Что такое экспонирование печатных плат
Экспонирование печатных плат
Следующим этапом фотолитографического процесса является экспонирование. При экспонировании в слое ламинированного на печатных плат фоторезиста образуется скрытое изображение. При этом светочувствительный компонент претерпевает ряд фотохимических превращений. В зависимости от типа применяемого фоторезиста светочувствительный состав закрепляется (сшивается) на экспонированных участках и не удаляется при дальнейшем проявлении под действием органических или водно-щелочных растворителей (негативные фоторезисты) либо наоборот переходит в растворимое состояние и легко удаляется с экспонированных участков при проявлении (позитивные фоторезисты). В качестве примера установки двухстороннего оптического экспонирования можно привести установку ф. КОЛАЙТ DMVL 1630. Рис. 37.
Система экспонирования состоит из двух УФ ламп со ступенчатой регулировкой мощности. Лампы производятся фирмой COLIGHT, что гарантирует их высокую надёжность и большой срок службы. Лампы расположены вместе со специальными отражателями сверху и снизу камеры экспонирования и обеспечивают высокую равномерность излучения по всей площади рамы. Для достижения высокой производительности на установке используются две выдвижные рамы. Во время экспонирования в одной раме, новая заготовка устанавливается во вторую раму экспонирования.
Вакуумная система надёжно фиксирует заготовку в раме. Простая и надёжная система транспортировки обеспечивает плавное перемещение рам в зону экспонирования. Традиционно при экспонировании использовался контактный метод, засветка производилась интегрально через фотошаблон (ФШ). В настоящее время для экспонирования используются малоусадочные пленочные ФШ. При двухсторонней засветке слоев и при засветке рисунка наружных слоев необходимо проводить процедуру совмещения ФШ-ов между собой или ФШ и внутренних слоев спрессованной многослойных печатных плат.
Выполняется она с помощью «кнопок» и базовых отверстий или устройств распознавания образов. Основным (но не единственным) недостатком оптического экспонирования является необходимость содержания комплекта оборудования для изготовления фотошаблонов (фотоплоттер и проявка) и инфраструктуру кондиционного хранения и периодической аттестации ФШ, существенно увеличивающие производственные издержки.
Последнее время для экспонирования, особенно в многономенклатурном производстве используется прямое экспонирование. Учитывая перспективность этого технологического метода его особенности будут рассмотрены далее в отдельном подразделе.
Система экспонирования состоит из двух УФ ламп со ступенчатой регулировкой мощности. Лампы производятся фирмой COLIGHT, что гарантирует их высокую надёжность и большой срок службы. Лампы расположены вместе со специальными отражателями сверху и снизу камеры экспонирования и обеспечивают высокую равномерность излучения по всей площади рамы. Для достижения высокой производительности на установке используются две выдвижные рамы. Во время экспонирования в одной раме, новая заготовка устанавливается во вторую раму экспонирования. Вакуумная система надёжно фиксирует заготовку в раме. Простая и надёжная система транспортировки обеспечивает плавное перемещение рам в зону экспонирования.
Традиционно при экспонировании использовался контактный метод, засветка производилась интегрально через фотошаблон (ФШ). В настоящее время для экспонирования используются малоусадочные пленочные ФШ. При двухсторонней засветке слоев и при засветке рисунка наружных слоев необходимо проводить процедуру совмещения ФШ-ов между собой или ФШ и внутренних слоев спрессованной многослойных печатных плат. Выполняется она с помощью «кнопок» и базовых отверстий или устройств распознавания образов. Основным (но не единственным) недостатком оптического экспонирования является необходимость содержания комплекта оборудования для изготовления фотошаблонов (фотоплоттер и проявка) и инфраструктуру кондиционного хранения и периодической аттестации ФШ, существенно увеличивающие производственные издержки.
9.1.Прямое экспонирование сухого пленочного фоторезиста
Прямое экспонирование (ПЭ) – это экспонирование ФР по программе, сфокусированным лучем лазерного или светодиодного источника (замена материального ФШ на виртуальный). При использовании прямого экспонирования в техпроцессе изготовления печатных плат необходимо выполнить несколько дополнительных операций свойственных традиционному процессу изготовления печатных плат – его фотолитографическому этапу.
Необходимо предварительно нанести сплошной слой светочувствительного материала (СПФ или паяльной маски ). И после экспонирования выполнить технологические операции проявления, а затем травления или задубливания.
Как технологическая операция ПЭ появилось в прошлом десятилетии, но на первоначальном этапе не получило широкого распространения, т.к. требовало использования специальных дорогостоящих в то время ФР.
Совершенствование оборудования ПЭ шло в 2-х направлениях:
— создание источников излучения способных экспонировать стандартные фоторезисты;
— отработка конструктивных схем установок в части использования более удобных в эксплуатации и обслуживании источников излучения (переход от твердотельных лазерных источников экспонирования на светодиодные).
Как только эти цели были достигнуты, произошел резкий всплеск распространения этого вида оборудования.На рис. 38 показана разница в требуемом количестве операций для ПЭ и традиционного оптического экспонирования.
Слева представлен процесс традиционного оптического экспонирования, состоящий из большого числа операций: изготовление фотошаблона (отрисовка и проявление), хранение фотошаблонов, их контроль время от времени (контроль требуется, если превышен нормативный срок хранения) и экспонирования фоторезиста.
Справа процесс прямого экспонирования, для которого требуются только программы, по которым происходит экспонирование.
Использование этой установки позволяет снизить инвестиционную и эксплуатационную нагрузку на производство, особенно для многономенклатурного производства. Нет необходимости приобретать и содержать оборудование для изготовления, хранения и аттестации большого количества ФШ.
Для лабораторных условий производства хорошо подойдет представленная на рис.40 установка ПЭ UV-P50 ф. Limata. Особенностью установки является работа с относительно маленькими заготовками (18′х12′) и относительно невысокая производительность. Это единственная в своем роде бюджетная система для производства прототипов и малых серий в условиях, когда не требуется высокая производительность.
