Как правило, современный персональный компьютер на базе x86-совместимого микропроцессора устроен следующим образом: микропроцессор через FSB подключается к системному контроллеру (обычно системный контроллер персонального компьютера называют «северным мостом», англ. North Bridge ). Системный контроллер имеет в своём составе контроллер ОЗУ (в некоторых современных персональных компьютерах контроллер ОЗУ встроен в микропроцессор), а также контроллеры шин, к которым подключаются периферийные устройства. Получил распространение подход, при котором, к северному мосту подключаются наиболее производительные периферийные устройства, например, видеокарты с шиной PCI Express 16x, а менее производительные устройства (микросхема PCI) подключаются к т. н. «южному мосту» (англ. South Bridge ), который соединяется с северным мостом специальной шиной. Набор из «южного» и «северного» мостов часто называют чипсетом (англ. chipset ).
Таким образом, FSB работает в качестве магистрального канала между процессором и чипсетом.
Некоторые компьютеры имеют внешнюю кэш-память, подключенную через «заднюю» шину (англ. back side bus ), которая быстрее, чем FSB, но работает только со специфичными устройствами.
Каждая из вторичных шин работает на своей частоте (которая может быть как выше, так и ниже частоты FSB). Иногда частота вторичной шины является производной от частоты FSB, иногда задаётся независимо.
Содержание
Параметры FSB у некоторых микропроцессоров
Процессор
частота FSB
Тип FSB [1]
Теоретическая пропускная способность
Pentium II
66 / 100 МГц
GTL+
533 / 800 МБ/с
Pentium III
100 / 133 МГц
AGTL+
800 / 1066 МБ/с
Pentium 4
100 / 133 / 200 МГц
QPB
3200 / 4266 / 6400 МБ/с [2]
Pentium M
100 / 133 МГц
QPB
3200 / 4266 МБ/с [2]
Pentium D
133 / 200 МГц
QPB
4266 / 6400 МБ/с [2]
Pentium 4 EE
200 / 266 МГц
QPB
6400 / 8533 МБ/с [2]
Intel Core
133 / 166 МГц
QPB
4266 / 5333 МБ/с [2]
Intel Core 2
200 / 266 / 333 / 400 МГц
QPB
6400 / 8533 / 10660 / 12800 МБ/с [2]
P6
100 / 133 МГц
GTL+
800 / 1066 МБ/с
NetBurst
100 / 133 / 166 / 200 / 266 / 333 МГц
QPB
3200 / 4266 / 5333 / 6400 / 8533 / 10660 МБ/с [2]
Penryn
266 / 333 / 400 МГц
QPB
8533 / 10660 / 12800 МБ/с [2]
100 / 133 МГц
EV6
1600 / 2133 МБ/с [3]
Athlon XP
133 / 166 / 200 МГц
EV6
2133 / 2666 / 3200 МБ/с [3]
Athlon 64/FX/600 / 800 / 1000 МГц
4800 / 6400 / 8000 МБ/с
900 / 1000 / 1250 МГц
—
7200 / 8000 / 10000 МБ/с
Влияние на производительность компьютера
Частота процессора
Частота, на которой работает центральный процессор, определяется исходя из частоты FSB и коэффициента умножения. Большинство современных процессоров имеют заблокированный коэффициент умножения, так что единственным способом разгона является изменение частоты FSB.
Память
До определённого момента в развитии компьютеров частота работы памяти совпадала с частотой FSB, на современных персональных компьютерах частоты FSB и шины памяти могут различаться. Обычно, частота памяти выше и задается делителями по отношению к FSB. Самый часто встречающийся делитель- 4:3.
Периферийные шины
На старых системах частоты шин ISA, PCI, AGP задавались в соотношении с FSB (изменение частоты FSB приводило к изменению частоты шины), на новых системах частоты для каждой шины задаются отдельно.
Полезное
Смотреть что такое «Частота системной шины» в других словарях:
ТАКТОВАЯ ЧАСТОТА — (clock rate), число основных операций (циклов выборки и исполнения команд) компьютера (см. КОМПЬЮТЕР), производимых за 1 секунду. Измеряется в герцах (Hz, Гц; и их производных по системе СИ килогерцах, kHz, кГц, мегагерцах, MHz, МГц; гигагерцах,… … Энциклопедический словарь
Список микропроцессоров Intel — Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту … Википедия
Pentium 4 — > Центральный процессор Производство … Википедия
Athlon XP — > Центральный процессор … Википедия
Willamette — > Центральный процессор Производство: с 2000 по 2008 год Производитель: ЦП: 1300 3800 МГц Частота FSB … Википедия
Duron — Duron >> Центральный процессор … Википедия
Celeron — Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон … Википедия
Athlon — > Центральный процессор … Википедия
Список моделей Pentium 4 — Основная статья: Pentium 4 Pentium 4 Intel Pentium 4 x86 совместимый процессор, анонсированный 20 ноября 2000 года. К процессорам семейства отн … Википедия
Список микропроцессоров Pentium 4 — Основная статья: Pentium 4 Pentium 4 … Википедия
Если процессор – это сердце персонального компьютера, то шины – это артерии и вены по которым текут электрические сигналы. Строго говоря, это каналы связи, применяемые для организации взаимодействия между устройствами компьютера. Кстати, если Вы думаете, что те разъемы, куда вставляются платы расширения и есть шины, то Вы жестоко ошибаетесь. Это интерфейсы (слоты, разъемы), с их помощью осуществляется подключение к шинам, которых, зачастую, вообще не видно на материнских платах.
