoelectric effect; photoelectric phenomenon vok. lichtelektrischer Effekt, m; Photoeffekt, m; photoelektrisches Phänomen, n rus. фотоэлектрический эффект, m;… … Fizikos terminų žodynas
Фотоэлектрический эффект — 9. Фотоэлектрический эффект Фотоэффект Процесс полного или частичного освобождения заряженных частиц в веществе в результате поглощения фотонов Источник: ГОСТ 21934 83: Приемники излучения полу … Словарь-справочник терминов нормативно-технической документации
ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ — явление испускания электронов веществом под действием света. Было открыто в 1887 Г.Герцем, обнаружившим, что искровой разряд в воздушном промежутке легче возникает при наличии поблизости другого искрового разряда. Герц экспериментально показал,… … Энциклопедия Кольера
Фотоэффект и его виды
Фотоэффект и его виды.
Фотоэффект (фотоэлектрический эффект) – явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества.
Фотоэффект:
Фотоэффект (фотоэлектрический эффект) – явление взаимодействия света или любого другого электромагнитного излучения с веществом, при котором энергия фотонов передаётся электронам вещества.
На основе явления фотоэффекта созданы специальные устройства – фотоэлементы. Фотоэлемент (фотоэлектрический элемент) – электронный прибор, который преобразует энергию фотонов в электрическую энергию.
Выделяют внешний фотоэффект и внутренний фотоэффект, а также вентильный (барьерный) фотоэффект и многофотонный фотоэффект.
Внешний фотоэффект:
Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений, например, фотонов. Иными словами, при внешнем фотоэффекте поглощение фотонов сопровождается вылетом электронов за пределы тела. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком. Внешний фотоэффект наблюдается в твёрдых телах (металлах, полупроводниках и диэлектриках), а также газах (фотоионизация).
Внешний фотоэффект был открыт в 1887 г. Генрихом Рудольфом Герцем. Генрих Герц проводил опыты с цинковым разрядником – разрезанным пополам стержнем с парой металлических шариков на концах разреза. На разрядник подавалось высокое напряжение. При облучении цинкового разрядника ультрафиолетом было замечено, что прохождение искры в разряднике заметно облегчалось.
В 1888-1890 гг. Александр Григорьевич Столетов сделал несколько важных открытий в области фотоэффекта, в том числе вывел первый закон внешнего фотоэффекта.
В 1898 г. Джозеф Джон Томсон экспериментально установил, что поток электрического заряда, выходящий из металла при внешнем фотоэффекте, представляет собой поток открытых им ранее частиц – названных позднее электронами.
В 1900-1902 гг. Филипп Эдуард Антон фон Ленард доказал, что энергия вылетающего электрона всегда строго связана с частотой падающего излучения и практически не зависит от интенсивности облучения.
В 1905 г. внешний фотоэффект был объяснён Альбертом Эйнштейном.
Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Григорьевич Столетов в конце XIX века.
Внутренний фотоэффект:
Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним. Внутренним фотоэффектом называется возрастание электропроводности вещества (наблюдается, как правило, у полупроводников и диэлектриков) и уменьшение его сопротивления под действием электромагнитных излучений, например, в результате облучения вещества видимым, инфракрасным или ультрафиолетовым излучением. Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные, без вылета наружу.
В отличие от внешнего фотоэффекта во внутреннем фотоэффекте электроны, остаются в теле вещества (полупроводника или диэлектрика), но изменяют в нём своё энергетическое состояние и увеличивают концентрацию носителей зарядов в веществе. Так, при поглощении фотона электрон переходит из валентной зоны в зону проводимости. Как следствие образуется пара носителей заряда: электрон в зоне проводимости и дырка в валентной зоне. Концентрация носителей заряда приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика) или возникновению электродвижущей силы.
Впервые явление фотопроводимости (и соответственно явление внутреннего фотоэффекта) у селена открыл Уиллоуби Смит в 1873 г.
На основе внутреннего фотоэффекта работают полупроводниковые фотоэлементы, изготавливаемые из полупроводников. Полупроводники обладают как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы имеют устойчивую структуру и прочно связаны ковалентной связью. Так, например, один электрон в кристалле кремния связан двумя атомами. Чтобы электрону освободиться из атома, ему необходимо сообщить необходимый уровень внутренней энергии. Эта энергия появляется в нем при воздействии на полупроводник, например, видимым, инфракрасным или ультрафиолетовым излучением. Если её (энергии) достаточно, то отдельные электроны отрываются от ядра и становятся свободными. Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Место разрыва (свободное место в электронной оболочке атома) именуется дыркой – положительным зарядом, который равен заряду высвободившегося электрона. Если в это время к полупроводнику приложить разность потенциалов (т.е. внешний электрический ток), то в самом полупроводнике появится электрический ток. Представленный электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Вентильный (барьерный) фотоэффект:
Разновидностью внутреннего фотоэффекта является вентильный (барьерный) фотоэффект. Вентильный (барьерный) фотоэффект или фотоэффект в запирающем слое – это явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит). Вентильный (барьерный) фотоэффект – это возникновение электродвижущей силы под действием света в области p-n перехода. Вентильный (барьерный) фотоэффект возникает в неоднородных (по химическому составу или неоднородно легированных примесями) полупроводниках, а также у контакта полупроводник-металл (при отсутствии внешнего электрического поля).