При этом на всех установках прямого экспонирования можно использовать также и специальные фоторезисты, тем более, что сегодня их цена не сильно отличается от цены стандартных фоторезистов, используемых для оптического экспонирования. В любом случае производительность установок прямого экспонирования при работе со специальными фоторезистами будет больше чем при работе с стандартными фоторезистами, применяемыми при традиционном оптическом экспонировании. Справедливости ради надо упомянуть, что некоторые производители печатных плат выбирают именно этот вариант, компенсируя увеличение издержек на приобретение несколько более дорогого специального фоторезиста, уменьшением трудоемкости на операции прямого экспонирования.
Технология прямого экспонирования плат
В настоящее время игроки мирового рынка печатных плат сосредотачивают свои усилия на миниатюризации, повышении разрешающей способности для формирования элементов меньших размеров, а также на объемах производства от мелко- до среднесерийного. В связи с этим технология прямого экспонирования плат становится центральной темой выставок и конференций. На базе этой технологии свои услуги по выпуску опытных образцов начали предлагать даже крупносерийные производители печатных плат. Выставка Productronica 2011, а также состоявшаяся позднее в Москве выставка «ЭлектронТехЭкспо 2012» со всей очевидностью продемонстрировали, что замена технологии, использующей фотошаблоны, началась.
Посетив павильон B1 на выставке Productronicaв Мюнхене в ноябре 2011 года, вы бы очень быстро поняли, что станет будущим метода формирования изображений УФ-экспонированием в области производства печатных плат: самой значимой тематикой выставки была технология прямого формирования рисунка.
Множество компаний-участников выставки представили разнообразные технологии прямого формирования рисунка без применения фотошаблонов, которые реализуются системами на основе УФ-светодиодов и УФ-лазеров.
Преимущества технологии прямого формирования рисунка для печатных плат перед традиционным фотолитографическим процессом с использованием фотошаблонов выявить достаточно просто.
Вот лишь несколько примеров, раскрывающих потенциальные возможности этой технологии:
Чтобы воспользоваться перечисленными преимуществами, вы должны выбрать один из методов прямого формирования рисунка: от точечного экспонирования УФ-светодиодом и процессов формирования рисунка с помощью микрозеркал до классического процесса прямого лазерного формирования рисунка. Лазерная технология появилась на рынке первой и поэтому получила наибольшее распространение в мире среди всех процессов прямого формирования рисунка.
Одним из основных достоинств лазерной технологии является высокая плотность мощности в идеально сфокусированном лазерном луче, по сравнению с другими источниками, обладающими меньшей плотностью мощности, такими как светодиоды и УФ-лампы. Высокое качество пятна луча позволяет отклонять его в широких пределах, что в результате обеспечивает получение изображений с четкими контурами и высоким разрешением (на всей рабочей площади).
В настоящее время технология прямого лазерного формирования рисунка применяется и в производстве полупроводниковых устройств, отвечая самым высоким требованиям и обеспечивая отличное качество в теории и на практике. Основным недостатком такой технологии была ее недоступность для многих компаний.
Большинство производителей печатных плат не могло реализовать рентабельное производство из-за того, что предыдущие поколения систем лазерного формирования изображений требовали слишком высоких инвестиционных затрат и расходов на техническое обслуживание. Уникальный способ решения этой проблемы был найден компанией Limata из Мюнхена.
Технология лазерного формирования рисунка без ограничений
Деятельность компании Limata изначально была направлена на разработку и производство систем прямого экспонирования. В первый год своего существования она осуществила продажу четырех установок прямого ультрафиолетового формирования рисунка.
К настоящему времени инженеры компании добились больших успехов в разработке технологии прямого лазерного формирования рисунка для промышленного производства печатных плат. Новые модели установок прямого экспонирования UV-P100, UV-P150 и UV-P200, реализующих эту технологию, были представлены на выставке Productronica 2011 и стали объектом пристального внимания широкой аудитории (рис. 1).
Установки прямого экспонирования UV-P100, UV-P150 иUV-P200 осуществляют прямое экспонирование в соответствии с инновационной процедурой формирования рисунка с помощью сканирования УФ-лазером. В установках применяются новые полупроводниковые УФ-лазеры высокой мощности, срок службы которых составляет более 10 000 ч, или свыше трех лет наработки.
Применяя установки прямого лазерного формирования рисунка компании Limata, производители печатных плат в состоянии полностью заменить технологию фотолитографии, в состав которой входят фотоплоттер и установка контактного экспонирования с помощью фотошаблона. В соответствии с классом установки можно обеспечить высокий и постоянный уровень производительности для выпуска как небольших, так и средних серий продукции.
Установки прямого экспонирования UV-P100/150/200 реализуют совершенно не требующий фотошаблонов техпроцесс при чрезвычайно высоком уровне безопасной работы. Лазерный модуль состоит из двух лазерных источников, мощность которых достаточна для экспонирования стандартных сухих пленочных фоторезистов (30–70 мкм) и даже паяльных масок при исключительно малом времени обработки. У вас больше нет операций, где требовалось бы контактное экспонирование с помощью фотошаблона.
До настоящего времени производитель печатных плат вынужден был тратить многие часы на печать комплектов фотошаблонов для сухих пленочных фоторезистов и паяльных масок, проявление фотошаблонов, их очистку и подготовку к процессу экспонирования, даже если плата изготавливается в одном экземпляре.
Используя установки прямого формирования рисунка компании Limata, можно начать формирование рисунка на платах без каких-либо подготовительных операций.
Установки прямого лазерного формирования рисунка компании Limata в состоянии полностью выполнить все экспонирование для многослойной платы всего за несколько минут при отсутствии затрат на подготовку производства и материалы, благодаря чему вы можете обеспечить поставки печатных плат своим заказчикам в кратчайшие сроки.