Существует три основных показателя работы шины. Это тактовая частота, разрядность и скорость передачи данных. Начнем по порядку.
Тактовая частота
Работа любого цифрового компьютера зависит от тактовой частоты, которую определяет кварцевый резонатор. Он представляет собой оловянный контейнер в который помещен кристалл кварца. Под воздействием электрического напряжения в кристалле возникают колебания электрического тока. Вот эта самая частота колебания и называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходят через определенные интервалы, которые называются тактами. Отсюда сделаем вывод, что наименьшей единицей измерения времени для большинства логических устройств компьютера есть такт или еще по другому – период тактовой частоты. Проще говоря – на каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание в секунду, соответственно 1 МГц – миллион колебаний в секунду. Теоретически, если системная шина Вашего компьютера работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. К слову сказать, совсем не обязательно, что бы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого либо другого устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно выше тактовой частоты ОЗУ.
Разрядность
Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят, что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам одновременно. Здесь есть одна фишка. Дело в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации.
Скорость передачи данных
Название этого параметра говорит само за себя. Он высчитывается по формуле:
тактовая частота * разрядность = скорость передачи данных
Сделаем расчет скорости передачи данных для 64 разрядной системной шины, работающей на тактовой частоте в 100 МГц.
100 * 64 = 6400 Мбит/сек
6400 / 8 = 800 Мбайт/сек
Но полученное число не является реальным. В жизни на шины влияет куча всевозможных факторов: неэффективная проводимость материалов, помехи, недостатки конструкции и сборки а также многое другое. По некоторым данным, разность между теоретической скоростью передачи данных и практической может составлять до 25%.
За работой каждой шины следят специально для этого предназначенные контроллеры. Они входят в состав набора системной логики (чипсет).
Кроме системной шины на материнской плате есть еще шины ввода/вывода, которые отличаются друг от друга по архитектуре. Перечислю некоторые из них:
Очень многие именно так и поступают последние 15-20 лет. Сотня или больше.
Что есть, Front Side Bus (FSB, системная шина)? Шина, обеспечивающая соединение между x86/x86-64-совместимым центральным процессором и внутренними устройствами. Её опроная частота используется, с мультипликатором, процессором.
Весь инструментарий(я знаком с HwInfo64 и CPU-Z) именно на это (сотни) и заточен. Но вот, появился у меня процессор на котором я вижу частоту шины 25МГц.
И вроде все по честному, пару лет назад именно на них и перешли в АМД(Precision Boost), ими удобно точнее выставлять верхнюю границу рабочей частоты для ЦПУ. Но, тем не менее все (HwInfo64 и CPU-Z) продолжают показывать рабочую частоту исходя из 100МГц?! Поэтому мы видим очень подозрительную рабочую частоту ЦПУ. При заявленной 1500-1000МГц, процессор странным образом работает на 400-600МГц. Прокольчик.
Причем этот множитель влияет и на частоту работы памяти, по крайней мере на её отображаемые в тулсах параметры.
Само собой мысли сразу полетели в сторону ProcHot и ThermalThrottling. Но нет, с ними все было в порядке.
Ладно бы, эти «фальшивые» цифры рабочих частот, были только на моем «железе». Но нет, они же вылазят и на референсных платах(Bilby) от АМД. А датой выхода, этих процессоров на рынок, был первый квартал 2020-го.
Причем тесты на производительность, не показывают проседания. Рабочая частота как и заявлено 1500-1000МГц.
Бардак с частотами дополняется тем, что в настройках процессора присутствуют все цифры частот и 25 и 100МГц. И даже немного больше))). Так, например, для REFCLK существует еще и частота 27 МГц. Причем она заявлена как активная на момент после RESET. Тем не менее, всё время в течении выполнения UEFI, активна частота 25МГц. Но фокус, в Виндовс, мы снова видим в регистрах… 27МГц!
Хотя, документация от АМД, это совсем другая история. У АМД на нее никогда времени не хватало. Имеем, что имеем. И тому радуемся.
Так о чем же была статья? А не поверите, хочу инструментарий показывающий правду о железе. Вот и на жизнь жалуюсь. Хотя с такой документацией, которой радуют процессоростроители, ждать его прийдется еще не один год. Или, может вы знаете такой инструментарий? Тогда делитесь ссылками в комментариях!
Данная статья (FAQ) предназначается в большей степени для начинающих оверклокеров / пользователей. Пока еще на форумах часто появляются вопросы новичков по разгону, а значит, есть необходимость в такой статье. Несмотря на это в интернете я не обнаружил достаточно подробной и современной статьи на эту тему, поэтому и решил сам написать. В рамках этой статьи невозможно обсудить всё, но я постарался упомянуть самое важное. После прочтения моей статьи вы будете знать достаточно для успешного и относительно безопасного разгона. Но все же отмечу, что я не несу никакой ответственности за последствия разгона, в особенности в случае несоблюдения моих советов. Разгон процессора может привести к его полному выходу из строя, потере данных и порче других комплектующих.
