что делать если совершенно не понимаешь математику
Как я перепрограммировала свой мозг, чтобы начать разбираться в математике
Простите, реформаторы образования – нам всё ещё нужны зубрёжка и повторение
Я была капризным ребёнком, росшим на лирической стороне жизни, и относилась к математике и науке так, будто они были симптомами чумы. И потому странно, что я превратилась в человека, ежедневно имеющего дела с тройными интегралами, преобразованиями Фурье и, жемчужиной математики – уравнением Эйлера. Сложно поверить, что из матофоба я превратилась в профессора прикладных наук.
Однажды один из моих учеников спросил, как мне это удалось – как я изменила свой мозг. Мне хотелось ответить – чёрт возьми, с трудом! Я всё-таки заваливала экзамены по математике и физике в начальной, средней и высшей школах. Я записалась в класс для отстающих по математике после того, как отслужила в армии, в 26 лет. На выставке примеров нейропластичности у взрослых я была бы первым экземпляром.
Изучение математики и точных наук во взрослом возрасте открыло мне дверь в технические науки. Но эти тяжёлые взрослые изменения в мозгу открыли мне взгляд изнутри на нейропластичность, связанную со взрослым обучением. К счастью, моя докторская по системному проектированию, во время которой я постигала точные науки, технологии, технические науки и математику (STEM – Science, Technology, Engineering, Math), и моё последующее исследование на тему человеческого мышления, помогло мне понять недавние прорывы в неврологии и когнитивной психологии, связанные с обучением.
В последовавшие за получением мною докторской степени годы через мой класс прошли тысячи студентов – выращенных в начальной и средней школе с верой в то, что понимание математики через активное обсуждение является талисманом обучения. Если вы можете объяснить, что вы выучили, другим – допустим, нарисовав картинку,- тогда вы, наверное, действительно это поняли.
Примером этой техники, «сфокусированной на понимании», и объектом подражания стала Япония. Но из обсуждения часто пропадает конец истории: в Японии также изобрели и метод обучения «Кумон», который основан на запоминании, повторении и зубрёжке для достижения школьником отличного владения материалом. Эту интенсивную программу послешкольного обучения предпочитают тысячи родителей в Японии и во всём мире, дополняя совместное обучение детей большим количеством практики, повторений, и с умом разработанной системой зубрёжки, с целью обеспечить им прекрасное владение материалом.
В США концентрация на понимании иногда заменяет, а не дополняет более старые методы обучения, которые, как подтверждают учёные, работают с естественными процессами мозга, изучающего такие сложные вещи, как математика и точные науки.
Последняя волна реформы обучения математике включает «Общее ядро» – попытку назначить жёсткие общие стандарты по всем США, хотя критики и говорят, что эти стандарты не соответствуют достижениям других, более продвинутых стран. Внешне у стандартов есть некая перспектива. Предполагается, что в математике ученики должны иметь равные возможности в концептуальном понимании, практических и процедурных навыках.
Дьявол, как обычно, в мелочах реализации. В сегодняшнем образовательном климате запоминание и повторение STEM-дисциплин, в отличие от изучения языка и музыки, часто расцениваются, как недостойные занятия, тратящие время учеников и учителей. Многие учителя давно считают, что понимание концепций в дисциплинах STEM имеет наивысший приоритет. Конечно, учителям легче вовлечь учеников в обсуждение математических тем (и этот процесс при правильном руководстве может сильно помочь в понимании задач), чем корпеть над выставлением отметок за домашние задания. В результате, хотя процедурные умения и свободное владение предметом должны преподаваться в тех же дозах, что и концептуальное понимание, часто этого не происходит.
Проблема с концентрацией только на понимании состоит в том, что ученики, постигающие математику и точные науки, часто могут нахвататься основных понятий о важной идее, но её понимание быстро ускользает без его закрепления через практику и повторение. Хуже того, ученикам часто кажется, что они понимают что-то, в то время, когда это не так. Такой подход часто может принести лишь иллюзию понимания. Как недавно сказал мне один из неуспевающих учеников, «Не пойму, почему я так плохо справился с заданием. Я ведь в классе всё понимал». Ему казалось, что он всё понял, и возможно, что так и было, но он не использовал понятое на практике, чтобы оно закрепилось в мозгу. Он не выработал процедурного владения или способности применять знания.