В условиях конкуренции эта особенность является сильным коммерческим аргументом в производственном процессе. Более того, установки компании Limata обеспечивают уникальную 100%-ную безостановочную работу вашего производства.
Если один из лазеров находится на обслуживании, система прямого лазерного формирования рисунка компании Limata может продолжать работу с помощью второго резервного лазерного источника, так что процесс обработки стандартных сухих пленочных фоторезистов осуществляется равномерно за одинаковое время. Нет необходимости заключать дорогостоящий круглосуточный сервисный контракт (рис.2).
Масштабируемая технология для производства любого изделия
Рис. 3. Возможное увеличение производственных мощностей
Установки компании Limata реализуют процесс формирования рисунка при полном отсутствии фотошаблонов в условиях промышленного производства печатных плат. В силу этого стандартная производительность предварительно сконфигурированных систем прямого экспонирования UV-LDI-P100/150/200 может быть увеличена от небольших объемов для опытного производства до полномасштабного серийного производства.
Даже через несколько лет после ввода в эксплуатацию эти установки могут быть модернизированы с целью увеличения объемов выпуска изделий. Если заказчик желает увеличить свои производственные мощности, не составит труда выполнить несложную и недорогую модернизацию оборудования.
В одну установку прямого формирования рисунка можно установить до восьми модулей, так что за восемь часов можно экспонировать до 680 двусторонних заготовок ( рис. 3 ). Затрачивая на экспонирование каждой стороны заготовки 20 с, можно удовлетворить требования любого серийного производства.
Используя предлагаемые компанией Limata установки, производитель печатных плат получает еще одно преимущество, относящееся исключительно к пользователям систем прямого экспонирования.
В новых устройствах загрузку и выгрузку можно выполнять полностью автоматически при помощи промышленного робота.
Механизированная вакуумная выдвижная система установки подсоединяется к устройству загрузки/выгрузки. Компания Limata предлагает эту систему в составе общего комплекта поставки. Таким образом, вы можете утроить производительность обработки плат без задействования дополнительных человеческих ресурсов.
Быстрая окупаемость капиталовложений
Изготовление опытных образцов печатных плат означает, что производитель должен гарантировать быструю поставку продукции в заранее оговоренные сроки и, конечно, обеспечивать высокую степень гибкости. При традиционном производстве изготовление опытных образцов подразумевает, что практически каждый фотошаблон можно использовать только один раз.
Фотошаблон нельзя использовать в дальнейшем, даже если изменения в топологии минимальны, как, например, изменение в серийном номере платы. В заказ должны включаться все затраты на печать фотошаблонов. Все это усложняет и удорожает процесс прототипирования и становится причиной значительных расходов, в особенности при изготовлении многослойных плат.
У технологии производства, не требующей использования фотошаблонов, имеется огромный потенциал по сокращению расходов. Изготовление всего лишь семи различных опытных образцов в день повлечет за собой расходы, связанные с изготовлением фотошаблонов и превышающие 120 000 евро в год (рис. 4). Расходы возрастут еще сильнее, если у производителя печатных плат нет собственного подразделения по подготовке производства, оснащенного фотоплоттером и установкой проявления.
Рис. 4. Годовая экономия при производстве, не требующем использования фотошаблонов |
Используя технологию прямого лазерного формирования рисунка компании Limata, можно избавиться от всех затрат, связанных с фотошаблонами. Можно осуществлять экспонирование фоторезиста внутренних и внешних слоев, а также паяльной маски без фотошаблона. Вы можете полностью отказаться от оборудования для изготовления фотошаблонов при изготовлении небольших и средних серий продукции, а также опытных образцов.
Системы прямого лазерного формирования рисунка компании Limata не нуждаются в дорогих контрактах на сервисное обслуживание, а благодаря примененной в них инновационной лазерной технологии окупаемость вложенных средств наступает уже через 18 месяцев. Легко подсчитать, что при изготовлении семи различных опытных образцов в день машина полностью себя окупает. Это означает, что экономия затрат, связанных со стоимостью фотошаблонов (за 18 месяцев), превышает общие инвестиции.
Заключение
Если европейские производители печатных плат в будущем хотят оставаться конкурентоспособными, им не избежать применения технологии прямого формирования рисунка. Производство крупных партий изделий главным образом переместилось в Азию.
Сильная сторона европейских производителей — многономенклатурное мелкосерийное производство. Чтобы сохранить этот сегмент в рамках Европы, производители должны обладать технологическим преимуществом. В мелкои среднесерийном производстве, а также в производстве опытных образцов наступило подходящее время для смены технологии.
Системы прямого лазерного формирования рисунка компании Limata разработаны специально для этого производственного сегмента. В дополнение ко всем своим технологическим преимуществам эти системы наиболее эффективны в своем классе оборудования.
Изготовление высококачественных печатных плат в «домашних» условиях
Вступление с отступлением
Недостающие элементы дорисовывали рейсфедерами и ретушировали скальпелем.
Это был длительный и трудоемкий процесс, требующий от «рисователя» недюжинных художественных способностей и аккуратности. Толщина линий с трудом укладывалась в 0,8 мм, точность повторения была никакая, каждую плату нужно было рисовать отдельно, что сильно сдерживало выпуск даже очень маленькой партии печатных плат (далее ПП).
Что же мы имеем сегодня?
Прогресс не стоит на месте. Времена, когда радиолюбители рисовали ПП каменными топорами на шкурах мамонтов, канули в лету. Появление на рынке общедоступной химии для фотолитографии открывает перед нами совсем иные перспективы производства ПП без металлизации отверстий в домашних условиях.
Коротко рассмотрим химию, используемую сегодня для производства ПП.
Фоторезист
Можно использовать жидкий или пленочный. Пленочный в данной статье рассматривать не будем вследствие его дефицитности, сложностей прикатывания к ПП и более низкого качества получаемых на выходе печатных плат.
После анализа предложений рынка я остановился на POSITIV 20 в качестве оптимального фоторезиста для домашнего производства ПП.