реклама
Часть первая: ответы на основные вопросы о процессорах.
A: FPU, это Floating Point Unit. А проще говоря, блок операций с плавающей точкой или математический сопроцессор. Применён был впервые в процессоре Intel 80486 (1989 год).
Q: Что такое системная шина?
A: Системная шина (FSB) служит для связи процессора с остальными компонентами системы. Процессор имеет две частоты: внутреннюю и внешнюю. Внутренняя, это та самая, которая является его основной характеристикой. Внешняя же частота, это частота работы системной шины. Для Pentium 3 характерны были частоты системной шины в 100 и 133Mhz. У первых Pentium 4 реальная частота составляет 100Mhz, но зато передаётся четыре пакета данных за такт, т. е. скорость передачи данных получилась как при 400Mhz. У Athlon’ов все очень похоже, только передаётся 2 пакета за такт.
Q: Для чего нужна кэш память процессора?
A: Процессоры всегда работали быстрее, чем память, причем со временем разрыв между этими скоростями все увеличивается. Чем медленнее память, тем больше процессору приходится ждать. В кэш памяти находятся машинные слова (можно их назвать данными), которые чаще всего используются процессором. Если ему требуется какое-нибудь слово, то он сначала обращается к кэш памяти. Только если его там нет, он обращается к основной памяти. Существует принцип локализации, по которому в кэш вместе с требуемым в данный момент словом загружаются также и соседние с ним слова, т.к. велика вероятность того, что они в ближайшее время тоже понадобятся. У обыкновенных процессоров существует кэш память двух уровней. Кэш первого уровня (L1) обычно разделён пополам, половина выделена для данных, а другая половина под инструкции. Кэш второго уровня (L2) предназначается только для данных. Пропускная способность оперативной памяти конечно высока, но кэш память всегда работает в несколько раз быстрее. У старых процессоров (Pentium, K6 и др.) плата с кэшем L2 находилась на материнской плате. Скорость работы кэша при этом была довольно низкой, но её хватало. У Athlon K7, P2 и первых P3 кэш был помещён на специальную плату и работал на 1/2, 1/3 или 2/3 скорости ядра. У последних процессоров, в целях увеличения быстродействия, кэш L2 интегрирован в ядро и работает на его полной частоте. Стандартным и достаточным на данный момент считается объём кэша L2 в 256Kb. Многие процессоры имеют 512Kb L2. В ряде случаев большой кэш весьма полезен. С одной стороны, чем больше кэш, тем лучше, но с другой стороны, при увеличении кэша увеличивается время доступа к нему.
A: Ядро, это как бы версия (вариант) процессора. Процессоры с разными ядрами, это можно сказать разные процессоры. Разные ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. п. Чем новее ядро, тем лучше процессор разгоняется. В качестве примера можно привести P4, который имеет (на данный момент) два ядра Willamette и Northwood. Первое ядро производилось по 0.18мкм технологии и работало исключительно на 400Mhz шине. Самые младшие модели имели частоту 1.3Ghz, максимальные частоты для ядра находились немного выше 2Ghz. Своими разгонными качествами эти процессоры особо не славились. Позже был выпущен Northwood. Он уже был выполнен по 0.13мкм технологии и поддерживал шину в 400 и 533Mhz, а также имел увеличенный объём кэш памяти. Переход на новое ядро позволил значительно увеличить производительность и максимальную частоту. Младшие процессоры Northwood с частотой 1.6Ghz прекрасно разгоняются. Из данного примера можно делать для себя вывод, что это разные процессоры.
Q: Что такое степпинг (stepping) процессора?
реклама
A: Степпинг означает внутреннюю версию процессора. При исправлении мелких недочетов или ошибок в микрокоде выпускается модификация процессора, имеющая новый номер версии. По логике, чем больше степпинг, тем стабильнее себя ведет и лучше разгоняется процессор.
Q: Отличаются ли чем-то процессоры разной частоты?
A: Нет, если это одинаковые процессоры, то конструктивных отличий у них быть не может. Следует знать, что процессоры могут иметь разные ядра, поэтому и из-за разной номинальной частоты они могут лучше / хуже разгоняться и меньше / больше греться. Процессор на одном ядре часто имеет несколько вариантов (степпингов).
Q: Что такое MMX, 3DNow!, SSE?
A: Это так называемые дополнительные наборы инструкций. Они применяются в современных процессорах и способны значительно ускорить их работу. Естественно только при условии поддержки данных наборов со стороны приложения. К сожалению процессора, поддерживающего все возможные (употребляемые) наборы инструкций не существует. Intel является законодателем мод в данном случае. Все современные процессоры поддерживают набор инструкций MMX, который был самым первым (разработан еще в 1997 году). P3 поддерживают SSE, а P4 еще и SSE2. Современные процессоры AMD Athlon (Duron) поддерживают наборы инструкций 3DNow!+ и MMX+, в Athlon XP была добавлена поддержка SSE.