Точно так же, когда вы понимаете, почему вы что-то делаете в математика, вам не нужно каждый раз объяснять себе одно и то же. Вам не нужно носить с собой 25 шариков, выкладывать их по 5 рядов в 5 столбцов на столе, чтобы убедиться, что 5 х 5 = 25. В какой-то момент вы просто это знаете. Вы запоминаете, что при умножении одинаковых чисел в разной степени вы можете просто складывать степени (10 4 x 10 5 = 10 9 ). Используя эту процедуру часто и в разных случаях, вы обнаружите, что вы понимаете, почему и как она работает. Лучшее понимание темы происходит из создания в мозгу осмысленного шаблона.
Я выучила всё это насчёт математики и насчёт самого процесса обучения не в классе, а по ходу течения моей жизни, как человек, в детстве читавший Мадлен Ленгль и Достоевского, изучавший языки в одном из ведущих мировых языковых институтов, а затем резко поменявший свой путь и ставший профессором технических наук.
Будучи молодой девушкой, страстно желавшей изучать языки, и не обладавшей нужными деньгами и навыками, я не могла позволить себе оплачивать колледж. Поэтому я после школы пошла в армию. Мне нравилось изучать языки в школе, и казалось, что армия – как раз то место, где человек может получать деньги за изучение языков, посещая высоко ценящийся языковой институт Минобороны – место, где изучение языков превратили в науку. Я выбрала русский, поскольку он сильно отличался от английского, но был не таким сложным, чтобы изучать его всю жизнь и дойти в итоге до уровня 4-летнего ребёнка. Кроме того, «Железный занавес» притягивал меня – не могла ли я использовать знание русского, чтобы заглянуть за него?
После армии я стала переводчиком на советских траулерах в Беринговом море. Работать на русских было интересно и увлекательно – но также это была внешне приукрашенная работа мигранта. Во время сезона добычи рыбы ты ходишь в море, зарабатываешь неплохо, периодически напиваешься, а затем возвращаешься в порт в конце сезона и надеешься, что тебя снова наймут в следующем году. Для русскоговорящего человека была практически только одна альтернатива этому – работа на АНБ. Мои армейские контакты подталкивали меня к этому, но у меня не лежала к этому душа.
Я начала понимать, что хотя знание другого языка – это хорошо, это был навык с ограниченными возможностями и потенциалом. Из-за моих возможностей склонять слова по-русски мой дом не осаждали. Если только я не была готова терпеть морскую болезнь и периодическое недоедание на вонючих траулерах посреди Берингова моря. Я не могла не вспоминать об инженерах из Вест-Поинта, с которыми я работала в армии. Их математический подход к решению проблем явно был полезен для реального мира – более полезен, чем мои неудачи с математикой.
Так что, в 26 лет я, уходя из армии и оценивая возможности, вдруг подумала: если я хочу заняться чем-то новым, почему бы мне не попробовать нечто, что открыло бы мне целый новый мир перспектив? Технические науки, например? А это значило, что мне предстоит изучить новый язык – язык счисления.
С моим плохим пониманием простейшей математики, после армии я занялась алгеброй и тригонометрией по курсу для отстающих. Пытаться перепрограммировать мозг иногда казалось глупой идеей – особенно, когда я смотрела на лица моих более молодых одноклассников. Но в моём случае, а я ведь изучила русский в зрелом возрасте, я надеялась, что некоторые аспекты изучения языка можно применить в изучении математики и точных наук.