Назначение:
POSITIV 20 фоточувствительный лак. Используется при мелкосерийном изготовлении печатных плат, гравюр на меди, при проведении работ, связанных с переносом изображений на различные материалы.
Свойства:
Высокие экспозиционные характеристики обеспечивают хорошую контрастность переносимых изображений.
Применение:
Применяется в областях, связанных с переносом изображений на стекло, пластики, металлы и пр. при мелкосерийном производстве. Способ применения указан на баллоне.
Характеристики:
Цвет: синий
Плотность: при 20°C 0,87 г/см 3
Время высыхания: при 70°C 15 мин.
Расход: 15 л/м 2
Максимальная фоточувствительность: 310-440 нм
Подробнее о POSITIV 20 можно почитать здесь.
В инструкции к фоторезисту написано, что хранить его можно при комнатной температуре и он не подвержен старению. Категорически не согласен! Хранить его нужно в прохладном месте, например, на нижней полке холодильника, где обычно поддерживается температура +2 +6°C. Но ни в коем случае не допускайте отрицательных температур!
Если использовать фоторезисты, продаваемые «на розлив» и не имеющие светонепроницаемой упаковки, требуется позаботиться о защите от света. Хранить нужно в полной темноте и температуре +2 +6°C.
Просветитель
Аналогично, наиболее подходящим просветителем я считаю постоянно используемый мной TRANSPARENT 21.
Назначение:
Позволяет непосредственно переносить изображения на поверхности, покрытые светочувствительной эмульсией POSITIV 20 или другим фоторезистом.
Свойства:
Придает прозрачность бумаге. Обеспечивает пропускание ультрафиолетовых лучей.
Применение:
Для быстрого переноса контуров рисунков и схем на подложку. Позволяет значительно упростить процесс репродуцирования и сократить временные затраты.
Характеристики:
Цвет: прозрачный
Плотность: при 20°C 0,79 г/см 3
Время высыхания: при 20°C 30 мин.
Примечание:
Вместо обычной бумаги с просветителем можно использовать прозрачную пленку для струйных или лазерных принтеров в зависимости от того, на чем будем печатать фотошаблон.
Проявитель фоторезиста
Существует много различных растворов для проявления фоторезиста.
Советуют проявлять с помощью раствора «жидкое стекло». Его химический состав: Na2SiO3*5H2O. Это вещество обладает огромным числом достоинств. Наиболее важным является то, что в нем очень трудно передержать ПП вы можете оставить ПП на не фиксированное точно время. Раствор почти не изменяет своих свойств при перепадах температуры (нет риска распада при увеличении температуры), также имеет очень большой срок хранения его концентрация остается постоянной не менее пары лет. Отсутствие проблемы передержки в растворе позволит увеличить его концентрацию для уменьшения времени проявления ПП. Рекомендуют смешивать 1 часть концентрата с 180 частями воды (чуть более 1,7 г силиката в 200 мл воды), но возможно сделать более концентрированную смесь, чтобы изображение проявлялось примерно за 5 секунд без риска разрушения поверхности при передержке. При невозможности приобретения силиката натрия используйте углекислый натрий (Na2СO3) или углекислый калий (K2СO3).
Также рекомендуют бытовое средство для прочистки сантехники «Крот».
Не пробовал ни первое, ни второе, поэтому расскажу, чем проявляю без каких-либо проблем уже несколько лет. Я использую водный раствор каустической соды. На 1 литр холодной воды 7 граммов каустической соды. Если нет NaOH, применяю раствор KOH, вдвое увеличив концентрацию щелочи в растворе. Время проявления 30-60 секунд при правильной экспозиции. Если по истечении 2 минут рисунок не проявляется (или проявляется слабо), и начинает смываться фоторезист с заготовки значит, неправильно выбрано время экспозиции: нужно увеличивать. Если, наоборот, быстро проявляется, но смываются и засвеченные участки, и незасвеченные либо слишком велика концентрация раствора, либо низкое качество фотошаблона (ультрафиолет свободно проходит сквозь «черное»): нужно увеличивать плотность печати шаблона.
Растворы травления меди
Лишнюю медь с печатных плат стравливают с помощью разных травителей. Среди людей, занимающихся этим дома, зачастую распространены персульфат аммония, перекись водорода + соляная кислота, раствор медного купороса + поваренная соль.
Я всегда травлю хлорным железом в стеклянной посуде. При работе с раствором нужно быть осторожным и внимательным: при попадании на одежду и предметы остаются ржавые пятна, которые с трудом удаляются слабым раствором лимонной (сок лимона) или щавелевой кислоты.
Концентрированный раствор хлорного железа подогреваем до 50-60°C, в него погружаем заготовку, стеклянной палочкой с ватным тампоном на конце аккуратно и без усилия водим по участкам, где хуже стравливается медь, этим достигается более ровное травление по всей площади ПП. Если не выравнивать принудительно скорость, увеличивается требуемая продолжительность травления, а это со временем приводит к тому, что на участках, где медь уже стравилась, начинается подтравливание дорожек. В итоге имеем совсем не то, что хотели получить. Очень желательно обеспечить непрерывное перемешивание травильного раствора.
Химия для смывки фоторезиста
Чем проще всего смыть уже ненужный фоторезист после травления? После многократных проб и ошибок я остановился на обыкновенном ацетоне. Когда его нет смываю любым растворителем для нитрокрасок.