Q: Что такое коэффициент умножения и заблокированный коэффициент?
A: Коффициент умножения, это та цифра, на которую умножается частота системной шины, в результате чего получается рабочая частота процессора. Заблокированный коэффициент означает, что процессор будет умножать системную шину всегда на одну и ту же цифру. Т. е. разгон без увеличения частоты шины для такого процессора невозможен. У процессоров Athlon коэффициент можно разблокировать соединением мостиков на процессоре, а в некоторых случаях он изначально не заблокирован. Но у всех процессоров Intel, которые сейчас есть в продаже, коэффициент заблокирован и разблокировке не поддается.
Q: Что такое “мостики” на процессоре?
A: Мостики – это маленькие группы контактов на процессоре. Они могут быть соединены или разомкнуты. Путём изменения мостиков на процессорах AMD можно регулировать частоту их шины, коэффициент умножения, напряжение питания и т. п. Мостики бывают полезны когда вы, например не можете поставить нужное значение коэффициента на материнской плате или хотите заставить обычный процессор работать на двухпроцессорной плате. Мостики можно соединять обычным карандашом (это не всегда работает и ненадёжно), проведя линию оловом или специальным токопроводящим клеем и другими способами. Посмотреть справочник по мостикам процессоров AMD можно на сайте www.amdnow.ru.
Q: Я хочу знать точные характеристики моего процессора, как их можно выяснить?
A: Можно разобрать компьютер, снять кулер и посмотреть на маркировку процессора. Но легче и разумней выяснить всё при помощи какой-либо программы. Наиболее популярна и информативна программа WCPUID. Так же можно воспользоваться программой SiSoft Sandra, которая отображает достаточно подробную информацию обо всех компонентах компьютера.
Q: Как узнать поддерживает ли моя плата какой-то конкретный процессор?
Q: Разные процессоры имеют разные разъёмы, почему это так и совместимы ли они между собой?
реклама
Q: Отличаются ли OEM и Retail-варианты процессора? Вроде Retail лучше гонится?
A: В OEM-варианте комплект содержит лишь процессор в пластиковой упаковке (или без неё), и, соответственно, дешевле. Retail (boxed) поставляется в красочной коробке, в которой находятся инструкция по установке и кулер (довольно неплохой). Нельзя сказать, что сами чипы чем-то отличаются. В деле оверклокинга немаловажную роль играет кулер. К боксовым процессорам прилагается довольно приличные кулеры, которые обеспечивает лучшее охлаждение, чем NoName, который вам, скорее всего, предложат при покупке OEM-варианта.
Q: Чем отличаются процессоры Pentium и Celeron, Athlon и Duron?
A: У процессоров Celeron в два или четыре раза меньше кэш памяти второго уровня (первые Celeron’ы вообще не имели кэша второго уровня). У них по сравнению с Pentium понижена системная шина. У процессоров Duron по сравнению с Athlon тоже меньше кэш памяти в 4 раза и тоже ниже системная шина. Основные характеристики процессоров можно посмотреть в таблице в конце статьи. Есть задачи, в которых между обычными и урезанными процессорами почти нет разницы, а в некоторых случаях отставание довольно серьёзное. Но в среднем, при сравнении с неурезанным процессором той же частоты, отставание это равно 10-30%. Зато урезанные процессоры имеют тенденцию лучше гнаться из-за меньшего объёма кэш памяти. Короче говоря, если разница в цене между нормальным и урезанным процессором значительная, то стоит брать урезанный. Хотя здесь необходимо отметить, что последние P4 Celeron Northwood работают весьма плохо по сравнению с полноценными P4 на том же ядре, отставание в некоторых ситуациях достигает 50%.
Q: Какой процессор сейчас наиболее выгоден по соотношению цена / качество?
реклама
A: На данный момент это младшие модели Athlon XP. Они стоят уже совсем недорого (в 2 с лишним раза дешевле аналогичных по скорости Pentium 4) и работают примерно так же. Процессоры Duron, хоть и стоят еще дешевле, но и по скорости они значительно проигрывают Athlon XP. Если вы хотите проапгрейдить старую систему на Socket 370, то вполне можно брать Celeron Tualatin 1000-1200Mhz. Эти процессоры имеют приличный разгонный потенциал и кэш 256 килобайт.
Q: Если Athlon XP такой дешевый, значит у него есть недостатки, какие?
Q: Почему Pentium 4 в некоторых программах / тестах отстает по скорости от аналогичного по частоте / рейтингу Athlon и даже Pentium 3?
A: Все дело в том, что у P4 очень длинный конвейер выполнения инструкций. Чем длиннее конвейер, тем легче наращивать тактовую частоту, но тем меньше производительности получается на каждый полученный мегагерц. И наоборот. Чем на большее количество стадий рассчитан конвейер, тем меньше работы приходится на каждый отдельный такт и тем быстрее этот такт выполняется. Допустим, у нас имеется простейший блок из нескольких, связанных друг с другом операций:
реклама
Q: Насколько хороши процессоры VIA C3?