Изучая русский, я старалась не только понимать что-либо, но и достигать беглости в этом. Беглость в таком обширном предмете, как язык, требует такой степени знакомства, которую можно выработать только повторяющейся и различающейся работой с различными областями. Мои одноклассники, изучавшие язык, концентрировались на простом понимании, а я старалась достичь внутренней беглости со словами и структурой языка. Мне недостаточно было того, что слово «понимать» означает «to understand». Я практиковалась с глаголом, постоянно использовала его в разных временах, в предложениях, а затем понимала не только то, где его можно использовать, но и где его использовать не нужно. Я практиковалась над быстрым извлечением из памяти этих аспектов и вариантов. Посредством практики можно понимать и переводить десятки и сотни слов с другого языка. Но если у вас нет беглости, то когда кто-то быстро выплёвывает вам кучку слов, как в обычном разговоре, у вас не возникает понятия о том, что этот человек говорит, хотя технически вы вроде бы понимаете все слова и структуру. И вы, конечно, не можете говорить достаточно быстро для носителей языка, чтобы им было приятно слушать вас.
Этот подход, сосредоточение на беглости, а не на простом понимании, вывел меня на первое место в классе. Тогда я этого не понимала, но этот подход дал мне интуитивное понимание основ обучения и выработки экспертных навыков – кускование [chunking].
Кускование впервые было предложено в революционной работе Герберта Саймона при анализе шахмат. Кусочками служили различные мысленные аналоги шахматных шаблонов. Нейробиологи постепенно пришли к пониманию того, что эксперты, допустим, в шахматах, являются таковыми, поскольку могут хранить тысячи кусочков знания в долгосрочной памяти. Мастера в шахматах могут вспомнить десятки тысяч различных шахматных шаблонов. В любой области эксперт может вспомнить один или несколько хорошо связанных вместе кусков нервных подпрограмм для анализа и реакции на новую ситуацию. Такой уровень настоящего понимания и возможность использовать это понимание в новых ситуациях приобретается только из знакомства с предметом, полученного от повторений, запоминаний и практики.
Изучение мастеров шахмат, врачей скорой помощи и пилотов истребителей показало, что в стрессовых ситуациях сознательный анализ ситуации уступает место быстрой подсознательной обработке данных, когда эксперты обращаются к глубоко интегрированному набору мысленных шаблонов – кусочков. В какой-то момент осознанное понимание того, почему вы делаете то, что делаете, начинает только замедлять вас и прерывает поток, что приводит к принятию худших решений. Я была права, интуитивно ощущая наличие связи между изучением нового языка и математики. Ежедневное и непрерывное изучение русского языка возбуждало и укрепляло нервные контуры в моём мозгу, и я постепенно начала связывать вместе славянские кусочки, которые легко можно было вызывать из памяти. Чередуя изучение, практикуясь так, что я знала не только когда можно использовать слово, но и когда его использовать не нужно, или нужно использовать другой его вариант, я использовала те же подходы, что используют для изучения математики.
Изучение математики и точных наук во взрослом возрасте я начала с той же стратегии. Я смотрела на уравнение – для простого примера возьмём второй закон Ньютона, F = ma. Я практиковалась в ощущении значения каждой буквы: «f», то есть сила,- это толчок, «m», масса,- тяжёлое сопротивление толканию, «a» было радостным ощущением ускорения. (В случае с русским языком я так же практиковала произношение букв кириллицы). Я запоминала уравнение, носила его в своей голове и игралась с ним. Если m и a – большие, то что будет с f в уравнении? Если f большое, а a – маленькое, какое будет m? Как с обеих сторон сходятся единицы измерения? Играться с уравнением – как связывать глагол с другими словами. Я начинала постигать, что смутные очертания уравнения напоминали метафорическую поэму, в которой существовали всякого рода красивые символические представления. И хотя тогда я бы так это не выразила, но для хорошего изучения математики и точных наук мне нужно было медленно и ежедневно строить прочные нервные кусковые подпрограммы.
Со временем профессора математики и точных наук сообщили мне, что построение хорошо зафиксированных в памяти кусочков опыта посредством практики и повторения было жизненно важно для достижения успеха. Понимание не приводит к беглости. Беглость приводит к пониманию. Вообще, я считаю, что реальное понимание сложной темы происходит исключительно от беглости.