Итак, делаем печатную плату
С чего начинается высококачественная печатная плата? Правильно:
Создание высококачественного фотошаблона
Для его изготовления можно воспользоваться практически любым современным лазерным или струйным принтером. Учитывая, что мы используем в рамках данной статьи позитивный фоторезист, там, где на ПП должна остаться медь, принтер должен рисовать черным. Где не должно быть меди принтер ничего не должен рисовать. Очень важный момент при печати фотошаблона: требуется установить максимальный полив красителя (в настройках драйвера принтера). Чем более черными будут закрашенные участки, тем больше шансов получить великолепный результат. Цвет не нужен, достаточно черного картриджа. Из той программы (рассматривать программы не будем: каждый волен выбирать сам от PCAD до Paintbrush), в которой рисовался фотошаблон, печатаем на обычном листе бумаги. Чем выше разрешение при печати и чем качественнее бумага, тем выше будет качество фотошаблона. Рекомендую не ниже 600 dpi, бумага не должна быть сильно плотной. При печати учитываем, что той стороной листа, на которую наносится краска, шаблон будет класться на заготовку ПП. Если сделать иначе, края у проводников ПП будут размытыми, нечеткими. Даем просохнуть краске, если это был струйный принтер. Далее пропитываем бумагу TRANSPARENT 21, даем просохнуть и фотошаблон готов.
Вместо бумаги и просветителя можно и даже очень желательно использовать прозрачную пленку для лазерных (при печати на лазерном принтере) или струйных (для струйной печати) принтеров. Учтите, что у этих пленок стороны неравнозначны: только одна рабочая. Если будете использовать лазерную печать, крайне рекомендую сделать «сухой» прогон листа пленки перед печатью просто прогоните лист через принтер, имитируя печать, но ничего не печатая. Зачем это нужно? При печати фьюзер (печка) прогреет лист, что неизбежно приведет к его деформации. Как следствие ошибка в геометрии ПП на выходе. При изготовлении двусторонних ПП это чревато несовпадением слоев со всеми вытекающими А с помощью «сухого» прогона мы прогреем лист, он деформируется и будет готов к печати шаблона. При печати лист во второй раз пройдет сквозь печку, но деформация при этом будет куда менее значительной проверено неоднократно.
Если ПП несложная, можно нарисовать ее вручную в очень удобной программе с русифицированным интерфейсом Sprint Layout 3.0R (
На подготовительном этапе рисовать не слишком громоздкие электрические схемы очень удобно в также русифицированной программе sPlan 4.0 (
Так выглядят готовые фотошаблоны, распечатанные на принтере Epson Stylus Color 740:
Печатаем только черным, с максимальным поливом красителя. Материал прозрачная пленка для струйных принтеров.
Подготовка поверхности ПП к нанесению фоторезиста
Для производства ПП используются листовые материалы с нанесенной медной фольгой. Самые распространенные варианты с толщиной меди 18 и 35 мкм. Чаще всего для производства ПП в домашних условиях используются листовые текстолит (прессованная с клеем ткань в несколько слоев), стеклотекстолит (то же самое, но в качестве клея используются эпоксидные компаунды) и гетинакс (прессованная бумага с клеем). Реже ситтал и поликор (высокочастотная керамика в домашних условиях применяется крайне редко), фторопласт (органический пластик). Последний также применяется для изготовления высокочастотных устройств и, имея очень хорошие электротехнические характеристики, может использоваться везде и всюду, но его применение ограничивает высокая цена.
Прежде всего, необходимо убедиться в том, что заготовка не имеет глубоких царапин, задиров и тронутых коррозией участков. Далее желательно до зеркала отполировать медь. Полируем не особо усердствуя, иначе сотрем и без того тонкий слой меди (35 мкм) или, во всяком случае, добьемся разной толщины меди на поверхности заготовки. А это, в свою очередь, приведет к разной скорости вытравливания: быстрее стравится там, где тоньше. Да и более тонкий проводник на плате не всегда хорошо. Особенно, если он длинный и по нему будет течь приличный ток. Если медь на заготовке качественная, без грехов, то достаточно обезжирить поверхность.
Нанесение фоторезиста на поверхность заготовки
На меди цвет покрытия может иметь зеленоватый оттенок.
Чем тоньше покрытие на заготовке, тем лучше результат.
Я всегда наношу фоторезист на центрифуге. В моей центрифуге скорость вращения 500-600 об/мин. Крепление должно быть простым, зажим производится только по торцам заготовки. Закрепляем заготовку, запускаем центрифугу, брызгаем на центр заготовки и наблюдаем, как фоторезист тончайшим слоем растекается по поверхности. Центробежными силами излишки фоторезиста будут сброшены с будущей ПП, поэтому очень рекомендую предусмотреть защитную стенку, чтобы не превратить рабочее место в свинарник. Я использую обыкновенную кастрюлю, в днище которой по центру сделано отверстие. Через это отверстие проходит ось электродвигателя, на которой установлена площадка крепления в виде креста из двух алюминиевых реек, по которым «бегают» уши зажима заготовок. Уши сделаны из алюминиевых уголков, зажимаемых на рейке гайкой типа «барашек». Почему алюминий? Маленькая удельная масса и, как следствие, меньше биения при отклонении центра массы вращения от центра вращения оси центрифуги. Чем точнее отцентрировать заготовку, тем меньше будут биения за счет эксцентриситета массы и тем меньше усилий потребуется для жесткого крепления центрифуги к основанию.
Фоторезист нанесен. Даем ему просохнуть в течение 15-20 минут, переворачиваем заготовку, наносим слой на вторую сторону. Даем еще 15-20 минут на сушку. Не забываем о том, что попадание прямого солнечного света и пальцев на рабочие стороны заготовки недопустимы.
Дубление фоторезиста на поверхности заготовки
Помещаем заготовку в духовку, плавно доводим температуру до 60-70°C. При этой температуре выдерживаем 20-40 минут. Важно, чтобы поверхностей заготовки ничто не касалось допустимы только касания торцов.