A: Единственным их достоинством являются низкое тепловыделение. Рассеиваемая мощность у них 5—20 Ватт против 40-60 у AXP и P4. C3 совместимы с устаревшим Socket 370, хотя не со всеми платами, например для нового ядра Nehemiah требуется поддержка Tualatin’а со стороны платы. По скорости они очень сильно уступают (до 50%, иногда даже больше) аналогичным по частоте процессорам Intel и AMD из-за маленького размера кэша (64Кб L1 и L2) и еще по ряду причин. Даже некоторые усовершенствования вроде поддержки SSE им ничего особо не дали. В продаже данных процессоров почти нет и я ничуть об этом не сожалею :). В случае если вам нужна тихая машина (такому процессору часто достаточно только радиатора), а скорость не важна, то можно взять. Теоретически они должны бы разгонятся неплохо (технология изготовления достаточно прогрессивная), но на практике этого не наблюдается.
Q: Имеет ли смысл использовать двухпроцессорную систему?
реклама
A: Для игр нет, они просто чаще всего не будут использовать второй процессор. Для других задач это может быть полезным. Но обязательно при этом использование операционную системы с поддержкой нескольких процессоров, например Windows 2000. Самая большая проблема в материнской плате. Таких плат пока мало в продаже, они дороги и почти не имеют возможностей разгона :(.
Q: Отличаются ли чем-то процессоры для двухпроцессорных конфигураций от обычных?
A: Обычно отличий по производительности нет (при одинаковых основных характеристиках). Есть отличия по цене, конструкции и названию. Для работы в двухпроцессорных конфигурациях предназначены процессоры Intel Xeon, Pentium 3-S, AMD Athlon MP. Обычные процессоры AMD Athlon можно заставить работать в двухпроцессорной конфигурации замыканием последнего мостика группы L5 (подробнее о мостиках смотрите дальше).
Q: Что такое Hyper Threading?
A: Данная технология предназначена для увеличения эффективности работы процессора. По оценкам Intel, большую часть времени работает всего 30% всех исполнительных устройств в процессоре. Поэтому возникла идея каким-то образом использовать и остальные 70% (как вы уже знаете Pentium 4, в котором применяют эту технологию, отнюдь не страдает от избыточной производительности на мегагерц). Суть Hyper Threading состоит в том, что во время исполнения одной «нити» программы, простаивающие исполнительные устройства могут перейти на исполнение другой «нити» программы. Т. е. получается нечто вроде разделение одного физического процессора на два виртуальных. Возможны и ситуации, когда попытки одновременного исполнения нескольких «нитей» приведут к ощутимому падению производительности. Например, из-за того, что размер кэша L2 довольно мал, а активные «нити» будут пытаться загрузить кэш. Возможна ситуация, когда борьба за кэш приведет к постоянной очистке и перезагрузке данных в нем (следовательно будет падать скорость). Очень важно помнить, что пока наблюдается отсутствие нормальной поддержки со стороны операционных систем и, самое главное, необходимость перекомпиляции, а в некоторых случаях и смены алгоритма, приложений, чтобы они в полной мере смогли воспользоваться Hyper Threading. Первые тесты это уже доказывают, ощутимого прироста в скорости нет, иногда наблюдается даже некоторое падение производительности.
реклама
Часть 2: Разгон процессоров.
Q: Какой смысл в разгоне процессора?
A: Разгон имеет смысл если вас немного не устраивает производительность вашего процессора. Если она вас сильно не устраивает, то легче сменить процессор на более новый и быстрый. Путем разгона можно получить прирост производительности в 10-50% (иногда и более). Если ваш компьютер работает в целом неплохо, но количество кадров в секунду в новой игре (Unreal 2 например) у вас 25-30, то тут может помочь разгон. С его помощью можно будет выбить, предположим, нормальные 30-40 кадров (возможно придётся в добавок и видеокарту разогнать немного). Разгонять процессор просто так не советую, собственно ради чего его тогда напрягать?
Q: Почему вообще гонятся процессоры?
A: Во первых надо помнить, что одинаковые процессоры работающие на разных частотах конструктивных отличий не имеют. Производитель процессоров не в состоянии проверить каждый процессор на всех частотах. Он тестирует партию процессоров на какой-то одной частоте, предположим не максимальной для определённого ядра, и отбраковывает часть процессоров не прошедших тест при этом. Естественно среди отобранных могут попасться процессоры, работающие на значительно более высоких частотах. Отбракованные процессоры в свою очередь тестируются на более низкой частоте и соответственно маркируются. или отбраковываются и т. п. Также стоит отметить, что при отлаживании технического процесса производства процессоров, процент разброса по частотам уменьшается, но всё же имеет место. Даже если вам попал процессор, который не прошёл тестирование на частоте большей, чем на его маркировке, то все равно у него есть некоторый потенциал для разгона. Все это потому, что тестируются процессоры в очень жёстких условиях и без повышения стандартного напряжения. А мы можем обеспечить процессору хорошее охлаждение и повысить на нём напряжение, так что 10-15 процентный разгон почти всегда гарантирован. Бывают и случаи когда целые партии, работающие на высоких частотах, маркируются как работающие на низких, просто по причине потребности в медленных и дешёвых процессорах. Был случай, когда процессоры AMD K6-2 маркированные как 200 и 233Mhz прекрасно работали на 450Mhz и даже более. Все дело было в том, что реально это были 350’ые процессоры :).