Вторгаясь в новую для меня область, становясь инженером-электриком, и, в итоге, профессором инженерного дела, я оставила русский язык позади. Но через 25 лет после того, как я в последний раз подымала стакан на советских траулерах, мы с моей семьей решили совершить путешествие по Транссибу через всю Россию. И хотя я с удовольствием ожидала давно желанного путешествия, я ещё и волновалась. Всё это время я практически не говорила по-русски. Что, если я всё забыла? Что дали мне все те годы достижения беглости?
Конечно, впервые зайдя в поезд, я обнаружила, что говорю по-русски на уровне двухлетнего ребёнка. Я искала слова, мои склонения и спряжения путались, а почти идеальный ранее акцент звучал ужасно. Но основа никуда не делась, и постепенно мой русский улучшался. Даже рудиментарных знаний хватало для ежедневных нужд. Вскоре экскурсоводы начали подходить ко мне за помощью в переводе для других пассажиров. Прибыв в Москву, мы сели в такси. Водитель, как я потом поняла, попытался нас обмануть, поехав в другую сторону и застряв в пробке, считая, что не разбирающиеся иностранцы спокойно выдержат лишний час счётчика. Внезапно русские слова, которыми я не пользовалась десятки лет, вылетели из моего рта. Сознательно я даже не помнила, что знаю их.
Беглость, когда она понадобилась, оказалась под рукой – и выручила нас. Беглость позволяет пониманию встроиться в сознание, и всплывать по необходимости.
Смотря на недостаток людей, специализирующихся в точных науках и в математике в нашей стране, и наши текущие техники обучения, и вспоминая свой собственный путь, с сегодняшними моими знаниями о мозге, я понимаю, что мы можем достичь большего. Как родители и учителя, мы можем использовать простые методы углубления понимания и превращения его в полезный и гибкий инструмент.
Я открыла, что наличие основной и глубоко выученной беглости в математике и точных науках – а не простого «понимания», чрезвычайно важно. Оно открывает пути к самым интересным занятиям в жизни. Оглядываясь в прошлое, я понимаю, что мне не обязательно было слепо следовать моим изначальным склонностям и страстям. Та же самая «беглая» часть меня, обожавшая литературу и язык, в результате полюбила математику и точные науки – и в итоге, преобразила и обогатила мою жизнь.
Причины и лечение дискалькулии – неспособности к математике
Существует множество причин, по которым способный ученик не разбирается в математике, включая плохую обстановку в школе, расстройства внимания и беспокойство. Но для некоторых детей типична специфическая неспособность к обучению математике, известной как дискалькулия развития, которой ученые уделяют все больше внимания. Дискалькулия определяется как состояние, включающее в себя длительные, серьезные трудности с математикой. Нередко они вызывают значительные проблемы с академической или профессиональной успеваемостью, или же с повседневной деятельностью. К некоторым типичным признакам дискалькулии исследователи относят трудности с использованием календарей и часов, вспоминанием порядка прошлых событий и с последовательным выполнением инструкций. Это состояние, как и дислексия, является пожизненным и продолжает оказывать влияние на людей во взрослой жизни.
Как оказалось, люди, страдающие дискалькулией считают на пальцах, не понимают дроби и не знают таблицу умножения
Что такое дискалькулия?
Издание Discover приводит слова Эдварда Хаббарда, нейробиолога из университета Висконсина о том, что люди с дискалькулией с трудом могут сказать, больше ли семь, чем пять. Хотя дискалькулия – очень редкое заболевание, она примерно так же распространена, как аналогичное расстройство чтения дислексия, но недостаточно исследована.
От расчета чаевых в ресторане до следования инструкциям – способность понимать цифры имеет важное значение для функциональной жизни. Согласно результатам исследования, проведенного в Великобритании еще в 2013 году, люди в возрасте 30 лет, считающие на пальцах, как правило, не имеют высшего образования, чаще оказываются безработными, имеют проблемы с законом и со здоровьем. Дискалькулия сурова тем, что несмотря на карточки, компьютерные игры, математические песни и дополнительные занятия люди, ей страдающие, не могут по-настоящему понять цифры.