Выравнивание верхнего и нижнего фотошаблонов на поверхностях заготовки
На каждом из фотошаблонов (верхний и нижний) должны быть метки, по которым на заготовке нужно сделать 2 отверстия для совмещения слоев. Чем дальше друг от друга метки, тем выше точность совмещения. Обычно я их ставлю по диагонали шаблонов. По этим меткам на заготовке с помощью сверлильного станка строго под 90° сверлим два отверстия (чем тоньше отверстия, тем точнее совмещение я использую сверло 0,3 мм) и совмещаем по ним шаблоны, не забывая о том, что шаблон должен прикладываться к фоторезисту той стороной, на которую была произведена печать. Прижимаем шаблоны к заготовке тонкими стеклами. Стекла предпочтительнее всего использовать кварцевые они лучше пропускают ультрафиолет. Еще лучшие результаты дает оргстекло (плексиглас), но оно имеет неприятное свойство царапаться, что неизбежно скажется на качестве ПП. При небольших размерах ПП можно использовать прозрачную крышку от упаковки компакт-диска. За неимением таких стекол можно использовать и обычное оконное, увеличив время экспозиции. Важно, чтобы стекло было ровным, обеспечивая ровное прилегание фотошаблонов к заготовке, иначе невозможно будет получить качественные края дорожек на готовой ПП.
Экспозиция (засветка)
Время, требуемое для экспонирования, зависит от толщины слоя фоторезиста и интенсивности источника света. Лак-фоторезист POSITIV 20 чувствителен к ультрафиолетовым лучам, максимум чувствительности приходится на участок с длиной волны 360-410 нм.
Лучше всего экспонировать под лампами, диапазон излучения которых находится в ультрафиолетовой области спектра, но если такой лампы у вас нет можно использовать и обычные мощные лампы накаливания, увеличив время экспозиции. Не начинайте засветку до момента стабилизации освещения от источника необходимо, чтобы лампа прогрелась в течение 2-3 минут. Время экспозиции зависит от толщины покрытия и обычно составляет 60-120 секунд при расположении источника света на расстоянии 25-30 см. Используемые пластины стекла могут поглощать до 65% ультрафиолета, поэтому в таких случаях необходимо увеличивать время экспозиции. Лучшие результаты достигаются при использовании прозрачных плексигласовых пластин. При применении фоторезиста с длительным сроком хранения время экспонирования может потребоваться увеличить вдвое помните: фоторезисты подвержены старению!
Примеры использования различных источников света:
Источник света | Время | Расстояние | Примечание |
---|---|---|---|
ртутная лампа Philips HPR125 | 3 мин. | 30 см | покрытие из кварцевого стекла толщиной 5 мм |
ртутная лампа 1000W | 1,5 мин. | 50 см | покрытие из кварцевого стекла толщиной 5 мм |
ртутная лампа 500W | 2,5 мин. | 50 см | покрытие из кварцевого стекла толщиной 5 мм |
кварцевая лампа 300W | 3-4 мин. | 30 см | покрытие из кварцевого стекла толщиной 5 мм |
солнечный свет | 5-10 мин. | лето, в полдень, безоблачно | покрытие из кварцевого стекла толщиной 5 мм |
лампы Osram-Vitalux 300W | 4-8 мин. | 40 см | покрытие из кварцевого стекла толщиной 8 мм |
Лампы УФ-излучения
Каждую сторону экспонируем по очереди, после экспозиции даем выстояться заготовке 20-30 минут в затемненном месте.
Проявление экспонированной заготовки
Проявляем в растворе NaOH (каустическая сода) подробнее смотрите в начале статьи при температуре раствора 20-25°C. Если до 2 минут проявления нет мало время экспозиции. Если проявляется хорошо, но смываются и полезные участки вы перемудрили с раствором (слишком велика концентрация) или слишком велико время экспозиции при данном источнике излучения или фотошаблон низкого качества недостаточно насыщенный печатаемый черный цвет позволяет ультрафиолету засвечивать заготовку.
При проявлении я всегда очень бережно, без усилий «катаю» ватным тампоном на стеклянной палочке по тем местам, где должен смыться засвеченный фоторезист, это ускоряет процесс.
Промывка заготовки от щелочи и остатков отслоившегося засвеченного фоторезиста
Я делаю это под водопроводным краном обычной водопроводной водой.
Повторное дубление фоторезиста
Помещаем заготовку в духовку, плавно поднимаем температуру и при температуре 60-100°C выдерживаем 60-120 минут рисунок становится прочным и твердым.
Проверка качества проявления
Кратковременно (на 5-15 секунд) погружаем заготовку в подогретый до температуры 50-60°C раствор хлорного железа. Быстро промываем проточной водой. В местах, где фоторезиста нет, начинается интенсивное травление меди. Если где-то случайно остался фоторезист, аккуратно механически удаляем его. Удобно это делать обычным или офтальмологическим скальпелем, вооружившись оптикой (очки для пайки, лупа часовщика, лупа на штативе, микроскоп).
Травление
Травим в концентрированном растворе хлорного железа с температурой 50-60°C. Желательно обеспечить непрерывную циркуляцию травильного раствора. Плохо стравливающиеся места аккуратно «массируем» ватным тампоном на стеклянной палочке. Если хлорное железо свежеприготовленное, время травления обычно не превышает 5-6 минут. Промываем заготовку проточной водой.
Как готовить концентрированный раствор хлорного железа? Растворяем в слегка (до 40°C) подогретой воде FeCl3 до тех пор, пока не перестанет растворяться. Фильтруем раствор. Хранить нужно в затемненном прохладном месте в герметичной неметаллической упаковке в стеклянных бутылках, например.
Удаление уже ненужного фоторезиста
Смываем фоторезист с дорожек ацетоном или растворителем для нитрокрасок и нитроэмалей.
Сверление отверстий
Диаметр точки будущего отверстия на фотошаблоне желательно подбирать таким, чтобы впоследствии было удобно сверлить. Например, при требуемом диаметре отверстия 0,6-0,8 мм диаметр точки на фотошаблоне должен быть около 0,4-0,5 мм в таком случае сверло будет хорошо центроваться.