реклама
Q: Каким образом разгон зависит от технологии изготовления (0.18мкм, 0.13мкм и. т. п.)?
Q: Я хочу разогнать свой процессор, что нужно сделать конкретно?
A: Для начала cтоит изучить инструкцию к имеющейся материнской плате. Найти пункты меню BIOS, отвечающие за частоту FSB и коэффициента умножения. Иногда в BIOS нет ничего или почти ничего подобного, тогда нужно посмотреть какие джамперы есть на материнской плате. Назначение тех или иных джамперов можно посмотреть в инструкции к материнской плате. Если инструкции нет, то можно попытаться найти какую-то информацию на самой материнской плате (на плате часто подписаны джамперы и значения их положений) или найти инструкцию в Интернете на сайте производителя. Все настройки / джамперы можно менять, но в разумных пределах. Например сразу увеличивать частоту FSB или коэффициент умножения раза 2 не стоит :). Все нужно делать осторожно, частоты наращивать по возможности плавно, по 5-10%. В случае если Windows не загружается, нужно понизить немного разгон или повысить напряжение на процессоре. После удачной загрузки нужно все хорошенько протестировать (как это делать написано в одном из моих ответов). Отмечу, что в BIOS отображается реальное значение шины, а не удвоенное или учетверённое. Я назвал значение шины реальным потому, что она на самом деле на такой частоте и работает, как уже ранее упоминалось. Очень важно знать, что если у вас система без разгона работает нестабильно (виснет, выскакивают “синие экраны” и т. п.), то разгонять процессор очень не рекомендуется. Сначала необходимо протестировать хорошенько компьютер на предмет ошибок и выявить источник проблем.
Q: Как разгонять эффективнее по коэффициенту или по шине?
A: По шине эффективнее, так как разгоняются при этом память и шина AGP (шина видеокарты). Следовательно, повышается пропускная способность всех этих шин, а это очень полезно. Но если вы хотите минимизировать возможные последствия от разгона, то можете ограничится повышением коэффициента, если есть такая возможность (процессоры Intel её не имеют).
Q: Можно ли разогнать процессор, не влезая в BIOS и не открывая корпус?
A: Да, в некоторых случаях можно. Иногда производитель (Gigabyte, MSI и др.) поставляет с платой программу разгона прямо из Windows. Существует так же программы CPU FSB, SoftFSB и другие подобные, которые могут менять частоту шины прямо на ходу (при условии поддержки вашей материнской платы с их стороны). Предупреждаю, что при таком разгоне компьютер может зависнуть. В таком разгоне вообще нет особого смысла, если у вас, конечно, не запломбирован корпус и не поставлен пароль на BIOS ;).
Q: А что с ноутбуками, можно их разгонять?
A: Можно, но не нужно ;). Просто в ноутбуке затруднено охлаждение и все очень точно подогнано под какой-то более менее определённый процессор. Возможности разгона чаще всего очень малы, а могут и вообще отсутствовать. Надо помнить, что при разгоне увеличивается потребляемая мощность и тепловыделение процессора, а следовательно у ноутбука сокращается срок работы от батарей и увеличивается температура.
Q: Какой процессор лучше взять для хорошего разгона?
Q: Можно ли как-то определить какой конкретный процессор лучше разгоняется, чтобы купить именно его?
Q: Что требуется для успешного разгона, кроме удачного процессора?
Q: Какие материнские паты наиболее подходят для разгона?
Q: А что с оперативной памятью?
A: Стоит брать память известных производителей, она дороже, но стабильнее при разгоне. Наиболее удачными и популярными являются модули Kingston, Infineon, Hyundai (Hynix), Samsung и др. Если есть возможность, лучше поставить память с запасом, т. е. на плату, в штатном режиме работающую с памятью на 333Mhz, взять память, которая держит 400Mhz. Это даст гарантию отсутствия ошибок при разгоне памяти до данной частоты.
Q: Можно ли использовать современный процессор со старой памятью DIMM?
Q: С какой памятью наиболее выгодно использовать современный процессор?
Q: Насколько можно повышать напряжение на процессоре при разгоне и нужно ли это?
A: Очень не рекомендуется повышать более чем на 25%, это может быть фатально для процессора. А лучше ограничится 10-15%. Смысл в этом часто есть: повышается стабильность работы и открывается возможность разогнать побольше.
Q: В каких пределах безопасно повышение системной шины, как добиться наилучшего результата?
A: Шину можно ставить какую угодно :). Она ограничена только возможностями платы / чипсета и конечно процессора. Иногда нужно повысить напряжение и / или понизить коэффициент умножения для достижения наилучшего результата. Очень важно, что при этом будет на других шинах. Видеокарта, например, редко терпит сильное повышение шины, но это решается переключением в более медленный режим (с AGP 4X на AGP 2X, например) или повышением напряжения на AGP (такая возможность часто предусмотрена на платах). Геймеров предупреждаю, что переключать шину видеокарты в более медленный режим крайне не рекомендуется :). Понятно так же, что память не должна давать сбоев, иногда эту проблему можно решить переключением её в более медленный режим по шине, снижением таймингов или повышением напряжения на ней. Очень рекомендую поискать плату с возможностями изменения делителя PCI, AGP и памяти. Тогда вы сможете эффективно разгонять процессор не затрагивая при этом например видеокарту или память. Хотя при увеличении системной шины вырастает её пропускная способность, следовательно память лучше тоже разгонять.