Однако теперь, благодаря прогрессу в методах визуализации мозга и улучшению понимания числового познания в целом, начали появляться новые идеи о не способности некоторых людей к математике. Исследователи проследили дискалькулию вплоть до задней части мозга, известной как внутрипариетальная борозда, или IPC. Эта область мозга имеет решающее значение для восприятия и приблизительного сравнения величин – скажем, группы точек на странице или пик на игральной карте.
Мальчики в два раза чаще чем девочки болеют дислексией (а девочки дискалькулией)
Внутрипариетальная борозда (IPS) расположена на боковой поверхности теменной доли и состоит из наклонной и горизонтальной частей. Предполагается, что IPS играет роль и в других функциях, включая обработку символической числовой информации, зрительно-пространственную ориентацию рабочей памяти и интерпретацию намерений других.
В ходе исследования 2007 года ученые сканировали мозг детей с дискалькулией, в то время как они считали количество квадратов, представленных на экране. Когда их попросили определить, где больше квадратов, дети с дискалькулией сделали больше ошибок и отвечали медленнее, чем здоровые дети в контрольной группе. Кроме того, в отличие от своих сверстников, дети с дискалькулией не показали различий в активации IPC, когда сравнивали пары чисел, которые были ближе или дальше друг от друга по значению. Авторы исследования предположили, что мозг таких детей не так эффективно распознает относительное расстояние между числами. Другие ученые с тех пор обнаружили аналогичные эффекты.
В ходе дальнейшего изучения дискалькулии было обнаружено, что способность отличать различные величины друг от друга появляется в возрасте 6 месяцев. Более того, некоторые ученые предполагают, что в некоторых случаях мозг связывает восприятие количества с числовыми символами, например арабскими цифрами, или с том, как он сопоставляет числа с вербальными или пространственными процессами.
Сталкивались ли вы или ваши близкие с дискалькулией? Ответ будем ждать в комментариях к этой статье, а также в нашем Telegram-чате
Признаки и симптомы дискалькулии
Дискалькулия может возникать у людей вне зависимости от диапазона IQ, наряду с трудностями с определением времени, измерениями и пространственным мышлением. Оценки распространенности дискалькулии колеблются от 3% до 6% населения. В 2015 году было установлено, что у 11% детей с дискалькулией также было диагностировано СДВГ (синдром дефицита внимания и гиперактивности).
Учитывая, насколько важны математические навыки в повседневной жизни, необходимо разработать способы надежного выявления детей, испытывающих особые трудности в обучении, связанные с математикой
Исследователи отмечают, что дискалькулия часто выглядит по-разному в разном возрасте, однако симптомы могут появиться уже в дошкольном возрасте. Распространенными симптомами дискалькулии являются:
Чтобы всегда быть в крусе последних новостей из мира популярной науки и высоких технологий, подписывайтесь на наш канал в Google News
Математические нарушения могут возникать в результате некоторых видов черепно-мозговых травм, и в этом случае правильный термин – «акалькулия» должен отличать ее от дискалькулии, которая имеет врожденное, генетическое или спровоцированное окружающей средой происхождение.
Что делать, если вы совсем не понимаете математику
Вопросом, зачем учить математику и как ее понять, часто задаются ребята, которым этот предмет, мягко говоря, не дается. Но, увы, ОГЭ и ЕГЭ по математике все равно придется сдавать, независимо, понимаете ли вы ее или нет.
Зачем нужна математика?
Если вы решили стать, например, журналистом или политологом, то умение вычислять интеграл или находить дискриминант действительно вряд ли вам пригодятся. Но системное мышление, которое развивает математика, поможет вам в работе. Занимаясь математикой, вы научитесь логически мыслить, работать одновременно с большим количеством фактического материала, создавать и обосновывать концепции, излагать и доказывать свою точку зрения.