Желательно использовать сверла, покрытые карбидом вольфрама: сверла из быстрорежущих сталей очень быстро изнашиваются, хотя сталь можно применять для сверления одиночных отверстий большого диаметра (больше 2 мм), так как сверла с напылением карбида вольфрама такого диаметра слишком дорогие. При сверлении отверстий диаметром менее 1 мм лучше использовать вертикальный станок, иначе ваши сверла будут быстро ломаться. Если сверлить ручной дрелью неизбежны перекосы, ведущие к неточной стыковке отверстий между слоями. Движение сверху вниз на вертикальном сверлильном станке самое оптимальное с точки зрения нагрузки на инструмент. Карбидные сверла изготавливают с жестким (т.е. сверло точно соответствует диаметру отверстия) или с толстым (иногда называют «турбо-») хвостовиком, имеющим стандартный размер (обычно, 3,5 мм). При сверлении сверлами с карбидным напылением важно жестко закрепить ПП, так как такое сверло при движении вверх может приподнять ПП, перекосить перпендикулярность и вырвать фрагмент платы.
Для получения приемлемой точности необходимо правильно организовать рабочее место, то есть, во-первых, обеспечить хорошее освещение платы при сверлении. Для этого можно использовать галогенную лампу, прикрепив ее на штативе для возможности выбирать позицию (освещать правую сторону). Во-вторых, поднять рабочую поверхность примерно на 15 см выше столешницы для лучшего визуального контроля над процессом. Неплохо было бы удалять пыль и стружку в процессе сверления (можно использовать обычный пылесос), но это не обязательно. Надо отметить, что пыль от стекловолокон, образующаяся при сверлении, очень колкая и при попадании на кожу вызывает ее раздражение. И, наконец, при работе очень удобно пользоваться ножным включателем сверлильного станка.
Старайтесь избегать отверстий диаметром менее 0,7 мм. Всегда держите не менее двух запасных сверл 0,8 мм и менее, так как они всегда ломаются именно в тот момент, когда вам срочно надо сделать заказ. Сверла 1 мм и больше намного надежнее, хотя и для них неплохо бы иметь запасные. Когда вам надо изготовить две одинаковые платы, то для экономии времени их можно сверлить одновременно. При этом необходимо очень аккуратно сверлить отверстия в центре контактной площадки около каждого угла ПП, а для больших плат отверстия, расположенные близко от центра. Положите платы друг на друга и, используя центрующие отверстия 0,3 мм в двух противоположных углах и штифты в качестве колышков, закрепите платы относительно друг друга.
При необходимости можно зенковать отверстия сверлами большего диаметра.
Лужение меди на ПП
Если нужно облудить дорожки на ПП, можно воспользоваться паяльником, мягким низкоплавким припоем, спиртоканифольным флюсом и оплеткой коаксиального кабеля. При больших объемах лудят в ванных, наполненных низкотемпературными припоями с добавлением флюсов.
Наиболее популярным и простым расплавом для лужения является легкоплавкий сплав «Розе» (олово 25%, свинец 25%, висмут 50%), температура плавления которого 93-96°C. Плату при помощи щипцов помещают под уровень жидкого расплава на 5-10 секунд и, вынув, проверяют, вся ли медная поверхность покрыта равномерно. При необходимости операцию повторяют. Сразу же после вынимания платы из расплава его остатки удаляют либо с помощью резинового ракеля, либо резким встряхиванием в направлении, перпендикулярном плоскости платы, удерживая ту в зажиме. Другим способом удаления остатков сплава «Розе» является нагрев платы в термошкафу и встряхивание. Операция может проводиться повторно для достижения монотолщинного покрытия. Чтобы предотвратить окисление горячего расплава, в емкость для лужения добавляют глицерин, так чтобы его уровень покрывал расплав на 10 мм. После окончания процесса плата отмывается от глицерина в проточной воде. Внимание! Данные операции предполагают работу с установками и материалами, находящимися под действием высокой температуры, поэтому для предотвращения ожога необходимо пользоваться защитными перчатками, очками и фартуками.
Операция лужения сплавом олово-свинец протекает аналогично, но более высокая температура расплава ограничивает область применения данного способа в условиях кустарного производства.
Хочу поделиться еще одним способом лужения при помощи сплава «Розе», также проверенным на практике. Обыкновенная водопроводная вода наливается в консервную банку или небольшую мисочку, добавляется немного лимонной кислоты или уксуса, ставится на плиту. В кипящую воду помещается плата, высыпается несколько застывших капель сплава «Розе», которые тут же плавятся в кипящей воде, и ваткой, намотанной на длинный пинцет или палочку (чтобы не обжечься паром), аккуратно размазываются по дорожкам. По завершении процесса вода сливается, а застывшие остатки сплава складываются в какую-либо емкость до следующего использования.
Не забудьте после лужения очистить плату от флюса и тщательно обезжирить.
Если у вас большое производство можно использовать химическое лужение.
Нанесение защитной маски
Операции с нанесением защитной маски в точности повторяют все, что было написано выше: наносим фоторезист, сушим, дубим, центруем фотошаблоны масок, экспонируем, проявляем, промываем и еще раз дубим. Само собой, пропускаем шаги с проверкой качества проявления, травлением, удалением фоторезиста, лужением и сверлением. В самом конце дубим маску в течение 2 часов при температуре около 90-100°C она станет прочной и твердой, как стекло. Образованная маска защищает поверхность ПП от внешнего воздействия и предохраняет от теоретически возможных замыканий при эксплуатации. Также она играет не последнюю роль при автоматической пайке не дает «сесть» припою на соседние участки, замыкая их.
Все, двусторонняя печатная плата с маской готова
Мне приходилось таким образом делать ПП с шириной дорожек и шагом между ними до 0,05 мм (!). Но это уже ювелирная работа. А без особых усилий можно делать ПП с шириной дорожки и шагом между ними 0,15-0,2 мм.
На плату, показанную на фотографиях, я маску не наносил не было такой необходимости.
А вот и само устройство, для которого делалась ПП:
Это сотовый телефонный мост, позволяющий в 2-10 раз снизить стоимость услуг мобильной связи ради этого стоило возиться с ПП ;). ПП с распаянными компонентами находится в подставке. Раньше там было обыкновенное зарядное устройство для аккумуляторов мобильного телефона.