Q: Какая температура нормальна для современных процессоров?
Q: Какое охлаждение требуется для разогнанного процессора?
A: Как минимум, нужен хороший кулер с удачным алюминиевым радиатором. Кулеры с медными радиаторами могут быть значительно лучше из-за лучшей теплопроводности меди, но они иногда сильно хуже по причине непродуманной конструкции. Из фирм-производителей можно посоветовать Thermaltake, Titan, CoolerMaster, Zalman. Так называемый NoName лучше не брать: процессор может сильно пострадать из-за остановившегося или просто плохого кулера. Стоит так же отметить, что бежать в магазин и менять боксовый кулер от процессора на самый крутой не всегда нужно, он не так плох. Ну а если вам его недостаточно, то можно и сменить. Можно применять так же жидкий азот, водяное охлаждение и некоторые другие методы. Первое вообще не реально в наших условиях :). Второй вариант более реален, но требует самостоятельного изготовления системы охлаждения или покупки её за весьма немалые деньги (не менее 100$). Причём это не самый надёжный способ: если что-то протечёт, почти гарантирован выход чего-нибудь из строя. А если остановится кулер, то пострадает только процессор (ну, в худшем случае ещё и материнская плата). Но ничего лучше водяного охлаждения для экстремального разгона в домашних условиях пока не придумали. Естественно большое значение имеет корпус. Нужно брать корпус с горизонтально расположенным блоком питания и наибольшим количеством мест под дополнительные вентиляторы. Очень хорошо себя зарекомендовали корпуса Inwin, которые поставляются с качественными блоками питания фирмы Powerman.
Q: Зачем нужна термопаста, как её использовать?
A: Термопаста нужна для обеспечения лучшего теплоотвода. Она заполняет мелкие полости между кристаллом и радиатором. Наносить термопасту нужно очень тонким слоем на процессорный кристалл (на защитную пластинку на нём). Нужно помнить, что термопаста хоть и улучшает теплоотвод, но обладает сама по себе довольно низкой теплопроводностью, из этого следует, что излишнее её количество может всё испортить. Наилучшими, по мнению оверклокеров являются наши отечественные термопасты КПТ-8 и АлСил-3.
Q: Как проверить стабильность работы и отсутствие ошибок при разгоне?
A: Есть много программ, пригодных для такой цели. Лучше всего запустить какое-то приложение типа 3Dmark на ночь. Если после длительного прогона тестов ошибок не возникло, то все скорее всего удачно. Можно поэкспериментировать с архивацией и последующей разархивацией больших объёмов данных (>=500Mb) при помощи WinRAR. Если появились ошибки в контрольной сумме (CRC error), то нужно выяснять источник ошибки. Им может быть процессор, память, а иногда материнская плата. Так же есть полезная программа под названием CPU Stability Test, её нужно запустить надолго и если не повиснет, значит с процессором все OK. Память стоит отдельно проверить программой вроде TestMem под DOS или тестом памяти из FixIt Utilites (его мало кто принимает всерьёз, но он реально выявляет ошибки).
A: Сейчас повсеместно используется программа SiSoft Sandra (2003) для тестирования процессоров. Хотя тесты там синтетические (т. е реально процессоры выдающие одинаковый результат по тесту могут работать совсем по разному в реальных приложениях), но прекрасно отражают изменения производительности от разгона. Есть целый ряд программ для тестирования процессора и системы в целом. Перечислять их названия бесполезно, легче посмотреть чем пользуются сейчас на популярных сайтах. Можно архивировать какой-то большой хорошо сжимающийся каталог (файл) и замерять время, на это затраченное. Если вы заядлый игрок, стоит применить 3DMark. Причем я рекомендую 3DMark 2001, он хоть и не самый новый, но не требует от видеокарты поддержки всех самых современных технологий и лучше отражает реальную производительность в существующих играх. Для уменьшения влияния видеокарты на результат теста и увеличения нагрузки на процессор, можно установить Software T&L в настройках теста. Уже начинают появляться игрушки, которым всего мало, и 3DMark 2003 им предвестник. Замерять производительность при помощи Quake 3 конечно можно, но не подходит это для современных компьютеров, выдающих там 250-300 кадров в секунду.
Q: Что может пострадать от разгона?
Q: Я неудачно разогнал процессор, он наверное сгорел. Что делать?
A: Стоит убедиться, что дело именно в процессоре. Если из корпуса идёт дым и пахнет палёным, возможно так и есть. Но если компьютер просто не загружает Windows, выводится только заставка BIOS или он пищит (в случае отказа / отсутствия процессора компьютер не пищит), то причина в другом. Например, в контроллере IDE или видеокарте. Стоит попробовать вытащить из разъемов на материнской плате шлейфы жестких дисков и CD-ROM, а также все платы. Следует помнить, что некоторые экземпляры могут просто не запуститься на той частоте FSB, которую вы поставили. В таком случае нужно снизить разгон. Тогда может помочь обнуление настроек BIOS (если разгоняли с его помощью), его можно осуществить воспользовавшись соответствующим джампером на материнской плате (на всех современных платах он присутствует) или временным отключением батарейки (еcли джампера все же нет). Все настройки при этом примут изначальное положение.