Как понять математику? Она, как и любой язык, является знаковой системой. Вы не сможете говорить на иностранном языке, просто выучив словарь, но не умея пользоваться правилами грамматики. Простая зубрежка не даст желаемого результата. Математику нужно научиться понимать. С первого класса этот предмет дается по принципу «от простого к сложному». Если что-то упущено в начальной школе, в старших классах «быстренько» наверстать материал не получится.
Что же делать?
Большинство родителей, если ребенок получает по математике сплошные двойки да тройку, ищут репетитора или подготовительные курсы. Примерно в 80% случаев систематические дополнительные занятия и смена преподавателя (пусть даже временная) помогают решить проблему. Значит, здесь причина низкой успеваемости связана с тем, что школьнику сложно успевать за остальным классом или он стесняется задать вопрос, если что-то неясно, боится учителя, есть пробелы.
Но как поступить, если ребенок изо всех сил старается понять математику, но у него ничего не получается? И тут, как правило, начинаются отговорки:
Увы, проблемы они никак не решают, а наоборот усугубляют. Математика является обязательным экзаменом в 9 и 11 классах, и терять время на подобные оправдания просто неразумно.
Дело не в способностях, дело в голове
По мнению детских психологов, дети, не успевающие по математике схожи в одном: они настолько боятся сделать ошибку, что этот страх мешает собраться и решить задачу правильно. Корни, как всегда, таятся в начальной школе.
Вместе эти факторы мешают малышу вникнуть в правило и условия задачи и в результате приводят к неудаче, боязни и непониманию предмета. Ребенку кажется, что он непроходимо туп в плане математики, это чувство подкрепляется неодобрительными высказываниями родителей и учителей в разных формах – от «Ты какой-то умственно отсталый» до «У тебя мозги гуманитария». Безобидный школьный предмет становится бесконечным источником унижения, страха, негативных эмоций.
Можно ли исправить ситуацию?
Психологи рекомендуют действовать одновременно в нескольких направлениях.
Поговорки «Не так страшен черт, как его малюют» и «У страха глаза велики» применимы к математике. Это «чудовище» вполне можно приручить.
Почему нужно сразу нацеливаться на профильную математику?
Хорошие баллы по математике требуются при поступлении на некоторые гуманитарные специальности, особенно, если они связаны с экономикой, маркетингом, управлением. Бывает, что этот предмет сдают и будущие лингвисты. Все зависит от вуза и его профиля. Только вот то, что засчитывается результат только за профильную математику, указывается не везде.
Выбрав профильную математику,
И, конечно, сможете достойно отвечать на глупые шутки про гуманитариев и «один, два, три, а дальше – много».
С другой стороны, если до ЕГЭ остался год, а по математике у вас двойки, то разумнее выбрать базовый уровень и начать готовиться к нему. Да, выбор специальностей будет несколько ограничен для вас, но зато вы точно сдадите экзамен и получите аттестат.
Урок 7. Устранение проблем с математикой
В этом уроке мы постараемся рассмотреть не столько проблемы с технической стороной усвоения математических знаний, сколько проблемы более глобального, можно сказать, психологического характера. И причин тому несколько:
Беря это во внимание, мы решили, что поговорить о трудностях с математикой с точки зрения педагогики и психологии будет вполне уместно. Несмотря на то, что практической информации, как таковой, в уроке минимум, в общем и целом эти знания непременно пригодятся вам на практике. Причем полезны они будут не только во время ваших занятий с ребенком, но и в перспективе – когда он пойдет в школу, начнет делать уроки, быть может, выбирать программу с углубленным изучением каких-то предметов.
Итак, давайте приступим.
Содержание:
Трудности с математикой
Изучая математику, с проблемами сталкивается огромное количество детей. Если числа, таблица умножения и простейшие вычисления даются всем, то формулы, доказательства теорем и тригонометрические функции может осилить не каждый. Однако от уроков и школьной программы деваться некуда, а это значит, что познавать азы необходимо. Чего же может не хватать детям, чтобы подружиться с царицей наук?