Дополнительная информация
Металлизация отверстий
В домашних условиях можно выполнить даже металлизацию отверстий. Для этого внутренняя поверхность отверстий обрабатывается 20-30-процентным раствором азотнокислого серебра (ляпис). Затем поверхность очищается ракелем и плата сушится на свету (можно использовать УФ-лампу). Суть этой операции в том, что под действием света азотнокислое серебро разлагается, и на плате остаются вкрапления серебра. Далее производится химическое осаждение меди из раствора: сернокислая медь (медный купорос) 2 г, едкий натр 4 г, нашатырный спирт 25-процентный 1 мл, глицерин 3,5 мл, формалин 10-процентный 8-15 мл, вода 100 мл. Срок хранения приготовленного раствора очень мал готовить нужно непосредственно перед применением. После осаждения меди плату промывают и сушат. Слой получается очень тонким, его толщину необходимо увеличить до 50 мкм гальваническим способом.
Самодельные фоторезисты
Фоторезист на основе желатина и бихромата калия:
Первый раствор: 15 г желатина залить 60 мл кипяченой воды и оставить для набухания на 2-3 часа. После набухания желатина поставить емкость на водяную баню при температуре 30-40°C до полного растворения желатина.
Второй раствор: в 40 мл кипяченой воды растворить 5 г двухромовокислого калия (хромпик, порошок ярко-оранжевого цвета). Растворять при слабом рассеянном освещении.
В первый раствор при интенсивном перемешивании влить второй. В полученную смесь пипеткой добавить несколько капель нашатырного спирта до получения соломенного цвета. Фотоэмульсия наносится на подготовленную плату при очень слабом освещении. Плата сушится до «отлипа» при комнатной температуре в полной темноте. После экспонирования плату при слабом рассеянном освещении промыть в теплой проточной воде до удаления незадубленного желатина. Чтобы лучше оценить результат, можно окрасить участки с неудаленным желатином раствором марганцовки.
Усовершенствованный самодельный фоторезист:
Первый раствор: 17 г столярного клея, 3 мл водного раствора аммиака, 100 мл воды оставить для набухания на сутки, затем греть на водяной бане при 80°C до полного растворения.
Второй раствор: 2,5 г бихромата калия, 2,5 г бихромата аммония, 3 мл водного раствора аммиака, 30 мл воды, 6 мл спирта.
Когда первый раствор остынет до 50°C, при энергичном перемешивании влейте в него второй раствор и полученную смесь профильтруйте (эту и последующие операции необходимо проводить в затемненном помещении, солнечный свет недопустим!). Эмульсия наносится при температуре 30-40°C. Дальше как в первом рецепте.
Фоторезист на основе бихромата аммония и поливинилового спирта:
Готовим раствор: поливиниловый спирт 70-120 г/л, бихромат аммония 8-10 г/л, этиловый спирт 100-120 г/л. Избегать яркого света! Наносится в 2 слоя: первый слой сушка 20-30 минут при 30-45°C второй слой сушка 60 минут при 35-45°C. Проявитель 40-процентный раствор этилового спирта.
Химическое лужение
Прежде всего, плату необходимо декапировать, чтобы удалить образовавшийся окисел меди: 2-3 секунды в 5-процентном растворе соляной кислоты с последующей промывкой в проточной воде.
Достаточно просто осуществлять химическое лужение погружением платы в водный раствор, содержащий хлорное олово. Выделение олова на поверхности медного покрытия происходит при погружении в такой раствор соли олова, в котором потенциал меди более электроотрицателен, чем материал покрытия. Изменению потенциала в нужном направлении способствует введение в раствор соли олова комплексообразующей добавки тиокарбамида (тиомочевины). Такого типа растворы имеют следующий состав (г/л):
1 | 2 | 3 | 4 | |
---|---|---|---|---|
Двухлористое олово SnCl2*2H2O | 5,5 | 5-8 | 20 | 10 |
Тиокарбамид CS(NH2)2 | 50 | 35-50 | — | — |
Серная кислота H2SO4 | — | 30-40 | — | — |
Винная кислота C4H6O6 | 35 | — | — | — |
Каустическая сода NaOH | — | 6 | — | — |
Молочнокислый натрий | — | — | 200 | — |
Сернокислый алюминий-аммоний (алюмоаммонийные квасцы) | — | — | — | 300 |
Температура, °C | 60-70 | 50-60 | 18-25 | 18-25 |
Среди перечисленных наиболее распространены растворы 1 и 2. Иногда в качестве поверхностно-активного вещества для 1-го раствора предлагается использование моющего средства «Прогресс» в количестве 1 мл/л. Добавление во 2-й раствор 2-3 г/л нитрата висмута приводит к осаждению сплава, содержащего до 1,5% висмута, что улучшает паяемость покрытия (препятствует старению) и многократно увеличивает срок хранения до пайки компонентов у готовой ПП.
Для консервации поверхности применяют аэрозольные распылители на основе флюсующих композиций. Нанесенный на поверхность заготовки лак после высыхания образует прочную гладкую пленку, которая препятствует окислению. Одним из популярных веществ является «SOLDERLAC» фирмы Cramolin. Последующая пайка проводится прямо по обработанной поверхности без дополнительного удаления лака. В особо ответственных случаях пайки лак можно удалить спиртовым раствором.
Искусственные растворы для лужения ухудшаются с течением времени, особенно при контакте с воздухом. Поэтому если у вас большие заказы бывают нечасто, то старайтесь приготовить сразу небольшое количество раствора, достаточное для лужения нужного количества ПП, а остатки раствора храните в закрытой емкости (идеально подходят бутылки типа используемых в фотографии, не пропускающие воздух). Также необходимо защищать раствор от загрязнения, которое может сильно ухудшить качество вещества.
В заключение хочу сказать, что все же лучше использовать готовые фоторезисты и не заморачиваться с металлизацией отверстий в домашних условиях великолепных результатов все равно не получите.