При поглощении полупроводником фотона освобождается дополнительная пара носителей – электрон и дырка, которые движутся в разных направлениях: дырка в сторону полупроводника p-типа, а электрон в сторону полупроводника n-типа. В результате в полупроводнике n-типа образуется избыток электронов, а в полупроводнике p-типа – избыток дырок. Возникает разность потенциалов – фото-ЭДС и электрический ток. По мере увеличения разности потенциалов фототок постепенно возрастает, т.к. все большее число электронов достигает анода.
Эффект прямого преобразования света в электричество впервые был открыт в 1842 г. Александром Эдмоном Беккерелем.
В 1883 г. Чарльз Фриттс впервые создал первую работающую фотоэлектрическую ячейку, используя полупроводниковый материал селен. Фритц покрыл селен очень тонким слоем золота. Полученная фотоэлектрическая ячейка имела КПД преобразования света в электричество всего около 1%, что в сочетании с высокой стоимостью материала препятствовало использованию таких ячеек для энергоснабжения.
Первую солнечную батарею на основе кремния для получения электрического тока создали Кельвин Соулзер Фуллер, Дэрил Чапин и Геральд Пирсон, все трое – специалисты компании Bell Laboratories. О создании первой солнечной батареи было заявлено 25 марта 1948 года.
Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (фотоэлементы), имеющие неоднородные полупроводниковые структуры. Неоднородность структуры фотоэлемента может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов), или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны – энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.
КПД производимых в промышленных масштабах полупроводниковых фотоэлементов в настоящее время в среднем составляет 16-19 %, у лучших образцов – до 25 %. В лабораторных условиях уже достигнуты фотоэлементы с КПД порядка 44-45 %.
Максимальные значения эффективности фотоэлементов и модулей, достигнутые в лабораторных условиях
Тип | Коэффициент фотоэлектрического преобразования, % |
Кремниевые | 24,7 |
Si (кристаллический) | |
Si (поликристаллический) | |
Si (тонкопленочная передача) | |
Si (тонкопленочный субмодуль) | 10,4 |
Si (аморфный) | 9,5 |
Si (нанокристаллический) | 10,1 |
На основе арсенида галлия и т.п. | |
GaAs (кристаллический) | 25,1 |
GaAs (тонкопленочный) | 24,5 |
GaAs (поликристаллический) | 18,2 |
InP (кристаллический) | 21,9 |
Тонкие плёнки халькогенидов | |
CIGS (фотоэлемент) | 19,9 |
CIGS (субмодуль) | 16,6 |
CdTe (фотоэлемент) | 16,5 |
Фотохимические | |
На базе органических красителей | 10,4 |
На базе органических красителей (субмодуль) | 7,9 |
Органические | |
Органический полимер | 5,15 |
Многослойные | |
GaInP/GaAs/Ge | 32,0 |
GaInP/GaAs | 30,3 |
GaAs/CIS (тонкопленочный) | 25,8 |
a-Si/mc-Si (тонкий субмодуль) | 11,7 |
Многофотонный фотоэффект:
Многофотонный фотоэффект – это явление, при котором изменение электропроводности, возникновение ЭДС или эмиссия электронов происходит вследствие поглощения одновременно энергии не от одного, а от нескольких фотонов. Такой эффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков).
Наиболее часто понятие многофотонный фотоэффект употребляется по отношению к внешнему фотоэффекту
Световые кванты. Фотоэффект
Возникновение квантовой теории
Основная проблема, с которой физики столкнулись в 90-х годах XIX в., состояла в объяснении спектра теплового излучения абсолютно черного тела.
Абсолютно черное тело – тело, поглощающее всю энергию падающего на него излучения любой частоты при произвольной температуре.
По мере возрастания температуры максимум интенсивности теплового излучения испускаемого абсолютно черным телом смещается к более высоким частотам, что противоречило законам классической физики. Такое расхождение теории с экспериментом в конце XIX в. получило название «ультрафиолетовой катастрофы».
Новая теория света, предложенная в 1900 г. М. Планком основывалась на том, что атомы излучают свет не непрерывно, а дискретно, т.е. отдельными порциями – квантами. Энергия излучения кванта прямо пропорциональна частоте излучения:
В 1905 г. А.Эйнштейн предполагает, что свет не только испускается, но и поглощается квантами.
Для проверки квантовой теории света А.Эйнштейн предложил простой способ: количественные измерения фотоэффекта.
Фотоэлектрический эффект
Фотоэффект – явление испускания электронов из вещества под действием света.