Множеству родителей знакомы проблемы их детей с алгеброй и геометрией. Уроки делаются всем семейством, а сам процесс нередко сопровождается истериками, нервами, стрессами и усталостью, отчего математика становится настоящим бичом, а уроки – серьезным испытанием на прочность. В итоге мамы и папы ломают голову над тем, какую помощь оказать ребенку: и чтобы предмет давался легче, и чтобы каждая неудовлетворительная оценка в тетрадке не становилась причиной для плохого настроения или – что часто случается – слез.
Математику можно смело назвать одним из самых спорных предметов в школьной программе, и среди выпускников всегда можно найти тех, у кого одни пятерки по всем дисциплинами, но только не по математике. Родители же в свою очередь относятся к такого рода проблемам по-разному. Одни уверены в том, что математика очень важна, а потому чуть ли не силой заставляют свое чадо грызть гранит науки, даже если он действительно не по зубам. Другие, видя в ребенке проявления гуманитарного склада ума, считают, что главное – это успехи в литературе, русском и иностранных языках, истории и т.д., а с математикой – да бог с ней, с этой математикой.
Но следует ли сводить на нет важность этого предмета, даже если в малыше уже с ранних лет наружу пытается выбраться творческая натура? К категории творческих людей можно отнести писателей, поэтов, художников, а также историков, журналистов и редакторов. Но если, например, художнику или писателю математика на самом деле нужна постольку-поскольку, то в таких профессиях, как журналист, историк или редактор она все-таки пригождается. Математика – это основа системного мышления, и во многих областях жизнедеятельности человека без нее не обойтись.
Когда у детей возникают трудности с математикой, родители часто говорят: «Ну не понимает он (или она) этого предмета, нет у него предрасположенности к нему». В итоге не остается ничего, кроме того чтобы без ропота принять сложность математики. «Зато остальные предметы даются ребенку прекрасно!». Однако, по мнению опытных педагогов и профессиональных репетиторов по математике (например, Леонида Костюкова) этот предмет может быть значительно проще остальных. Фишка в том, что математика – наука последовательная, и нет никакой необходимости заучивать бесчисленное количество дат, терминов и понятий. Все, что требуется от ученика – это понять математику.
Кроме того, если ребенок хорошо осваивает языки, каких бы то ни было проблем с освоением математики у него просто быть не должно. Большая часть иностранных языков построена на вполне логичной и понятной структуре, а школьная программа по изучению английского языка гораздо сложнее программы по изучению математики. Картинка, согласитесь, рисуется довольно приятная, но почему на деле все не так?
Психология «отношений» ребенка и математики
Профессиональные психологи (к примеру, детский психолог Елена Морозова) указывают на то, что между детьми, хорошо соображающими в технических дисциплинах, и остальными детьми есть некоторые психологические отличия. По большому счету, дети, любящие математику, характеризуются любопытством, готовностью пойти на риск, настойчивостью, отсутствием страха перед трудностями. А те, у кого с математикой «ни то, ни се», часто отличаются неуверенностью в себе, зависимостью от мнения родителей и других окружающих людей, боязнью трудностей, а также убежденностью в том, что они не так сообразительны, как остальные. Потому-то и решение трудных математических задач вызывает серьезные затруднения.
Вышеназванные различия формируются еще в детском садике и начальных классах школы. Одни дети умеют хорошо читать, а другие что-то невнятно мямлят. Одни знают таблицу умножения, а другие с трудом складывают «17» и «15». Одни при счете перебирают пальчики, а другие с успехом демонстрируют абстрактно-образное мышление. Одним не стоит никакого труда представить, как первый поезд выходит из пункта A, а второй – из пункта B, и встречаются они в точке C, а для других это – фантастика.
Все это во множестве случаев является следствием отсутствия фундамента математической дисциплины, по причине чего ребенку гораздо легче вообще запустить математику, нежели постараться в ней разобраться.
Любая запущенная математическая трудность лишь усугубляет проблемы в будущем. А в литературе, например, подобные проблемы отсутствуют, т.к. если ученик не читал «Отцы и дети» И. С. Тургенева, это совсем не мешает ему прочитать «Войну и мир» Л. Н. Толстого. С математикой же такое не прокатит, ведь из-за какой-то теоремы, непонятой в пятом классе, начнутся проблемы в последующих классах.