Далее следует таблица с основными характеристиками процессоров. Отмечу, что там отсутствуют редко встречающиеся процессоры вроде Xeon, Cyrix, VIA C3, WinChip и др. Все нижеперечисленные процессоры поддерживают набор инструкций MMX, поэтому в таблице он не упоминался.
Фирма
Название
Ядро
Разъём
Техпроцесс, мкм
Характеристики
Год выпуска
Intel
Pentium 2
Klamath
Slot-1
0.25
66Mhz FSB, 32Kb L1, 512Kb L2 на процессорной плате
1997
Deschutes
Slot-1
0.25
100Mhz FSB, 32Kb L1, 512Kb L2 на процессорной плате
1998
Pentium 2 Celeron
Convigton
Slot-1
0.25
66Mhz FSB, 32Kb L1, 128Kb L2 на процессорной плате
1997
Mendocino
Slot-1
0.25
66Mhz FSB, 32Kb L1, 128Kb L2 на процессорной плате
1998
Socket 370
0.25
66Mhz FSB, 32Kb L1, 128Kb L2
1999
Pentium 3
Katmai
Slot-1
0.25-0.18
100 или 133Mhz FSB, 32Kb L1, 512Kb или 256Kb L2 на процессорной плате, SSE
1999
Coppermine
Socket 370
0.18
100 или 133Mhz FSB, 32Kb L1, 256Kb L2, SSE
1999
Tualatin
Socket 370
0.13
133Mhz FSB, 32Kb L1, 512Kb L2, SSE
2001
Pentium 3 Celeron
Coppermine 128
Socket 370
0.18
66 или 100Mhz FSB, 32Kb L1, 128Kb L2, SSE
1999
Tualatin
Socket 370
0.13
100Mhz FSB, 32Kb L1, 256Kb L2, SSE
2001
Pentium 4
Willamette
Socket 423 или 478
0.18
400Mhz FSB, 8KB L1, 256KB L2, SSE, SSE2
2000
Northwood
Socket 478
0.13
400 или 533Mhz (а скоро еще и 800Mhz) FSB, 8KB L1, 256KB L2, SSE, SSE2
2001
Pentium 4 Celeron
Willamette
Socket 423 или 478
0.18
400Mhz FSB, 8KB L1, 128KB L2, SSE, SSE2
2000
Northwood
Socket 478
0.13
400Mhz FSB, 8KB L1, 128KB L2, SSE, SSE2
2001
AMD
K6
K6
Socket 7
0.30
66Mhz FSB, 64Kb L1, L2 на материнской плате
1997
Little Foot
Socket 7
0.25
66Mhz FSB, 64Kb L1, L2 на материнской плате
1997
K6-2
K6-2(K6 3D)
Socket 7
0.25
66Mhz FSB, 64Kb L1, L2 на материнской плате, 3DNow!
1998
Chomper
Socket 7
0.25
66 и 100Mhz FSB, 64Kb L1, L2 на материнской плате, 3DNow!
1998
К6-2+
Socket 7
0.18
66 и 100Mhz FSB, 64Kb L1, 128Kb L2, 3DNow!
1998
K6-3
Sharptooth
Socket 7
0.25
66 и 100Mhz FSB, 64Kb L1, 256Kb L2, 3DNow!
1999
Athlon
К7 (K75, K76)
Slot-A
0.25-0.18
200Mhz FSB, 128Kb L1, L2 512Kb на процессорной плате, 3DNow!
1999
Thunderbird
Socket 462
0.18
200 и 266Mhz FSB, 128Kb L1, 256Kb L2, 3DNow!
2000
Duron
Spitfire
Socket 462
0.18
200Mhz FSB, 128Kb L1, 64Kb L2, 3DNow!
2000
Morgan
Socket 462
0.18
200Mhz FSB, 128Kb L1, 64Kb L2, 3DNow!, SSE
2001
Athlon XP
Palomino
Socket 462
0.18
266Mhz FSB, 128Kb L1, 256Kb L2, 3DNow!, SSE
2001
Thoroughbred
Socket 462
0.13
266 или 333Mhz FSB, 128Kb L1, 64Kb L2, 3DNow!, SSE
2002
Barton
Socket 462
0.13
333Mhz (а скоро и 400Mhz) FSB, 128Kb L1, 512Kb L2, 3DNow!, SSE
2002
На этом я закончу. Если у вас есть какие-то еще важные по вашему мнению вопросы, то вы можете их прислать на мой e-mail. В принципе почти на все вопросы можно найти ответы в интернете, надо только поискать :).
В конце хочу выразить благодарность за помощь в написании данной статьи и информационную поддержку Сергею Балабкину и моему брату Василию Десницкому. Также хочется поблагодарить всю мою семью и замечательный сайт Overclockers.ru за то, что они есть!