Явление фотоэффекта было открыто Г.Герцем в 1887 г. и тщательно исследовано А.Г.Столетовым в 1888 г.
Электромагнитное излучение, падает на катод вакуумной трубки через кварцевое окно прозрачное для ультрафиолетовых волн и вырывает электроны, сообщая им некоторую кинетическую энергию. Благодаря этой энергии электроны улетают от катода, а некоторые из них достигают анода, создавая в цепи электрический ток, называемый фототоком.
Напряжение U между анодом и катодом регулируется потенциометром (реостатом). Интенсивность излучения регулируется мощностью лампы, сетками, светофильтрами. Под действием электрического поля электроны движутся от катода к аноду.
При постоянной интенсивности света и при увеличении напряжения между катодом и анодом возрастает сила фототока, но до некоторого максимального значения. Затем фототок остается постоянным. Максимальное значение силы тока Iн называется током насыщения. Таким образом, все электроны, выбиваемые светом из катода, достигают анода. Дальнейший рост тока невозможен.
Ток насыщения определяется числом электронов испускаемых за 1с с освещенного электрода.
Обнаружено что, когда напряжение между электродами равно нулю, ток в таком случае не прекращается.
Если полюсы источника поменять местами, то электрическое поле между электродами будет тормозить вырванные электроны. Прекращение электрического тока в цепи означает, что и самые быстрые электроны, получившие от излучения наибольшую кинетическую энергию, не могут преодолеть пространство между электродами с разностью потенциалов U0 и возвращаются на катод.
Следовательно, по величине тормозящего напряжения можно определить максимальное значение кинетической энергии (скорости) фотоэлектронов.
При изменении интенсивности падающего излучения тормозящее напряжение не меняется.
При увеличении интенсивности излучения и при постоянном напряжении сила фототока возрастает. Следовательно, сила фототока зависит от интенсивности падающего излучения.
От частоты излучения сила фототока не зависит.
На опыте было установлено, что скорость электронов (их кинетическая энергия) зависит от частоты излучения, но не зависит от его интенсивности.
Из графика видно, что существует определенное значение частоты излучения, ниже которой излучение не вызывает фотоэффекта независимо от его интенсивности. Такое значение частоты получило название красная граница nкр фотоэффекта. Для каждого вещества красная граница имеет свое значение.
Законы фотоэффекта
Квантовая теория фотоэффекта
А.Эйнштейн “… свет не только испускается, но и поглощается квантами“.
Эйнштейн для описания взаимодействия кванта света с электроном использовал закон сохранения энергии, где энергия кванта электромагнитного излучения, поглощенная электроном при фотоэффекте, расходуется на совершение работы выхода электрона из металла и на сообщение ему кинетической энергии после вылета из вещества.
Эта формула получила название уравнение (формула) Эйнштейна для фотоэффекта.
Таким образом, уравнение фотоэффекта объясняет все законы внешнего фотоэффекта.
Применение фотоэффекта
На основе внешнего фотоэффекта работают вакуумные и газонаполненные фотоэлементы. Их используют в схемах световой сигнализации, а также в звуковом кино для воспроизведения звука, записанного на кинопленке.
На явлении внутреннего фотоэффекта основано действие вентильных фотоэлементов. Это устройство, в котором энергия световой волны превращается в энергию электрического тока.
Такие источники тока используют в солнечных батареях, устанавливаемых на всех космических кораблях. Вентильные фотоэлементы являются основной частью люксметров – приборов для измерения освещенности, а так же фотоэкспонометров.
Используется при автоматическом управлении электрическими цепями с помощью световых сигналов и в цепях переменного тока.
Опорный конспект к уроку:
Краткие итоги:
Явление фотоэффекта открыто Г. Герцем в 1887 г. и исследовано Столетовыми Ленардом в 1888 г. Объяснение фотоэффекта противоречило волновой теории света.
Опираясь на идеи Планка о квантовом характере излучения, Эйнштейн в 1905 г.создал теорию фотоэффекта. Свет рассматривался в ней как фотонный газ – электромагнитное излучение, состоящее из потоков световых квантов (фотонов) с энергией E=hν, обладающей скоростью (с), массой (m), импульсом (p), частотой (ν), длиной волны (λ). Применяя закон сохранения энергии, Эйнштейн получилуравнение для фотоэффекта, описывающее взаимодействие одного кванта света с одним электроном:
Данное уравнение позволило объяснить экспериментальные факты, полученные в ходе исследования фотоэффекта с квантовой позиции.
1. Количество электронов, вырываемых с поверхности металла в секунду, прямо пропорционально световому потоку Р.
2. При увеличении частоты падающего света максимальная кинетическая энергия электронов возрастает линейно по формуле:
E=hν-A
3. Существует минимальная частота при которой выбивание электронов с поверхности металла не происходит (красная граница фотоэффекта):
hν=A
Квантовая теория фотоэффекта была экспериментально проверена в 1914 г. Р.Милликеном.
Явление фотоэффекта лежит в работе фотоэлектронных приборов.