Но, по мнению все тех же психологов, отсутствие успеха в изучении математики может быть связано не только со способностями, но и с эмоциональными особенностями детей. Во-первых, и сами родители не всегда проявляют чудеса педагогики и воспитания, занимаясь ранним развитием своих подопечных, а во-вторых, не каждый учитель – Учитель с большой буквы. Особенности воспитания и стиль преподавания играют огромную роль и накладывают свой отпечаток. В частности, если ребенку часто дают понять, что он чего-то не соображает, отстает, не способен понять «прописных истин», на положительные результаты обучения рассчитывать не стоит.
Есть ли у родителей выход?
Нет совершенно никаких сомнений в том, что детские трудности с математикой, особенно когда они наблюдаются в старшем дошкольном и младшем школьном возрасте, воспринимаются родителями отнюдь не радостно. Но критика и злость по отношению к ребенку нисколько не облегчают ситуацию. И, опять же, психологи в этом вопросе сходятся – родители ни в коем случае не должны нагнетать обстановку, а, наоборот, должны стараться снимать напряжение, вызванное математикой. Нельзя фокусировать внимание ребенка на неудачах и отсутствии успеха. Если что-то не получается, это вполне можно исправить.
Не заставляйте ребенка зазубривать через силу основы предмета. С математикой ваша маленькая драгоценность сможет справиться только в том случае, если вы сможете донести целостность этой дисциплины. Старайтесь подводить свое чадо к самостоятельным решениям, как можно доступнее объясняя моменты, мешающие ему понять и увидеть – как решается пример, задача или уравнение. Если же желание научить ребенка основам математики есть, а возможности заниматься с ним самим по каким-то причинам нет, есть смысл прибегнуть к услугам репетитора. Но он должен не только разбираться в своем предмете, но и иметь опыт работы с детьми.
Но давайте резюмируем все вышесказанное, чтобы разложить все по полочкам.
Почему возникают проблемы с математикой
Не забывайте, что в этом уроке мы обсуждаем проблемы с математикой с психологической точки зрения. Исходя из этого, основными причинами таких проблем являются:
Имейте в виду, что эти причины относятся к основным. Разбирая математические трудности ребенка, нужно брать в расчет наличие индивидуальных психологических проблем, зачастую совершенно не связанных с интеллектуальным потенциалом.
Что делать родителям
Подходя к вопросу решения проблем с математикой профессионально, следует прибегать к следующим методам:
Проблемы у детей с математикой – это не нечто из ряда вон выходящее; они есть всегда и везде. Например, несколько лет назад, американское издание New York Times (выпуск от 28 июля 2014 года) поднимало вопрос о том, нужна ли вообще ученикам алгебра, если каждый четвертый американский школьник не может получить аттестат из-за «неприятностей» с математикой. А министр образования и науки Франции Клод Аллегрэ, будучи сам ученым-физиком, дискутировал на тему исключения математики из школьной программы, ссылаясь на то, что множество детей не способны решить даже элементарные задачи. Однако дисциплина все так же остается одной из главных в школе, а для многих – и в жизни.
Но помните, что умение считать, знание таблицы умножения, хорошие оценки и т.д. – все это прекрасно, но у ребенка могут быть свои потребности и цели. Если один хочет стать новым Пифагором, то для другого важно, чтобы его любили, ценили и принимали таким, какой он есть, а также чтобы математика не вызывала у него страхов и тревог, даже если он чего-то недопонимает. Так что успех вашего чада – в ваших руках. Используйте это ему во благо.
Предпоследний урок блока по обучению детей счету посвящен теме привития ребенку любви к математике. Из него вы узнаете, что делают многие родители, чтобы отбить у малыша всякую охоту осваивать математические основы, и что следует предпринимать, чтобы этого избежать, и чтобы интерес к этой науке возрастал с каждым днем.
Проверьте свои знания
Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.
Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.